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ABSTRACT. These are some brief notes on measure theory, concentrating on
Lebesgue measure on R™. Some missing topics I would have liked to have in-
cluded had time permitted are: the change of variable formula for the Lebesgue
integral on R™; absolutely continuous functions and functions of bounded vari-
ation of a single variable and their connection with Lebesgue-Stieltjes measures
on R; Radon measures on R™, and other locally compact Hausdorff topological
spaces, and the Riesz representation theorem for bounded linear functionals
on spaces of continuous functions; and other examples of measures, including
k-dimensional Hausdorff measure in R™, Wiener measure and Brownian mo-
tion, and Haar measure on topological groups. All these topics can be found
in the references.
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CHAPTER 1

Measures

Measures are a generalization of volume; the fundamental example is Lebesgue
measure on R™, which we discuss in detail in the next Chapter. Moreover, as
formalized by Kolmogorov (1933), measure theory provides the foundation of prob-
ability. Measures are important not only because of their intrinsic geometrical and
probabilistic significance, but because they allow us to define integrals.

This connection, in fact, goes in both directions: we can define an integral
in terms of a measure; or, in the Daniell-Stone approach, we can start with an
integral (a linear functional acting on functions) and use it to define a measure. In
probability theory, this corresponds to taking the expectation of random variables
as the fundamental concept from which the probability of events is derived.

In these notes, we develop the theory of measures first, and then define integrals.
This is (arguably) the more concrete and natural approach; it is also (unarguably)
the original approach of Lebesgue. We begin, in this Chapter, with some prelimi-
nary definitions and terminology related to measures on arbitrary sets. See Folland
[4] for further discussion.

1.1. Sets

We use standard definitions and notations from set theory and will assume the
axiom of choice when needed. The words ‘collection’ and ‘family’ are synonymous
with ‘set’ — we use them when talking about sets of sets. We denote the collection
of subsets, or power set, of a set X by P(X). The notation 2% is also used.

If E C X and the set X is understood, we denote the complement of F in X
by E¢ = X \ E. De Morgan’s laws state that

(UEQ) =) E:, <ﬂEa> = E:
acl acl ael acl
We say that a collection
C={E,CX:a€cl}
of subsets of a set X, indexed by a set I, covers £ C X if
JE.DE.
acl

The collection C is disjoint if E, N Eg = @ for a # 5.
The Cartesian product, or product, of sets X, Y is the collection of all ordered
pairs
XxY={(z,y):z€eX,yeY}.

1



2 1. MEASURES

1.2. Topological spaces

A topological space is a set equipped with a collection of open subsets that
satisfies appropriate conditions.

Definition 1.1. A topological space (X, T) is a set X and a collection 7 C P(X)
of subsets of X, called open sets, such that

(a) 9, X €T;
(b) if {Uy € T : a € I} is an arbitrary collection of open sets, then their
union
U U, eT
ael
is open;
(c) if{U; € T:i=1,2,...,N} is a finite collection of open sets, then their
intersection
N
ﬂ U, eT
i=1
is open.

The complement of an open set in X is called a closed set, and T is called a topology
on X.

1.3. Extended real numbers

It is convenient to use the extended real numbers
R = {-00} URU {o0}.

This allows us, for example, to talk about sets with infinite measure or non-negative
functions with infinite integral. The extended real numbers are totally ordered in
the obvious way: oo is the largest element, —co is the smallest element, and real
numbers are ordered as in R. Algebraic operations on R are defined when they are
unambiguous e.g. 0o + x = oo for every € R except x = —oo, but co — 0o is
undefined.

We define a topology on R in a natural way, making R homeomorphic to a
compact interval. For example, the function ¢ : R — [—1, 1] defined by

1 if x =00
dlr)=4¢ z/V1+22 f-xo<z<o
-1 ifr=-00

is a homeomorphism.

A primary reason to use the extended real numbers is that upper and lower
bounds always exist. Every subset of R has a supremum (equal to oo if the subset
contains oo or is not bounded from above in R) and infimum (equal to —oo if the
subset contains —oo or is not bounded from below in R). Every increasing sequence
of extended real numbers converges to its supremum, and every decreasing sequence
converges to its infimum. Similarly, if {a,} is a sequence of extended real-numbers
then

limsup a,, = inf <sup ai> , liminf a,, = sup (inf ai)
n—oo ne i>n n—o0 neN \i=n

both exist as extended real numbers.
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Every sum Zf; r; with non-negative terms z; > 0 converges in R (to oo if
x; = oo for some i € N or the series diverges in R), where the sum is defined by

ixi sup{Zazi:FCNis ﬁnite}.

i=1 ieF

As for non-negative sums of real numbers, non-negative sums of extended real
numbers are unconditionally convergent (the order of the terms does not matter);
we can rearrange sums of non-negative extended real numbers

oo

oo (oo}
Z(fﬁi +yi) = sz + Zyu
i=1 i=1

i=1

and double sums may be evaluated as iterated single sums

oo
Z%‘ZSHP Z wij + FFC N x N is finite
=1 (i,4)€F

||PH18
1

=1 \j=1
0o 0o
j=1 \i=1

Our use of extended real numbers is closely tied to the order and monotonicity
properties of R. In dealing with complex numbers or elements of a vector space,
we will always require that they are strictly finite.

1.4. Outer measures

As stated in the following definition, an outer measure is a monotone, countably
subadditive, non-negative, extended real-valued function defined on all subsets of
a set.

Definition 1.2. An outer measure p* on a set X is a function
p* o P(X) = [0, 00]
such that:

(a) p*(2) = 0;
(b) if EC F C X, then p*(E) < p*(F);
(c) if {F; C X :4i € N} is a countable collection of subsets of X, then

I (U Ei) < ZM*(Ei)~

We obtain a statement about finite unions from a statement about infinite
unions by taking all but finitely many sets in the union equal to the empty set.
Note that p* is not assumed to be additive even if the collection {E;} is disjoint.
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1.5. o-algebras

A o-algebra on a set X is a collection of subsets of a set X that contains @ and
X, and is closed under complements, finite unions, countable unions, and countable
intersections.

Definition 1.3. A ¢-algebra on a set X is a collection A of subsets of X such that:
(a) 9,X € A
(b) if A€ A then A° € A,
(c) if A; € Afor i € N then

O A; e A, ﬁ A; e A
=1 =1

From de Morgan’s laws, a collection of subsets is o-algebra if it contains @ and
is closed under the operations of taking complements and countable unions (or,
equivalently, countable intersections).

Example 1.4. If X is a set, then {&, X} and P(X) are o-algebras on X; they are
the smallest and largest o-algebras on X, respectively.

Measurable spaces provide the domain of measures, defined below.

Definition 1.5. A measurable space (X, .A) is a non-empty set X equipped with
a o-algebra A on X.

It is useful to compare the definition of a o-algebra with that of a topology in
Definition [I.1] There are two significant differences. First, the complement of a
measurable set is measurable, but the complement of an open set is not, in general,
open, excluding special cases such as the discrete topology 7 = P(X). Second,
countable intersections and unions of measurable sets are measurable, but only
finite intersections of open sets are open while arbitrary (even uncountable) unions
of open sets are open. Despite the formal similarities, the properties of measurable
and open sets are very different, and they do not combine in a straightforward way.

If F is any collection of subsets of a set X, then there is a smallest o-algebra
on X that contains F, denoted by o(F).

Definition 1.6. If F is any collection of subsets of a set X, then the o-algebra
generated by F is

o(F) = ﬂ {ACP(X): AD F and A is a o-algebra} .

This intersection is nonempty, since P(X) is a o-algebra that contains F, and
an intersection of o-algebras is a o-algebra. An immediate consequence of the
definition is the following result, which we will use repeatedly.

Proposition 1.7. If F is a collection of subsets of a set X such that F C A where
A is a o-algebra on X, then o(F) C A.

Among the most important o-algebras are the Borel o-algebras on topological
spaces.

Definition 1.8. Let (X, T) be a topological space. The Borel o-algebra
B(X) =a(T)
is the o-algebra generated by the collection T of open sets on X.
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1.6. Measures

A measure is a countably additive, non-negative, extended real-valued function
defined on a o-algebra.

Definition 1.9. A measure p on a measurable space (X,.A) is a function
A — [0, 00]
such that

(a) p(@) = 0;
(b) if {A; € A:i e N} is a countable disjoint collection of sets in A, then

H (U Ai) = ZM(Ai)-

In comparison with an outer measure, a measure need not be defined on all
subsets of a set, but it is countably additive rather than countably subadditive.
A measure g on a set X is finite if u(X) < oo, and o-finite if X = |-, 4,
is a countable union of measurable sets A,, with finite measure, u(A,) < oo. A
probability measure is a finite measure with u(X) = 1.

A measure space (X, A, u) consists of a set X, a o-algebra A on X, and a
measure 4 defined on A. When A and p are clear from the context, we will refer to
the measure space X. We define subspaces of measure spaces in the natural way.

Definition 1.10. If (X, A, ;) is a measure space and E C X is a measurable
subset, then the measure subspace (E, A|j , u|g) is defined by restricting u to E:

Alg={ANE:Ac A},  ulp(ANE)=u(ANE).

As we will see, the construction of nontrivial measures, such as Lebesgue mea-
sure, requires considerable effort. Nevertheless, there is at least one useful example
of a measure that is simple to define.

Example 1.11. Let X be an arbitrary non-empty set. Define v : P(X) — [0, 0]
by

v(E) = number of elements in E,
where v(@) = 0 and v(E) = oo if E is not finite. Then v is a measure, called count-
ing measure on X. Every subset of X is measurable with respect to v. Counting
measure is finite if X is finite and o-finite if X is countable.

A useful implication of the countable additivity of a measure is the following
monotonicity result.

