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*» The power source for voice production is
the airstream which originates in the lungs
and is supported by a diaphragm. The
voice production system shown in Figure
begins at the vocal cords and terminates
at the mouth. The vocal tract includes the

larynx, pharynx above it, mouth, and the

nasal cavity.
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Vocal Cords Diseases

Voice
Disorders:
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»According to the American Speech-Language-
Hearing Association, “Voice disorders occur
when voice quality, pitch, and loudness differ or
are inappropriate for an individual’'s age, gender,

cultural background, or geographic location.
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»110% rise in speech disorders among children
(ages 0-12) post-pandemic.
»1 in 5 Americans report voice disorders due to voice
tech and occupational use.
»18% of elderly (60+) suffer from voice-related

disorders.
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Why Automatic voice
Pathology Detection?
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Al-Powered Voice Pathology Detection: Key Benefits

1 Early & Accurate Detection

Al analyzes subtle acoustic features, improving diagnosis
sensitivity & specificity.

& Non-Invasive & Cost-Effective

Eliminates the need for invasive tests; requires only a microphone
& software.

s Automation & Efficiency

Processes large voice data quickly, reducing workload for
healthcare professionals.
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Remote & Telemedicine Applications

Enables screening via smartphones, benefiting underserved regions.
M1 Continuous Monitoring & Personalized Treatment

Tracks voice changes over time for better therapy adjustments.

Q Detecting Subtle Patterns in Disorders

|dentifies complex voice issues like vocal cord paralysis, Parkinson’s,
and ALS.

& Integration with Emerging Technologies

Works with [oT & wearables for real-time monitoring & speech therapy.
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Figure 2. Mobile healthcare framework.
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v" A VPD system was developed within a mobile healthcare framework.

v" Smart devices were utilized to capture and process voice signals,
leveraging transfer learning with CNN models such as VGG-76 and
CaffeNet.

v Using the Saarbriicken Voice Disorder (SVD) database.

v" The system achieved an accuracy of 97.5%, emphasizing the
potential of mobile platforms in improving voice pathology
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« Dataset: AVFAD (University of Aveiro, Portugal).

« Participants: 709 total (346 with vocal pathologies, 363
healthy).

 Recording Types: Sustained vowels (/a/, /u/, /i/) — 3
repetitions each. Reading predefined text & six
sentences. Spontaneous speech samples.

« Sampling Rate: 48 kHz for all recordings.




Waveform of a
healthy and an
unhealthy
sample for
vowel /a/:

Armiplitude

Waveform of the Pathological Sample
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Table 1. Data Splitting Methodology in This Study for the AVFAD

CAl

Dataset
Data Train Test Validation Al et
Gender Muale | Female | Male | Female | Male | Femuale
Normal 73 162 22 50 18 37
Pathologic 54 161 2 49 13 37
Total 137 323 42 99 31 74
(Gender)
Total (ALl 450 141 105

Table 2. Duration (sec) statistics for the yowels /a/, /i, and fu/.
Vowels Min Max Mean Mean + STD

fal : 14.61 21.81

14.81 2234

1455 29.09
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aMFEC mimics human auditory perception, effectively representing timbre and spectral
shape. |t is particularly useful in identifying subtle frequency changes caused by voice
disorders.

olPC models the vocal tract's resonant properties, making it excellent for capturing speech
production characteristics and detecting abnormal vocal cord vibrations.




Table 3: The CNN model parameters and details.

Input Layer Input Shape

(Mumber of Frames, Feature Size, 1)

Convolutional Layer 1 Eernel Size: 3 x 3, Filters: 16,
Activation: EELU, Padding: Same

The Based CNN MOdeI: Max pooling Layer 1 Pool Size: 2=x 2

Convolutional Layer 2 Eemel Size: 3 x 3, Filters: 32,

( = ) Activation: EELU, Padding: Same
o
) ) ) e MMax pooling Layer 2 Pool Size: 2x 2
| o | le | le 3| (@ 2 (2 = i :
. g r;: y ~ a r: o Q a r: § ~ 4 2 ol |23 3 |9 3 Convolutional Laver 3 Kemel Size: 3 x 3, Filters: 64,
a 20 g 2o 8y 20 oM g;p Ee 5'1_ 23 5°ED Activation: RELU, Padding: Same
© I8¢ 3% (38 (39 88 5% | & | BT 28 18] |°°
o |— s 4 = i
B (= B [Z & (= % ~ c MMax pooling Lavyer 3 Pool Size: 2x 2
®
N —) — [ 2 . -
e Global Average 2 Dimensional
Pooling
Dropout Layer 1 Eate: 0.3
Denze Layer 1 Units: 1228, Activation: RELU
Dropout Layer 2 Eate: 0.3