Proposition 1.12. If {4; : i € N} is an increasing sequence of measurable sets,
meaning that A;+1 D A;, then

(1.1) m (U Az-) = lim p(A;).
i=1

1—00

If{A; : i € N} is a decreasing sequence of measurable sets, meaning that A;11 C A;,
and p(Ay) < oo, then

(1.2) m (ﬁ AZ) = lim p(A).
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PROOF. If {4; : i € N} is an increasing sequence of sets and B; = A;11 \ A,
then {B; : i € N} is a disjoint sequence with the same union, so by the countable

additivity of p
2 (U Ai) =p (U Bi) = u(Bi).
i=1 i=1 i=1

; Y ,
Moreover, since A; = J]_, B;,

which implies that

S (B = lim pu(4;)

Jj—o0
and the first result follows.
If (A1) < oo and {A;} is decreasing, then {B; = A; \ A;} is increasing and

w(Bi) = p(Ar) — p(Ag).

It follows from the previous result that

I (U Bi) = lim p(B;) = p(A1) — lim p(A;).

i=1 e e
Since . . o .
UBi:Al\ﬂAi; U(UBz)—,U(Al)/L(ﬂAi)v
the result fi)zlllows. - - - O

Example 1.13. To illustrate the necessity of the condition p(A4;) < oo in the
second part of the previous proposition, or more generally u(A,) < oo for some
n € N, consider counting measure v : P(N) — [0, 00] on N. If

A, ={keN:k>n},

then v(A,) = oo for every n € N, so v(A,) — oo as n — oo, but
ﬂA,,:@, y<ﬂAn>:0.
n=1 n=1

1.7. Sets of measure zero

A set of measure zero, or a null set, is a measurable set N such that u(N) = 0.
A property which holds for all z € X \ N where N is a set of measure zero is said
to hold almost everywhere, or a.e. for short. If we want to emphasize the measure,
we say p-a.e. In general, a subset of a set of measure zero need not be measurable,
but if it is, it must have measure zero.

It is frequently convenient to use measure spaces which are complete in the
following sense. (This is, of course, a different sense of ‘complete’ than the one used
in talking about complete metric spaces.)

Definition 1.14. A measure space (X, A, 1) is complete if every subset of a set of
measure zero is measurable.
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Note that completeness depends on the measure p, not just the o-algebra
A. Any measure space (X,A,p) is contained in a uniquely defined completion
(X, A, ), which the smallest complete measure space that contains it and is given
explicitly as follows.
Theorem 1.15. If (X, A, 1) is a measure space, define (X, A, 1) by

A={AUM:Ae A, M C N where N € A satisfies u(N) = 0}

with (AU M) = p(A). Then (X, A, ;) is ‘a complete measure space such that
A D A and i is the unique extension of u to A.

PRrROOF. The collection A is a o-algebra. It is closed under complementation
because, with the notation used in the definition,

(AUM) = A°NM°, M =N°U(N\M).
Therefore -
(AUM) = (A°NNY)U (AN (N\M)) € A,

since AN N¢ € A and A°N (N \ M) C N. Moreover, A is closed under countable
unions because if A; € A and M; C N; where u(N;) = 0 for each ¢ € N, then

GAiUMi = (GAJ U <GM,> €A,
=1 =1 i=1

GAZ'E,A, GMZ‘CGNZ‘, M(GNZ>=O
i=1 i=1 =1 =1

It is straightforward to check that 1 is well-defined and is the unique extension of
i to a measure on A, and that (X, .4, 1) is complete. ]

since






CHAPTER 2

Lebesgue Measure on R"

Our goal is to construct a notion of the volume, or Lebesgue measure, of rather
general subsets of R™ that reduces to the usual volume of elementary geometrical
sets such as cubes or rectangles.

If £(R™) denotes the collection of Lebesgue measurable sets and

w: L(R™) — [0, o0]

denotes Lebesgue measure, then we want £(R™) to contain all n-dimensional rect-
angles and p(R) should be the usual volume of a rectangle R. Moreover, we want
1 to be countably additive. That is, if

{A; € L(R™) i € N}

is a countable collection of disjoint measurable sets, then their union should be

measurable and
H (U Ai) = Zﬂ(Ai)-
i=1 i=1

The reason for requiring countable additivity is that finite additivity is too weak
a property to allow the justification of any limiting processes, while uncountable
additivity is too strong; for example, it would imply that if the measure of a set
consisting of a single point is zero, then the measure of every subset of R” would
be zero.

It is not possible to define the Lebesgue measure of all subsets of R™ in a
geometrically reasonable way. Hausdorff (1914) showed that for any dimension
n > 1, there is no countably additive measure defined on all subsets of R™ that is
invariant under isometries (translations and rotations) and assigns measure one to
the unit cube. He further showed that if n > 3, there is no such finitely additive
measure. This result is dramatized by the Banach-Tarski ‘paradox’: Banach and
Tarski (1924) showed that if n > 3, one can cut up a ball in R™ into a finite number
of pieces and use isometries to reassemble the pieces into a ball of any desired volume
e.g. reassemble a pea into the sun. The ‘construction’ of these pieces requires the
axiom of ChoiceH Banach (1923) also showed that if n = 1 or n = 2 there are
finitely additive, isometrically invariant extensions of Lebesgue measure on R™ that
are defined on all subsets of R™, but these extensions are not countably additive.
For a detailed discussion of the Banach-Tarski paradox and related issues, see [10].

The moral of these results is that some subsets of R™ are too irregular to define
their Lebesgue measure in a way that preserves countable additivity (or even finite
additivity in n > 3 dimensions) together with the invariance of the measure under

1Solovahy (1970) proved that one has to use the axiom of choice to obtain non-Lebesgue
measurable sets.
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isometries. We will show, however, that such a measure can be defined on a o-
algebra L(R"™) of Lebesgue measurable sets which is large enough to include all set
of ‘practical’ importance in analysis. Moreover, as we will see, it is possible to define
an isometrically-invariant, countably sub-additive outer measure on all subsets of
R™.

There are many ways to construct Lebesgue measure, all of which lead to the
same result. We will follow an approach due to Carathéodory, which generalizes
to other measures: We first construct an outer measure on all subsets of R™ by
approximating them from the outside by countable unions of rectangles; we then
restrict this outer measure to a o-algebra of measurable subsets on which it is count-
ably additive. This approach is somewhat asymmetrical in that we approximate
sets (and their complements) from the outside by elementary sets, but we do not
approximate them directly from the inside.

Jones [5], Stein and Shakarchi [8], and Wheeler and Zygmund [17] give detailed
introductions to Lebesgue measure on R™. Cohn [2] gives a similar development to
the one here, and Evans and Gariepy [3] discuss more advanced topics.

2.1. Lebesgue outer measure

We use rectangles as our elementary sets, defined as follows.

Definition 2.1. An n-dimensional, closed rectangle with sides oriented parallel to
the coordinate axes, or rectangle for short, is a subset R C R" of the form

R= [al,bl] X [ag,bg} X X [an,bn]
where —o0 < a; < b; < oo for i =1,...,n. The volume u(R) of R is
[IJ(R) = (bl - al)(bg - G,Q) e (bn — an).

If n =1 or n = 2, the volume of a rectangle is its length or area, respectively.
We also consider the empty set to be a rectangle with p(2&) = 0. We denote the
collection of all n-dimensional rectangles by R(R™), or R when n is understood,
and then R — u(R) defines a map

e R(R™) = [0,00).

The use of this particular class of elementary sets is for convenience. We could
equally well use open or half-open rectangles, cubes, balls, or other suitable ele-
mentary sets; the result would be the same.

Definition 2.2. The outer Lebesgue measure p*(E) of a subset E C R™, or outer
measure for short, is

(2.1) u*(E) = inf {i w(R;): EC U2, Ri, Ri € R(R”)}

where the infimum is taken over all countable collections of rectangles whose union
contains E. The map

p*: P(R™) — [0, 0], w B p*(E)

is called outer Lebesgue measure.
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In this definition, a sum Y >, u(R;) and p*(E) may take the value co. We do
not require that the rectangles R; are disjoint, so the same volume may contribute
to multiple terms in the sum on the right-hand side of ; this does not affect
the value of the infimum.

Example 2.3. Let E = QN 0, 1] be the set of rational numbers between 0 and 1.
Then E has outer measure zero. To prove this, let {g; : ¢ € N} be an enumeration

of the points in E. Given € > 0, let R; be an interval of length ¢/2¢ which contains
¢;- Then E C |J;2, u(R;) so

0<p™(E) < Z,U(Ri) =e

Hence p*(E) = 0 since € > 0 is arbitrary. The same argument shows that any
countable set has outer measure zero. Note that if we cover E by a finite collection
of intervals, then the union of the intervals would have to contain [0, 1] since E is
dense in [0,1] so their lengths sum to at least one.

The previous example illustrates why we need to use countably infinite collec-
tions of rectangles, not just finite collections, to define the outer measureﬂ The
‘countable e-trick’ used in the example appears in various forms throughout measure
theory.

Next, we prove that p* is an outer measure in the sense of Definition [T.2]

Theorem 2.4. Lebesque outer measure u* has the following properties.
(a) p(@) =0;
(b) if E C F, then j*(E) < pu*(F);
(c) if {E; CR™:i € N} is a countable collection of subsets of R™, then

oo o0
w (U Ei) < ZM* (Ei) -
i=1 i=1

ProoF. It follows immediately from Definition that w* (@) = 0, since every
collection of rectangles covers @, and that u*(E) < p*(F) if E C F since any cover
of F covers E.