Denze Layer 2 Units: 1, Activation: Sigmoid
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Table 4: LPC-Based CNN Model - Validation & Test Accuracies for

Different Vowels

Viowel Frames Frames Firzt 15
type (Mean+3TD)) (Mean+5TD) | Seconds (with
with zilence without silence)
Silence
Vowel /i Walid:0.8952 Valid:0.8571 Walid:0_ 8837
Test: 0.3501 Test: 0.8098 Test: 08380
WVowel /fa’ Walid:0 8666 Valid:0_ 8476 Walid:09142
Test: 0.8239 Test: 0.7676 Test: 0.5450
Vowel fu’ Walid:0.7619 Valid:0.7333 Walid:0_ 7809
Test: 0.8028 Test: 0.7183 Test: 0.7816

Table 5: MFCC-Based CNN Model - Validation & Test Accuracies for

Different Vowels

Vowel type Frames Frames Farst 13
(Mean+5TD) (Mean+5TD) Seconds (with
with silence Without silence)

Silence
Vowel /g Valid:0.8761 Valid:0.8476 Walid:0.8666
Test:0.8661 Test:0.8239 Test:0.8521
Vowel /a/ Valid:0.8837 WValid:0.8761 Valid:0.8761
Test:0.8309 Test:0.7335 Test:0.8350
Vowel /u/ Valid:0.9238 Valid:0.9047 Valid:0.9047
Test:0.5391 Test:0.8095 Test:0.8309
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 LPC-Based CNN Model

*Best Test Accuracy: 0.8531 (Vowel /i/, Frames with silence).
«Best Test Accuracy without Silence: 0.8098 (Vowel /i/).
*Best Test Accuracy for First 13 Seconds: 0.84350 (Vowel /i/).
« MFCC-Based CNN Model

*Best Test Accuracy: 0.8661 (Vowel /i/, Frames with silence).
«Best Test Accuracy without Silence: 0.8239 (Vowel /i/).
*Best Test Accuracy for First 13 Seconds: 0.8521 (Vowel /i/).

* [Dverall Best Accuracy

*MFCC-Based CNN Model performed best with vowel /i/ (Test Accuracy 0.8661).
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Base CNN Model |
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Architecture: Three convolutional layers with 16, 32,
and B4 filters, respectively, followed by max-pooling
max-pooling layers.

First Dense layer neurons: |78.

Parameters: 31,740 (~124 KB)

Validation Accuracy: 0.876]

Test Accuracy: 0.866I

Small CNN Model 2
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Architecture: Two convolutional layers with 8 and 1B
filters, followed by max-pooling layers. The third
convolutional layer and its max-pooling layer were
discarded.
First Dense layer neurons: B4.
Parameters: |.721 (~6.72 KB)
Validation Accuracy: 0.838(0
Test Accuracy: 0.7464
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Small CNN Maodel 3

(¢]

(@) (@) (@) (@)

Architecture: Two convolutional layers with 16 and
32 filters, followed by max-pooling layers. The third
layers. The third convolutional layer and its max-
and its max-pooling layer were discarded.
discarded.

First Dense layer neurons: G4.

Parameters: £.977 (~27.2a KB)

Validation Accuracy: 0.8a7]

Test Accuracy: 0.8303
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Small CNN Model 4
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Architecture: Three convolutional layers with 8, 1B, and
32 filters, each followed by max-pooling layers.

First Dense layer neurons: B4.

Parameters: 8,065 (~31.5 KB)

Validation Accuracy: 0.8666

Test Accuracy: 0.8571
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Figure 1: Validation Accuracy Curve for Optimal CNN Model on 20
MECCs (Vowel /1))

Table 6: Precision, Recall, and F1-Score for Healthy (0) and Unhealthy
(1) Samples of 20 MFCCs for Vowel /i/ Using the Optimal CNN Model

Lahel Precision Recall F1-Score

0 0.93 0.81 0.87

1 0.83 0.9 0.89




Future
Works:
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Enhancing LPC Features: Further exploration for deeper insights.
Optimizing Feature Extraction: Varying coefficient numbers to
improve classification.

Combining Vowel Sounds: Using multiple vowels for better
accuracy.

Leveraging Pre-Trained Models: Enhancing efficiency in pathology
detection.

CNN Model Improvements: Exploring different kernel sizes for
speech signals and testing GELU activation instead of ReLU.
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