The main property to prove is the countable subadditivity of p*. If u* (E;) = oo
for some i € N, there is nothing to prove, so we may assume that p* (F;) is finite
for every i € N. If € > 0, there is a countable covering {R;; : j € N} of E; by
rectangles R;; such that

o0 . € oo
ZM(Rij) < (B + 50 E; C U Rij.
=1 j=1

Then {R;; : i,j € N} is a countable covering of
E=|]JE
i=1

2The use of finitely many intervals leads to the notion of the Jordan content of a set, intro-
duced by Peano (1887) and Jordan (1892), which is closely related to the Riemann integral; Borel
(1898) and Lebesgue (1902) generalized Jordan’s approach to allow for countably many intervals,
leading to Lebesgue measure and the Lebesgue integral.
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and therefore

pE) < 3 nRy) < Yt (E) + 5} =Y (B) +e

Since € > 0 is arbitrary, it follows that
[ee]
p(E) < ZM*(Ei)
i=1
which proves the result. (I

2.2. Outer measure of rectangles

In this section, we prove the geometrically obvious, but not entirely trivial, fact
that the outer measure of a rectangle is equal to its volume. The main point is to
show that the volumes of a countable collection of rectangles that cover a rectangle
R cannot sum to less than the volume of RF]

We begin with some combinatorial facts about finite covers of rectangles [8].
We denote the interior of a rectangle R by R°, and we say that rectangles R, S
are almost disjoint if R°N.S° = @, meaning that they intersect at most along their
boundaries. The proofs of the following results are cumbersome to write out in
detail (it’s easier to draw a picture) but we briefly explain the argument.

Lemma 2.5. Suppose that
R=I11 xIx---x1,

is an n-dimensional rectangle where each closed, bounded interval I; C R is an

almost disjoint union of closed, bounded intervals {I; ; CR:j=1,...,N;},
N;
L=JL,;
j=1

Define the rectangles
(2.2) Sivgaedn = D1y X A1y X oo X T
Then
Ny Ny,
PR =" i (Siain) -
ji=1 Jn=1

PROOF. Denoting the length of an interval I by |I|, using the fact that

N;
IESIFE
j=1

3Asa partial justification of the need to prove this fact, note that it would not be true if we
allowed uncountable covers, since we could cover any rectangle by an uncountable collection of
points all of whose volumes are zero.
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and expanding the resulting product, we get that
w(R) = [L[L2] ... [ In]

Ny No N,
= Do 1l ) [ Do Mgl ] o | D
Jji=1 Jj2=1 Jn=1
N1 No Ny,

=55 S gy,

J1=1j2=1 Jn=1
N; N» Ny,

= E E T E 12 (Sj1j2“~jn) .
Jj1=1j2=1 Jn=1

O

Proposition 2.6. If a rectangle R is an almost disjoint, finite union of rectangles
{R1,Ra,..., RN}, then

N
(2.3) H(R) = 3 p(R:).

If R is covered by rectangles {R1, Ra, ..., Rn}, which need not be disjoint, then

N
(2.4) u(R) < Z p(R;).

PROOF. Suppose that
R= [al,bl] X [ag,bg} X oo X [an,bn]
is an almost disjoint union of the rectangles { Ry, Ra, ..., Ry }. Then by ‘extending
the sides’ of the R;, we may decompose R into an almost disjoint collection of
rectangles
{Sjljz---jn . 1 S ]z S NZ fOI‘ 1 S 7 S TL}
that is obtained by taking products of subintervals of partitions of the coordinate
intervals [a;, b;] into unions of almost disjoint, closed subintervals. Explicitly, we
partition [a;, b;] into
a; =c0<ci1 < <N = by, I j = [cij—1,Cij)-
where the ¢; ; are obtained by ordering the left and right ith coordinates of all faces
of rectangles in the collection {R1, Ry, ..., Ry}, and define rectangles S;, ;, ;. as
in [@2).
Each rectangle R; in the collection is an almost disjoint union of rectangles

Siija...in» and their union contains all such products exactly once, so by applying
Lemma to each R; and summing the results we see that

N Ny Ny,
Zu(Rl) = Z e Z :U'(Sjljé...jn)-

Jji=1 Jn=1
Similarly, R is an almost disjoint union of all the rectangles S}, j,.. ;. , SO Lemma
implies that

N N,
WR) = Z T Z M(Sjljémjn)»

Jji=1 Jn=1
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and (2.3) follows.

If a finite collection of rectangles {R1, Ra,..., Ry} covers R, then there is a
almost disjoint, finite collection of rectangles {S1, Sa, ..., S} such that

M M N
R = U Si, Zﬂ(si) < ZN(Rz)

To obtain the S;, we replace R; by the rectangle R N R;, and then decompose
these possibly non-disjoint rectangles into an almost disjoint, finite collection of
sub-rectangles with the same union; we discard ‘overlaps’ which can only reduce
the sum of the volumes. Then, using (2.3), we get

M N
u(R) =" p(S:) <D u(Ra),
i=1 i=1
which proves (2.4). ([l

The outer measure of a rectangle is defined in terms of countable covers. We
reduce these to finite covers by using the topological properties of R™.

Proposition 2.7. If R is a rectangle in R™, then p*(R) = u(R).

PROOF. Since {R} covers R, we have p*(R) < u(R), so we only need to prove
the reverse inequality.

Suppose that {R; : ¢ € N} is a countably infinite collection of rectangles that
covers R. By enlarging R; slightly we may obtain a rectangle S; whose interior Sy
contains R; such that

u(S) < p(R) + 57

Then {S? : ¢ € N} is an open cover of the compact set R, so it contains a finite
subcover, which we may label as {S7,55,...,5%}. Then {S1,5:,...,Sn} covers
R and, using (2.4)), we find that

N 00
p(R) <3S <D {nR) + 5} < D (R +e.
=1 i=1

i=1
Since € > 0 is arbitrary, we have

W(R) < p(R;)
i=1
and it follows that pu(R) < p*(R). O

2.3. Carathéodory measurability

We will obtain Lebesgue measure as the restriction of Lebesgue outer measure
to Lebesgue measurable sets. The construction, due to Carathéodory, works for any
outer measure, as given in Definition so we temporarily consider general outer
measures. We will return to Lebesgue measure on R™ at the end of this section.

The following is the Carathéodory definition of measurability.

Definition 2.8. Let p* be an outer measure on a set X. A subset A C X is
Carathéodory measurable with respect to u*, or measurable for short, if

(2.5) W(E) = p*(ENA) + ' (BN A°)
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for every subset £ C X.

We also write £ N A¢ as E \ A. Thus, a measurable set A splits any set
F into disjoint pieces whose outer measures add up to the outer measure of E.
Heuristically, this condition means that a set is measurable if it divides other sets
in a ‘nice’ way. The regularity of the set E being divided is not important here.
Since p* is subadditive, we always have that

pr(E) < p (ENA)+p"(ENA%).
Thus, in order to prove that A C X is measurable, it is sufficient to show that
P (E) 2 p*(ENA) + p* (BN A

for every E C X, and then we have equality as in (2.5)).
Definition [2.8]is perhaps not the most intuitive way to define the measurability
of sets, but it leads directly to the following key result.

Theorem 2.9. The collection of Carathéodory measurable sets with respect to an
outer measure u* is a o-algebra, and the restriction of p* to the measurable sets is
a measure.

Proor. It follows immediately from that @ is measurable and the comple-
ment of a measurable set is measurable, so to prove that the collection of measurable
sets is a o-algebra, we only need to show that it is closed under countable unions.
We will prove at the same time that p* is countably additive on measurable sets;
since p* (@) = 0, this will prove that the restriction of p* to the measurable sets is
a measure.

First, we prove that the union of measurable sets is measurable. Suppose that
A, B are measurable and F C X. The measurability of A and B implies that

u*(B) = 1" (E 1 A) + (B 1 A%
(2.6) =p"(ENANDB)+u (ENANB°)
+u (ENA°NB) 4+ p*(ENA°N B°).
Since AUB = (ANB)U(ANB°) U (A°N B) and p* is subadditive, we have
wW(ENAUB)<p (ENANB)+u" (ENANB®) +u* (ENA°NB).
The use of this inequality and the relation A°N B¢ = (AU B)® in (2.6) implies that
w*(E) = 1" (EN(AUB)) + (B (AU BY)

so AU B is measurable.
Moreover, if A is measurable and A N B = &, then by taking £ = AU B in

(2.5), we see that
1 (AU B) = p*(A) + p*(B).

Thus, the outer measure of the union of disjoint, measurable sets is the sum of
their outer measures. The repeated application of this result implies that the finite
union of measurable sets is measurable and p* is finitely additive on the collection
of measurable sets.

Next, we we want to show that the countable union of measurable sets is
measurable. It is sufficient to consider disjoint unions. To see this, note that if
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{4; : i € N} is a countably infinite collection of measurable sets, then

J
Bj:UAia fOI‘jzl
i=1
form an increasing sequence of measurable sets, and
Cj = B] \ ijl for ] Z 2, Cl =

form a disjoint measurable collection of sets. Moreover

U A; = U Cj.
i=1 j=1

Suppose that {4; : ¢ € N} is a countably infinite, disjoint collection of measur-
able sets, and define

B; —UAZ, B:GAi.

Let £ C X. Since A; is measurable and B; = A U B;_1 is a disjoint union (for
j=2),

W (ENBj) =p"(ENB;NAj) + p*(ENB;NAj),
=p (ENAj)+p (ENBj_q).
Also p*(E N By) = p*(E N A;p). It follows by induction that

J

p(ENB;) =Y p(ENA).
i=1
Since B; is a finite union of measurable sets, it is measurable, so
P (E) = p*(EN B;) + p*(EN Bj),
and since Bf D B¢, we have
pw(ENBS) > p*(ENB°).
It follows that

J
Z (ENA;) + p*(ENB°).

Taking the limit of this mequahty as j — oo and using the subadditivity of p*, we
get

i (ENA;) + p*(ENB°)

(2.7) >t DEﬂAZ) +u*(EnN B°)

1 (ENB)+ i (E N B°)
o
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Therefore, we must have equality in (2.7)), which shows that B = (J;=, A; is mea-

surable. Moreover,
I (U En Ai) =Y w(ENA),
i=1 i=1

so taking £ = X, we see that p* is countably additive on the o-algebra of measur-
able sets. g

Returning to Lebesgue measure on R™, the preceding theorem shows that we
get a measure on R™ by restricting Lebesgue outer measure to its Carathéodory-
measurable sets, which are the Lebesgue measurable subsets of R™.

Definition 2.10. A subset A C R” is Lebesgue measurable if
1 (B) = 1 (B0 A) + (B 0 A%

for every subset E C R™. If £L(R™) denotes the o-algebra of Lebesgue measurable
sets, the restriction of Lebesgue outer measure p* to the Lebesgue measurable sets

pr LR™) = [0,00],  p=pgmn
is called Lebesgue measure.

From Proposition this notation is consistent with our previous use of u to
denote the volume of a rectangle. If £ C R™ is any measurable subset of R™, then
we define Lebesgue measure on E by restricting Lebesgue measure on R” to F, as
in Definition and denote the corresponding o-algebra of Lebesgue measurable
subsets of E by L(E).

Next, we prove that all rectangles are measurable; this implies that £L(R") is a
‘large’ collection of subsets of R™. Not all subsets of R™ are Lebesgue measurable,
however; e.g. see Example below.

Proposition 2.11. FEvery rectangle is Lebesgue measurable.

PrOOF. Let R be an n-dimensional rectangle and £ C R™. Given € > 0, there
is a cover {R; : i € N} of FE by rectangles R; such that

p(E)+e> Zu(Ri)-

We can decompose R; into an almost disjoint, finite union of rectangles
{Ri,Si1,....Sin}
such that

N
Ri:Ri+USi,ja Ri:RiﬁRCR, S@j C Re.
j=1
From ,
N
p(Ri) = p(Ri) + > p(Si5)-
j=1

Using this result in the previous sum, relabeling the S; ; as \S;, and rearranging the
resulting sum, we get that

W) ez Y p(R) + 3 (S,
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Since the rectangles {R; : i € N} cover EN R and the rectangles {S; : i € N} cover
E N R°, we have

“(ENR) Z “(ENR) Z
Hence,
w(E)+e>pu (ENR)+ u*(ENR°).
Since € > 0 is arbitrary, it follows that
pi(E) z p*(ENR) 4+ p*(EN RS,
which proves the result. U

An open rectangle R° is a union of an increasing sequence of closed rectangles
whose volumes approach p(R); for example

(alabl) X (a27b2) X X (anabn)

[ee]
1 1 1 1 1 1
- Sb— o Dby — ] X X [an + ~ b — 2.
gl[a1+k7 1 k]x[a2+k’ 2 k]x x [a +k k]
Thus, R° is measurable and, from Proposition

u(R%) = u(R).
Moreover if OR = R\ R° denotes the boundary of R, then
1(OR) = p(R) — p(R°) =0

2.4. Null sets and completeness

Sets of measure zero play a particularly important role in measure theory and
integration. First, we show that all sets with outer Lebesgue measure zero are
Lebesgue measurable.

Proposition 2.12. If N C R" and p*(N) = 0, then N is Lebesque measurable,
and the measure space (R™, L(R™), 1) is complete.

ProoOF. If N C R" has outer Lebesgue measure zero and £ C R”, then
0 < u*(ENN) < w'(N) =0,
so u*(ENN) = 0. Therefore, since E D EN N€,
W (B) = u*(E N N°) = u* (BN N) + p* (BN N°),

which shows that N is measurable. If N is a measurable set with p(N) = 0 and
M C N, then p*(M) = 0, since p*(M) < u(N). Therefore M is measurable and
(R™, L(R™), ) is complete. O

In view of the importance of sets of measure zero, we formulate their definition
explicitly.

Definition 2.13. A subset N C R"™ has Lebesgue measure zero if for every € > 0
there exists a countable collection of rectangles {R; : ¢ € N} such that

NCGRZ-, iu(R)<e
i=1

i=1
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The argument in Example 2.3] shows that every countable set has Lebesgue
measure zero, but sets of measure zero may be uncountable; in fact the fine structure
of sets of measure zero is, in general, very intricate.

Example 2.14. The standard Cantor set, obtained by removing ‘middle thirds’
from [0, 1], is an uncountable set of zero one-dimensional Lebesgue measure.

Example 2.15. The z-axis in R?
A={(z,0)eR*: 2z € R}

has zero two-dimensional Lebesgue measure. More generally, any linear subspace of
R™ with dimension strictly less than n has zero n-dimensional Lebesgue measure.

2.5. Translational invariance

An important geometric property of Lebesgue measure is its translational in-
variance. If A C R™ and h € R"”, let

A+h={z+h:ze A}
denote the translation of A by h.
Proposition 2.16. If A C R™ and h € R", then
WA+ h) = (A),
and A + h is measurable if and only if A is measurable.

PrOOF. The invariance of outer measure p* result is an immediate consequence
of the definition, since {R; + h : ¢ € N} is a cover of A + h if and only if {R; :
i € N} is a cover of A, and pu(R + h) = pu(R) for every rectangle R. Moreover, the
Carathéodory definition of measurability is invariant under translations since

(E4+h)N(A+h)=(ENA)+h.
(]

The space R™ is a locally compact topological (abelian) group with respect to
translation, which is a continuous operation. More generally, there exists a (left or
right) translation-invariant measure, called Haar measure, on any locally compact
topological group; this measure is unique up to a scalar factor.

The following is the standard example of a non-Lebesgue measurable set, due
to Vitali (1905).

Example 2.17. Define an equivalence relation ~ on R by z ~ y if z —y € Q.
This relation has uncountably many equivalence classes, each of which contains a
countably infinite number of points and is dense in R. Let E C [0, 1] be a set that
contains exactly one element from each equivalence class, so that R is the disjoint
union of the countable collection of rational translates of E. Then we claim that F
is not Lebesgue measurable.

To show this, suppose for contradiction that F is measurable. Let {¢; : ¢ € N}
be an enumeration of the rational numbers in the interval [—1,1] and let E; = E+g;
denote the translation of E by ¢;. Then the sets E; are disjoint and

[0,1] C G E; C [-1,2].
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The translational invariance of Lebesgue measure implies that each F; is measurable
with p(E;) = u(E), and the countable additivity of Lebesgue measure implies that

1<) p(E) <3,
=1

But this is impossible, since Y-, p(E;) is either 0 or co, depending on whether if
w(E) =0 or u(E) > 0.

The above example is geometrically simpler on the circle T = R/Z. When
reduced modulo one, the sets {E; : i € N} partition T into a countable union of
disjoint sets which are translations of each other. If the sets were measurable, their
measures would be equal so they must sum to 0 or co, but the measure of T is one.

2.6. Borel sets

The relationship between measure and topology is not a simple one. In this
section, we show that all open and closed sets in R”, and therefore all Borel sets
(i.e. sets that belong to the o-algebra generated by the open sets), are Lebesgue
measurable.

Let T(R™) C P(R™) denote the standard metric topology on R™ consisting of
all open sets. That is, G C R™ belongs to 7 (R™) if for every x € G there exists
r > 0 such that B,(z) C G, where

Br(x) ={y eR": [z —y[ <7}
is the open ball of radius 7 centered at © € R™ and |- | denotes the Euclidean norm.

Definition 2.18. The Borel og-algebra B(R™) on R™ is the o-algebra generated by
the open sets, B(R") = o (T(R™)). A set that belongs to the Borel o-algebra is
called a Borel set.

Since o-algebras are closed under complementation, the Borel o-algebra is also
generated by the closed sets in R™. Moreover, since R™ is o-compact (i.e. it is a
countable union of compact sets) its Borel o-algebra is generated by the compact
sets.

Remark 2.19. This definition is not constructive, since we start with the power set
of R™ and narrow it down until we obtain the smallest o-algebra that contains the
open sets. It is surprisingly complicated to obtain B(R"™) by starting from the open
or closed sets and taking successive complements, countable unions, and countable
intersections. These operations give sequences of collections of sets in R™

(2.8) GCGs CGss CGso5 C vy FCF,CF,5 CFs,6C...,

where G denotes the open sets, F' the closed sets, o the operation of countable
unions, and § the operation of countable intersections. These collections contain
each other; for example, F, D G and G§ D F. This process, however, has to
be repeated up to the first uncountable ordinal before we obtain B(R™). This is
because if, for example, {A; : i € N} is a countable family of sets such that

A1€G5\G7 AQGG(SO-\G(S, A3€G505\G5m...

and so on, then there is no guarantee that |Jo, A; or (;=; A; belongs to any of
the previously constructed families. In general, one only knows that they belong to
the w + 1 iterates Gsqs...0 Or Gsos...5, respectively, where w is the ordinal number
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of N. A similar argument shows that in order to obtain a family which is closed
under countable intersections or unions, one has to continue this process until one
has constructed an uncountable number of families.

To show that open sets are measurable, we will represent them as countable
unions of rectangles. Every open set in R is a countable disjoint union of open
intervals (one-dimensional open rectangles). When n > 2, it is not true that every
open set in R™ is a countable disjoint union of open rectangles, but we have the
following substitute.

Proposition 2.20. FEvery open set in R™ is a countable union of almost disjoint
rectangles.

PrOOF. Let G C R™ be open. We construct a family of cubes (rectangles of
equal sides) as follows. First, we bisect R™ into almost disjoint cubes {Q; : i € N}
of side one with integer coordinates. If ); C G, we include @Q); in the family, and
if @; is disjoint from G, we exclude it. Otherwise, we bisect the sides of @; to
obtain 2" almost disjoint cubes of side one-half and repeat the procedure. Iterating
this process arbitrarily many times, we obtain a countable family of almost disjoint
cubes.

The union of the cubes in this family is contained in G, since we only include
cubes that are contained in G. Conversely, if z € G, then since G is open some suf-
ficiently small cube in the bisection procedure that contains x is entirely contained
in G, and the largest such cube is included in the family. Hence the union of the
family contains G, and is therefore equal to G. (]

In fact, the proof shows that every open set is an almost disjoint union of dyadic
cubes.

Proposition 2.21. The Borel algebra B(R™) is generated by the collection of rect-
angles R(R™). Every Borel set is Lebesque measurable.

PROOF. Since R is a subset of the closed sets, we have o(R) C B. Conversely,
by the previous proposition, o(R) D T, so o(R) D o(7T) = B, and therefore
B = o(R). From Proposition we have R C L. Since L is a o-algebra, it
follows that o(R) C £, so B C L. O

Note that if -
G=|JR
i=1

is a decomposition of an open set GG into an almost disjoint union of closed rectan-
gles, then

o0
Go R
i=1
is a disjoint union, and therefore

> () < (@) <3 ().
i=1 i=1
Since p(RY) = u(R;), it follows that

wG@) = ZM(Ri)
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for any such decomposition and that the sum is independent of the way in which
G is decomposed into almost disjoint rectangles.

The Borel g-algebra B is not complete and is strictly smaller than the Lebesgue
o-algebra L. In fact, one can show that the cardinality of B is equal to the cardinal-
ity ¢ of the real numbers, whereas the cardinality of £ is equal to 2°. For example,
the Cantor set is a set of measure zero with the same cardinality as R and every
subset of the Cantor set is Lebesgue measurable.

We can obtain examples of sets that are Lebesgue measurable but not Borel
measurable by considering subsets of sets of measure zero. In the following example
of such a set in R, we use some properties of measurable functions which will be
proved later.

Example 2.22. Let f : [0,1] — [0,1] denote the standard Cantor function and
define g : [0,1] — [0, 1] by

g(y) = inf{z €[0,1]: f(z) =y} .
Then g is an increasing, one-to-one function that maps [0, 1] onto the Cantor set
C. Since ¢ is increasing it is Borel measurable, and the inverse image of a Borel
set under g is Borel. Let E C [0,1] be a non-Lebesgue measurable set. Then

F = g(F) C C is Lebesgue measurable, since it is a subset of a set of measure zero,
but F is not Borel measurable, since if it was E = g~!(F) would be Borel.

Other examples of Lebesgue measurable sets that are not Borel sets arise from
the theory of product measures in R™ for n > 2. For example, let N = Ex {0} C R?
where £ C R is a non-Lebesgue measurable set in R. Then N is a subset of the
x-axis, which has two-dimensional Lebesgue measure zero, so N belongs to £(R?)
since Lebesgue measure is complete. One can show, however, that if a set belongs
to B(R?) then every section with fixed = or y coordinate, belongs to B(R); thus, N
cannot belong to B(R?) since the y = 0 section E is not Borel.

As we show below, L(R™) is the completion of B(R™) with respect to Lebesgue
measure, meaning that we get all Lebesgue measurable sets by adjoining all subsets
of Borel sets of measure zero to the Borel o-algebra and taking unions of such sets.

2.7. Borel regularity

Regularity properties of measures refer to the possibility of approximating in
measure one class of sets (for example, nonmeasurable sets) by another class of
sets (for example, measurable sets). Lebesgue measure is Borel regular in the sense
that Lebesgue measurable sets can be approximated in measure from the outside
by open sets and from the inside by closed sets, and they can be approximated
by Borel sets up to sets of measure zero. Moreover, there is a simple criterion for
Lebesgue measurability in terms of open and closed sets.

The following theorem expresses a fundamental approximation property of
Lebesgue measurable sets by open and compact sets. Equations and
are called outer and inner regularity, respectively.

Theorem 2.23. If A C R", then

(2.9) w*(A) =inf {u(G): A C G, G open},
and if A is Lebesque measurable, then

(2.10) w(A) =sup{u(K): K C A, K compact}.
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PROOF. First, we prove (2.9). The result is immediate if p*(A) = oo, so we

suppose that p*(A) is finite. If A C G, then p*(A4) < u(G), so
p*(A) <inf{u(G): ACG, G open},
and we just need to prove the reverse inequality,
(2.11) p*(A) > inf {u(G): A C G, G open}.
Let € > 0. There is a cover {R; : i € N} of A by rectangles R; such that

oo . €
> n(Ri) < p(A) + 5
i=1
Let S; be an rectangle whose interior S7 contains R; such that

w(Si) < p(R;) +

Then the collection of open rectangles {S? : i € N} covers A and

G= fjs;’
i=1

is an open set that contains A. Moreover, since {S; : i € N} covers G,

u(G) < 3o p(Si) < D7 p(Ri) + 5.

€
2i+1"

and therefore
(2.12) 1(G) < p(A) +e
It follows that
inf {p(G) : A C G, G open} < p*(A) + ¢,

which proves (2.11]) since € > 0 is arbitrary.
Next, we prove (2.10). If K C A, then u(K) < u(A), so

sup {u(K): K C A, K compact} < u(A).
Therefore, we just need to prove the reverse inequality,

(2.13) w(A) <sup{u(K): K C A, K compact}.

To do this, we apply the previous result to A¢ and use the measurability of A.

First, suppose that A is a bounded measurable set, in which case p(A) < oo.
Let FF C R™ be a compact set that contains A. By the preceding result, for any

€ > 0, there is an open set G D F'\ A such that
w(G) < pu(F\A) +e

Then K = F \ G is a compact set such that K C A. Moreover, F C K UG and

F=AU(F\A),so

p(F) < p(K) +w(G),  p(F) = p(A) + p(F\ A).
It follows that

n(A) = p(F) — p(F\ A)
< u(F) = pu(G) +e
< uK) +e,
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which implies (2.13)) and proves the result for bounded, measurable sets.
Now suppose that A is an unbounded measurable set, and define

(2.14) Ay ={z e A:|z|<k}.
Then {Ay : k € N} is an increasing sequence of bounded measurable sets whose
union is A, so

(2.15) w(Ak) T p(A) as k — oo.

If u(A) = oo, then pu(Ag) — oo as k — oo. By the previous result, we can find a
compact set K C A C A such that

W(Kg) +1 > p(Ay)
so that pu(Ky) — oco. Therefore
sup {u(K): K C A, K compact} = oo,

which proves the result in this case.
Finally, suppose that A is unbounded and p(A) < oo. From (2.15)), for any
€ > 0 we can choose k € N such that

€
BA) < p(A) + 5.
Moreover, since Ay is bounded, there is a compact set K C Ay such that

p(Ag) < p(K) + %

Therefore, for every € > 0 there is a compact set K C A such that
H(A) < p(K) + e,
which gives (2.13)), and completes the proof. O

It follows that we may determine the Lebesgue measure of a measurable set in
terms of the Lebesgue measure of open or compact sets by approximating the set
from the outside by open sets or from the inside by compact sets.

The outer approximation in does not require that A is measurable. Thus,
for any set A C R", given € > 0, we can find an open set G O A such that
w(G) — p*(A) < e. If A is measurable, we can strengthen this condition to get
that p*(G '\ A) < e in fact, this gives a necessary and sufficient condition for
measurability.

Theorem 2.24. A subset A C R™ is Lebesgue measurable if and only if for every
€ > 0 there is an open set G D A such that

(2.16) PG\ A) < e

PrOOF. First we assume that A is measurable and show that it satisfies the
condition given in the theorem.

Suppose that u(A) < co and let € > 0. From there is an open set G D A
such that u(G) < p*(A) + e. Then, since A is measurable,

p(G\A)=p(G) —p (GNA) = p(G) — p*(A) <e,

which proves the result when A has finite measure.
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If u(A) = oo, define A C A as in (2.14)), and let € > 0. Since Ay, is measurable
with finite measure, the argument above shows that for each £ € N, there is an
open set Gy D Ay such that

€
M(Gk\44k)< 5@.

Then G = {J;—, Gk is an open set that contains A, and

PG A) = (U Gk\A> <Y G\ A) < 3 (Gr\ Ap) <
k=1 k=1 k=1

Conversely, suppose that A C R™ satisfies the condition in the theorem. Let
e > 0, and choose an open set G D A such that p*(G\ A) <e. If E C R", we have
ENA°=(ENG)U(EN(G\ A)).
Hence, by the subadditivity and monotonicity of x* and the measurability of G,
pHENA)+p (ENAY) <p (ENA)+p"(ENG) +p"(EN(G\ A))
< (BNG) + i (BN GE) + 1" (G 4)
<p(E) +e
Since € > 0 is arbitrary, it follows that
p(E) Z p*(ENA)+ p* (BN A
which proves that A is measurable. O
This theorem states that a set is Lebesgue measurable if and only if it can be
approximated from the outside by an open set in such a way that the difference
has arbitrarily small outer Lebesgue measure. This condition can be adopted as
the definition of Lebesgue measurable sets, rather than the Carathéodory definition
which we have used c.f. [5, [8, 11].

The following theorem gives another characterization of Lebesgue measurable
sets, as ones that can be ‘squeezed’ between open and closed sets.

Theorem 2.25. A subset A C R™ is Lebesgue measurable if and only if for every
€ > 0 there is an open set G and a closed set F' such that G D A D F and

(2.17) p(G\ F) <e.
If u(A) < oo, then F may be chosen to be compact.

ProoF. If A satisfies the condition in the theorem, then it follows from the
monotonicity of p* that p*(G\ A) < u(G\ F') < ¢, so A is measurable by Theo-
rem [2.24]

Conversely, if A is measurable then A€ is measurable, and by Theorem
given € > 0, there are open sets G O A and H D A€ such that

pG\A) <5, (N A% <

Then, defining the closed set F' = H¢, we have G D A D F and
WG\ F) < (G A) i (A\ F) = (G \ A) + " (H \ 4°) < .
Finally, suppose that u(A) < co and let € > 0. From Theorem since A is
measurable, there is a compact set K C A such that p(A) < p(K) + €/2 and

A\ K) = p(4) = p(K) < 3.
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As before, from Theorem [2.24] there is an open set G D A such that
w(G) < u(A) +¢€/2.
It follows that G D A D K and
WG\ K) = u(G\ A) + p(A\ K) < e,
which shows that we may take F' = K compact when A has finite measure. O

From the previous results, we can approximate measurable sets by open or
closed sets, up to sets of arbitrarily small but, in general, nonzero measure. By
taking countable intersections of open sets or countable unions of closed sets, we
can approximate measurable sets by Borel sets, up to sets of measure zero

Definition 2.26. The collection of sets in R™ that are countable intersections of
open sets is denoted by G5(R™), and the collection of sets in R™ that are countable
unions of closed sets is denoted by F, (R™).

Gs and F, sets are Borel. Thus, it follows from the next result that every
Lebesgue measurable set can be approximated up to a set of measure zero by a
Borel set. This is the Borel regularity of Lebesgue measure.

Theorem 2.27. Suppose that A C R™ is Lebesque measurable. Then there exist
sets G € Gs(R™) and F € F,(R™) such that

GOADF,  ulG\A)=u(A\F)=0.

PROOF. For each k& € N, choose an open set G, and a closed set F}, such that
Gr D AD Fy and

w(Gi \ Fy) < %
Then
[e.e] oo
G=()\Grn F=[JF
k=1 k=1
are G5 and F, sets with the required properties. ([

In particular, since any measurable set can be approximated up to a set of
measure zero by a Gg or an F,, the complexity of the transfinite construction of
general Borel sets illustrated in is ‘hidden’ inside sets of Lebesgue measure
Zero.

As a corollary of this result, we get that the Lebesgue o-algebra is the comple-
tion of the Borel o-algebra with respect to Lebesgue measure.

Theorem 2.28. The Lebesgue o-algebra L(R™) is the completion of the Borel o-
algebra B(R™).

PROOF. Lebesgue measure is complete from Proposition By the previous
theorem, if A C R™ is Lebesgue measurable, then there is a F,, set F' C A such that
M = A\ F has Lebesgue measure zero. It follows by the approximation theorem
that there is a Borel set N € G5 with u(N) =0 and M C N. Thus, A= FUM
where F' € Band M C N € B with u(N) = 0, which proves that £L(R") is the
completion of B(R") as given in Theorem [1.15] O
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2.8. Linear transformations

The definition of Lebesgue measure is not rotationally invariant, since we used
rectangles whose sides are parallel to the coordinate axes. In this section, we show
that the resulting measure does not, in fact, depend upon the direction of the
coordinate axes and is invariant under orthogonal transformations. We also show
that Lebesgue measure transforms under a linear map by a factor equal to the
absolute value of the determinant of the map.

As before, we use p* to denote Lebesgue outer measure defined using rectangles
whose sides are parallel to the coordinate axes; a set is Lebesgue measurable if it
satisfies the Carathéodory criterion with respect to this outer measure. If
T :R™ — R” is a linear map and F C R™, we denote the image of E under T' by

TE={TzeR": 2z € E}.

First, we consider the Lebesgue measure of rectangles whose sides are not paral-
lel to the coordinate axes. We use a tilde to denote such rectangles by é; we denote
closed rectangles whose sides are parallel to the coordinate axes by R as before.
We refer to R and R as oblique and parallel rectangles, respectively. We denote
the volume of a rectangle R by U(R), i.e. the product of the lengths of its sides, to
avoid confusion with its Lebesgue measure j(R). We know that u(R) = v(R) for
parallel rectangles, and that R is measurable since it is closed, but we have not yet
shown that u(R) = v(R) for oblique rectangles.

More explicitly, we regard R” as a Euclidean space equipped with the standard

inner product,
n
(z7y):ley’u x:(x17x27"'7xn)7 y:(yhyQa"'vyH)'
=1

If {e1,ea,...,e,} is the standard orthonormal basis of R™,
er =(1,0,...,0), ex=(0,1,...,0),...e, =(0,0,...,1),

and {é1, €3, ..., €, } is another orthonormal basis, then we use R to denote rectangles
whose sides are parallel to {e;} and R to denote rectangles whose sides are parallel
to {&;}. The linear map Q : R™ — R™ defined by Qe; = é; is orthogonal, meaning
that Q7 = Q' and

(Qz, Qy) = (z,v) for all z,y € R"™.

Since () preserves lengths and angles, it maps a rectangle R to a rectangle R= QR

such that v(R) = v(R).
We will use the following lemma.

Lemma 2.29. If an oblique rectangle R contains a finite almost disjoint collection
of parallel rectangles {R1, Ra, ..., Ry} then

N
> w(R;) < u(R).
i=1
This result is geometrically obvious, but a formal proof seems to require a fuller
discussion of the volume function on elementary geometrical sets, which is included
in the theory of valuations in convex geometry. We omit the details.
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Proposition 2.30. If R is an oblique rectangle, then given any € > 0 there is a
collection of parallel rectangles {R; : i € N} that covers R and satisfies

ZU(Ri) <v(R) +e.

PROOF. Let S be an oblique rectangle that contains R in its interior such that
v(8) < wv(R) + e

Then, from Proposition 2:20] we may decompose the interior of S into an almost
disjoint union of parallel rectangles

=1

It follows from the previous lemma that for every NV € N

Z’u <v§
i=1

which implies that
> w(R;) <v(S) <v(R) +e.
i=1

Moreover, the collection {R;} covers R since its union is S°, which contains R. [

Conversely, by reversing the roles of the axes, we see that if R is a parallel
rectangle and € > 0, then there is a cover of R by oblique rectangles {R; : i € N}
such that

(2.18) iv(ﬁzi) <v(R) +e.
i=1

Theorem 2.31. If E C R™ and @ : R® — R" is an orthogonal transformation,
then

p(QE) = ' (E),

and E is Lebesgue measurable if an only if QF is Lebesgue measurable.

PROOF. Let E = QE. Given € > 0 there is a cover of E by parallel rectangles
{R; : i € N} such that
Zz::l v ) + 5
From (2.18), for each i € N we can choose a cover {R;; : j € N} of R; by oblique

rectangles such that
> - €
Z”(Rivj) < o(Ri) + 9it1"
i=1

Then {R” ;4,7 € N} is a countable cover of E by oblique rectangles, and

oo

> o(Riy) < Y v(R)+ 5 < pt(B) +e
i=1

4,j=1
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If R;j = QTR, j, then {R; : j € N} is a cover of E by parallel rectangles, so

pH(E) < > v(Rij).

ij=1

Moreover, since @ is orthogonal, we have v(R; ;) = v(R; ;). It follows that

i.j=1 i.j=1

and since € > 0 is arbitrary, we conclude that

wH(E) < pt(E).
By applying the same argument to the inverse mapping £ = QTE, we get the
reverse inequality, and it follows that p*(E) = p*(E).
Since p* is invariant under @, the Carathéodory criterion for measurability is
invariant, and E is measurable if and only if QFE is measurable. (I

It follows from Theorem [2.31]that Lebesgue measure is invariant under rotations
and reﬂectionsﬁ Since it is also invariant under translations, Lebesgue measure is
invariant under all isometries of R™.

Next, we consider the effect of dilations on Lebesgue measure. Arbitrary linear
maps may then be analyzed by decomposing them into rotations and dilations.

Proposition 2.32. Suppose that A : R™ — R™ is the linear transformation
(2.19) A (21,20, ..., 20) = (A121, Ao, ..., Apy)
where the \; > 0 are positive constants. Then
i (AE) = (det A)u (),
and E is Lebesgue measurable if and only if AE is Lebesque measurable.

ProoF. The diagonal map A does not change the orientation of a rectan-
gle, so it maps a cover of E by parallel rectangles to a cover of AE by paral-
lel rectangles, and conversely. Moreover, A multiplies the volume of a rectangle
by det A = A1...\,, so it immediate from the definition of outer measure that
p*(AE) = (det A)p*(FE), and E satisfies the Carathéodory criterion for measura-
bility if and only if AE does. (]

Theorem 2.33. Suppose thatT : R™ — R"™ is a linear transformation and E C R™.
Then

w*(TE) = [det T| 1" (E),
and TFE is Lebesgue measurable if E is measurable

PROOF. If T is singular, then its range is a lower-dimensional subspace of R™,
which has Lebesgue measure zero, and its determinant is zero, so the result holdsE|
We therefore assume that T is nonsingular.

4Unlike differential volume forms, Lebesgue measure does not depend on the orientation of
R™; such measures are sometimes referred to as densities in differential geometry.

5In this case TE, is always Lebesgue measurable, with measure zero, even if E is not
measurable.



30 2. LEBESGUE MEASURE ON R"™

In that case, according to the polar decomposition, the map 7" may be written
as a composition

T =QU

of a positive definite, symmetric map U = vVTTT and an orthogonal map Q. Any
positive-definite, symmetric map U may be diagonalized by an orthogonal map O
to get

U=0"A0

where A : R™ — R” has the form (2.19)). From Theorem orthogonal mappings
leave the Lebesgue measure of a set invariant, so from Proposition [2.32

W (TE) = p* (AE) = (det A)u* (E).

Since | det Q| = 1 for any orthogonal map @, we have det A = | det T'|, and it follows
that p*(TE) = |det T| p*(E).

Finally, it is straightforward to see that TE is measurable if F is measurable.

[

2.9. Lebesgue-Stieltjes measures

We briefly consider a generalization of one-dimensional Lebesgue measure,
called Lebesgue-Stieltjes measures on R. These measures are obtained from an
increasing, right-continuous function F : R — R, and assign to a half-open interval
(a,b] the measure

pr ((a,0]) = F(b) — F(a).
The use of half-open intervals is significant here because a Lebesgue-Stieltjes mea-
sure may assign nonzero measure to a single point. Thus, unlike Lebesgue measure,
we need not have pp([a,b]) = pr((a,b]). Half-open intervals are also convenient
because the complement of a half-open interval is a finite union of (possibly infi-
nite) half-open intervals of the same type. Thus, the collection of finite unions of
half-open intervals forms an algebra.

The right-continuity of F' is consistent with the use of intervals that are half-
open at the left, since

s

Il
-

(a,a+1/i] = @,

so, from (1.2)), if F' is to define a measure we need
lim pp ((a,a+1/i]) =0
1— 00

or

lim [F(a+1/i) — F(a)] = lim F(z)— F(a) =0.

i—00 r—at

Conversely, as we state in the next theorem, any such function F' defines a Borel
measure on R.

Theorem 2.34. Suppose that F' : R — R is an increasing, right-continuous func-
tion. Then there is a unique Borel measure pp : B(R) — [0, 00] such that

pr ((a,b]) = F(b) — F(a)
for every a < b.



2.9. LEBESGUE-STIELTJES MEASURES 31

The construction of pp is similar to the construction of Lebesgue measure on
R™. We define an outer measure pj : P(R) — [0, 00] by

i (E) = inf {Z [F(b) ~ Flan)): B C UZ, (@ bil} ,
i=1
and restrict pj to its Carathéodory measurable sets, which include the Borel sets.
See e.g. Section 1.5 of Folland [4] for a detailed proof.
The following examples illustrate the three basic types of Lebesgue-Stieltjes
measures.

Example 2.35. If F(z) = z, then up is Lebesgue measure on R with
pr ((a, b)) =b—a.

Example 2.36. If
1 ifx >0,
F@”)_{ 0 ifz<0,

then pp is the d-measure supported at 0,

1 if0eA,
“F(A)—{ 0 if0¢A

Example 2.37. If FF : R — R is the Cantor function, then pup assigns measure
one to the Cantor set, which has Lebesgue measure zero, and measure zero to its
complement. Despite the fact that pp is supported on a set of Lebesgue measure
zero, the up-measure of any countable set is zero.






CHAPTER 3

Measurable functions

Measurable functions in measure theory are analogous to continuous functions
in topology. A continuous function pulls back open sets to open sets, while a
measurable function pulls back measurable sets to measurable sets.

3.1. Measurability

Most of the theory of measurable functions and integration does not depend
on the specific features of the measure space on which the functions are defined, so
we consider general spaces, although one should keep in mind the case of functions
defined on R or R™ equipped with Lebesgue measure.

Definition 3.1. Let (X, .A) and (Y, B) be measurable spaces. A function f: X —
Y is measurable if f~1(B) € A for every B € B.

Note that the measurability of a function depends only on the o-algebras; it is
not necessary that any measures are defined.

In order to show that a function is measurable, it is sufficient to check the
measurability of the inverse images of sets that generate the o-algebra on the target
space.

Proposition 3.2. Suppose that (X, A) and (Y,B) are measurable spaces and B =
o(G) is generated by a family G C P(Y). Then f: X — Y is measurable if and

only if
@) e A for every G € G.

PROOF. Set operations are natural under pull-backs, meaning that

FTY\B) =X\ f1(B)

r~ (U&) =Usrtmy, (ﬂ Bi> =/ ®B).

i=1 i=1

and

It follows that

M={BcY:fYB)ec A}
is a g-algebra on Y. By assumption, M D G and therefore M D o(G) = B, which
implies that f is measurable. (]

It is worth noting the indirect nature of the proof of containment of o-algebras
in the previous proposition; this is required because we typically cannot use an
explicit representation of sets in a o-algebra. For example, the proof does not
characterize M, which may be strictly larger than B5.

If the target space Y is a topological space, then we always equip it with the
Borel o-algebra B(Y") generated by the open sets (unless stated explicitly otherwise).

33
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In that case, it follows from Proposition [3.2] that f : X — Y is measurable if and
only if f~1(G) € A is a measurable subset of X for every set G that is open in Y. In
particular, every continuous function between topological spaces that are equipped
with their Borel o-algebras is measurable. The class of measurable function is,
however, typically much larger than the class of continuous functions, since we only
require that the inverse image of an open set is Borel; it need not be open.

3.2. Real-valued functions

We specialize to the case of real-valued functions
f:X—=>R
or extended real-valued functions
f: X =R

We will consider one case or the other as convenient, and comment on any differ-
ences. A positive extended real-valued function is a function

f:X —10,00].

Note that we allow a . positive function to take the value zero. B
We equip R and R with their Borel o-algebras B(R) and B(R). A Borel subset
of R has one of the forms

B, B U {0}, BU{—o0}, B U {—00,00}

where B is a Borel subset of R. As Example shows, sets that are Lebesgue
measurable but not Borel measurable need not be well-behaved under the inverse
of even a monotone function, which helps explain why we do not include them in
the range o-algebra on R or R.

By contrast, when the domain of a function is a measure space it is often
convenient to use a complete space. For example, if the domain is R™ we typically
equip it with the Lebesgue o-algebra, although if completeness is not required
we may use the Borel o-algebra. With this understanding, we get the following
definitions. We state them for real-valued functions; the definitions for extended
real-valued functions are completely analogous

Definition 3.3. If (X, .A) is a measurable space, then f : X — R is measurable
if f71(B) € A for every Borel set B € B(R). A function f : R" — R is Lebesgue
measurable if f~!(B) is a Lebesgue measurable subset of R™ for every Borel subset
B of R, and it is Borel measurable if f~!(B) is a Borel measurable subset of R"
for every Borel subset B of R

This definition ensures that continuous functions f : R — R are Borel measur-
able and functions that are equal a.e. to Borel measurable functions are Lebesgue
measurable. If f : R — R is Borel measurable and g : R® — R is Lebesgue (or
Borel) measurable, then the composition f o g is Lebesgue (or Borel) measurable
since

(fog) (B) =g~ (f71(B)).
Note that if f is Lebesgue measurable, then f o g need not be measurable since
f71(B) need not be Borel even if B is Borel.

We can give more easily verifiable conditions for measurability in terms of
generating families for Borel sets.
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Proposition 3.4. The Borel g-algebra on R is generated by any of the following
collections of intervals

{(=00,b) : bR}, {(—00,b]:beR}, {(a,00):a€R}, {[a,):aecR}.

PRrOOF. The o-algebra generated by intervals of the form (—oo, b) is contained
in the Borel o-algebra B(R) since the intervals are open sets. Conversely, the
o-algebra contains complementary closed intervals of the form [a, 00), half-open
intersections [a,b), and countable intersections

o

[a,b] = m[a,b—F %)

n=1

From Proposition the Borel o-algebra B(R) is generated by the collection of
closed rectangles [a, b], so

o ({(=o0,b) : b € R}) = B(R).
The proof for the other collections is similar. (I

The properties given in the following proposition are sometimes taken as the
definition of a measurable function.

Proposition 3.5. If (X, A) is a measurable space, then f : X — R is measurable
if and only if one of the following conditions holds:
{reX: fzx)y<ble A for every b € R;
{reX:flx)<ble A  foreverybeR;
{reX:f(x)>a}te A  foreverya R,
{reX:f(x)>a}l e A  foreveryaeR.
PRrROOF. Note that, for example,

{zeX: f(z) <b}=f"((~o0,b))
and the result follows immediately from Propositions [3.2] and [3.4] O

If any one of these equivalent conditions holds, then f~1(B) € A for every set
B € B(R). We will often use a shorthand notation for sets, such as

{f<b}={zeX: f(x)<b}.

The Borel o-algebra on R is generated by intervals of the form [—oco, b), [~00, 8],
(a, ], or [a,o0] where a,b € R, and exactly the same conditions as the ones
in Proposition [3.5] imply the measurability of an extended real-valued functions
f : X — R. In that case, we can allow a,b € R to be extended real numbers
in Proposition but it is not necessary to do so in order to imply that f is
measurable.

Measurability is well-behaved with respect to algebraic operations.

Proposition 3.6. If f,g: X — R are real-valued measurable functions and k € R,
then

kf, f+g, fg flg

are measurable functions, where we assume that g # 0 in the case of f/g.
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PRrROOF. If £ > 0, then
{kf <b} ={f <b/k}

so kf is measurable, and similarly if £ < 0 or kK = 0. We have

{fr+g<vt= | {<an{g<n

q+r<b;q,r€Q

so f + g is measurable. The function f? is measurable since if b > 0

{f2<b}:{—\/l3<f<\@}.

It follows that

1
fo=35[f+9*-f -7’
is measurable. Finally, if g £ 0
{1/b< g <0} if b <0,
{1/g<b} =1 {—o0<g<0} if b=0,

{-c0o<g<0}U{l/b<g<oo} ifb>0,
so 1/g is measurable and therefore f/g is measurable. (I
An analogous result applies to extended real-valued functions provided that
they are well-defined. For example, f + g is measurable provided that f(x), g(x)

are not simultaneously equal to oo and —oo, and fg is is measurable provided that
f(x), g(x) are not simultaneously equal to 0 and +oo.

Proposition 3.7. If f,g : X — R are estended real-valued measurable functions,
then

| f1, max(f, g), min(f, g)

are measurable functions.
PROOF. We have
{max(f,g) <b} ={f <b}n{g <b},
{min(f,g) <b} ={f <b}U{g <b},
and |f| = max(f,0) — min(f,0), from which the result follows. O

3.3. Pointwise convergence

Crucially, measurability is preserved by limiting operations on sequences of
functions. Operations in the following theorem are understood in a pointwise sense;
for example,

(500 4, ) (2) = sup ().

neN

Theorem 3.8. If {f, : n € N} is a sequence of measurable functions f, : X — R,
then

sup fn, inf f,, limsup f, liminf f,
neN neN n—00 n—00

are measurable extended real-valued functions on X.
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PROOF. We have for every b € R that

{Supfn < b} — ) (<),
n=1

neN

oo
{:Lrelgfn < b} = U {fn < b}
n=1
so the supremum and infimum are measurable Moreover, since

limsup f, = inf sup fz,

n— 00 neN k>n

liminf f,, = sup inf fx
n— 00 neNk>n

it follows that the limsup and liminf are measurable. O

Perhaps the most important way in which new functions arise from old ones is
by pointwise convergence.

Definition 3.9. A sequence {f, : n € N} of functions f, : X — R converges
pointwise to a function f: X — R if f,(x) — f(x) as n — oo for every z € X.

Pointwise convergence preserves measurability (unlike continuity, for example).
This fact explains why the measurable functions form a sufficiently large class for
the needs of analysis.

Theorem 3.10. If {f, : n € N} is a sequence of measurable functions f,, : X — R
and f, — [ pointwise as n — oo, then f: X — R is measurable.

Proor. If f, — f pointwise, then

f =limsup f, = liminf f,
n—oo n—00

so the result follows from the previous proposition. [

3.4. Simple functions

The characteristic function (or indicator function) of a subset E C X is the
function xg : X — R defined by

=1 irek
XEW =10 ifa¢E.

The function yg is measurable if and only if F is a measurable set.

Definition 3.11. A simple function ¢ : X — R on a measurable space (X,.A) is a
function of the form

N
(3.1) o) =S enx, (z)
n=1

where ¢q,...,cy € Rand Eq,...,Exy € A.

Note that, according to this definition, a simple function is measurable. The
representation of ¢ in (3.1]) is not unique; we call it a standard representation if the
constants ¢, are distinct and the sets E,, are disjoint.
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Theorem 3.12. If f: X — [0,00] is a positive measurable function, then there is
a monotone increasing sequence of positive simple functions ¢, : X — [0,00) with
01 < o < --- <, < ... such that ¢, — [ pointwise as n — oo. If [ is bounded,
then ¢n, — f uniformly.

PRrROOF. For each n € N, we divide the interval [0,2"] in the range of f into
227 subintervals of width 27",

L = (277, (k +1)277], k=0,1,...,2°" —1,
let J, = (2", 00| be the remaining part of the range, and define
Ekm :f_l(lk,n)v F, = f_l(Jn)'

Then the sequence of simple functions given by

2m—1
Gn= Y k27"xg,, +2"Xn,
k=0
has the required properties. ([l

In defining the Lebesgue integral of a measurable function, we will approximate
it by simple functions. By contrast, in defining the Riemann integral of a function
f i [a,b] = R, we partition the domain [a, b] into subintervals and approximate f by
step functions that are constant on these subintervals. This difference is sometime
expressed by saying that in the Lebesgue integral we partition the range, and in
the Riemann integral we partition the domain.

3.5. Properties that hold almost everywhere

Often, we want to consider functions or limits which are defined outside a set of
measure zero. In that case, it is convenient to deal with complete measure spaces.

Proposition 3.13. Let (X, A, ) be a complete measure space and f,g: X — R.
If f = g pointwise p-a.e. and f is measurable, then g is measurable.

PROOF. Suppose that f = g on N¢ where N is a set of measure zero. Then
{fg<b}=({f<b}nNN)U({g <b}NN).

Each of these sets is measurable: {f < b} is measurable since f is measurable; and
{g < b} N N is measurable since it is a subset of a set of measure zero and X is
complete. O

The completeness of X is essential in this proposition. For example, if X is not
complete and F C N is a non-measurable subset of a set N of measure zero, then
the functions 0 and x g are equal almost everywhere, but 0 is measurable and x g
is not.

Proposition 3.14. Let (X, A, u) be a complete measure space. If {f, :n € N} is
a sequence of measurable functions f, : X — R and f, — f as n — oo pointwise
p-a.e., then f is measurable.

PROOF. Since f, is measurable, ¢ = limsup,,_, ., fn is measurable and f = ¢
pointwise a.e., so the result follows from the previous proposition. O



CHAPTER 4

Integration

In this Chapter, we define the integral of real-valued functions on an arbitrary
measure space and derive some of its basic properties. We refer to this integral as
the Lebesgue integral, whether or not the domain of the functions is subset of R™
equipped with Lebesgue measure. The Lebesgue integral applies to a much wider
class of functions than the Riemann integral and is better behaved with respect to
pointwise convergence. We carry out the definition in three steps: first for positive
simple functions, then for positive measurable functions, and finally for extended
real-valued measurable functions.

4.1. Simple functions

Suppose that (X, A, i) is a measure space.

Definition 4.1. If ¢ : X — [0,00) is a positive simple function, given by

N
¢=> cixe,
i=1

where ¢; > 0 and F; € A, then the integral of ¢ with respect to pu is

N
(4.1) [odn=3cnE).

In ([41)), we use the convention that if ¢; = 0 and p(E;) = oo, then 0- 0o = 0,
meaning that the integral of 0 over a set of measure co is equal to 0. The integral
may take the value co (if ¢; > 0 and p(E;) = oo for some 1 < ¢ < N). One
can verify that the value of the integral in is independent of how the simple
function is represented as a linear combination of characteristic functions.

Example 4.2. The characteristic function xg : R — R of the rationals is not
Riemann integrable on any compact interval of non-zero length, but it is Lebesgue
integrable with

/XQduzl-u(Q)ZO-

The integral of simple functions has the usual properties of an integral. In
particular, it is linear, positive, and monotone.

39
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Proposition 4.3. If ¢,1) : X — [0,00) are positive simple functions on a measure
space X, then:

/k¢du:k/¢du if k € [0, 00);

Jorvrdn=[odu+ [van
0< fodns [vdn  iozosw.
PROOF. These follow immediately from the definition. (]

4.2. Positive functions

We define the integral of a measurable function by splitting it into positive and
negative parts, so we begin by defining the integral of a positive function.

Definition 4.4. If f : X — [0, 00] is a positive, measurable, extended real-valued
function on a measure space X, then

/fduzsup{/¢du:0§¢§f,qbsimple}.

A positive function f: X — [0, 00] is integrable if it is measurable and

/fd,u<oo

In this definition, we approximate the function f from below by simple func-
tions. In contrast with the definition of the Riemann integral, it is not necessary to
approximate a measurable function from both above and below in order to define
its integral.

If A C X is a measurable set and f : X — [0, 0] is measurable, we define

/4fdM=/fXAdu-

Unlike the Riemann integral, where the definition of the integral over non-rectangular
subsets of R? already presents problems, it is trivial to define the Lebesgue integral
over arbitrary measurable subsets of a set on which it is already defined.

The following properties are an immediate consequence of the definition and
the corresponding properties of simple functions.

Proposition 4.5. If f,g : X — [0,00] are positive, measurable, extended real-
valued function on a measure space X, then:

/kfdu:k/fd,u if k € [0,00);
OS/fdué/gdu if0< f<g.

The integral is also linear, but this is not immediately obvious from the defi-
nition and it depends on the measurability of the functions. To show the linearity,
we will first derive one of the fundamental convergence theorem for the Lebesgue
integral, the monotone convergence theorem. We discuss this theorem and its ap-
plications in greater detail in Section
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Theorem 4.6 (Monotone Convergence Theorem). If {f, : n € N} is a monotone
imncreasing sequence

0<fi<fo< - <fun<fop1 <0

of positive, measurable, extended real-valued functions f, : X — [0,00] and
f = lim fna
n— o0
then
lim [ fodu= /f dp.
n—oo

PROOF. The pointwise limit f : X — [0, 00] exists since the sequence {f,}
is increasing. Moreover, by the monotonicity of the integral, the integrals are

increasing, and
[ twin< [ fundn< [ ran.

so the limit of the integrals exists, and
lim [ fudp < /fdu~
n—oo

To prove the reverse inequality, let ¢ : X — [0,00) be a simple function with
0<¢p<f.Fix0<t<1. Then

An ={z € X : fu(z) 2 to(z)}

is an increasing sequence of measurable sets A1 C Ay C --- C A, C ... whose
union is X. It follows that

(4.2) /fndMZ/AnfndMZt/An¢du-

Moreover, if

N
¢=> cixe,
1=1

we have from the monotonicity of y in Proposition that

N N
/ odu = Zciu(Ei NA,) — Zci,u(Ei) = /(bd,u
An i=1 i=1

as n — oco. Taking the limit as n — oo in (4.2)), we therefore get
lim [ f,du > t/qbd,u.
n—oo
Since 0 < t < 1 is arbitrary, we conclude that
lim [ f,dp > /¢du7
n—oo

and since ¢ < f is an arbitrary simple function, we get by taking the supremum
over ¢ that

lim [ f,dp > / fdp.
n—oo
This proves the theorem. [
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In particular, this theorem implies that we can obtain the integral of a positive
measurable function f as a limit of integrals of an increasing sequence of simple
functions, not just as a supremum over all simple functions dominated by f as in
Definition [£.4] As shown in Theorem [3.12] such a sequence of simple functions
always exists.

Proposition 4.7. If f,g : X — [0,00] are positive, measurable functions on a

measure space X, then
/(f+g)du=/fdu+/gdu~

ProoF. Let {¢, : n € N} and {4, : n € N} be increasing sequences of positive
simple functions such that ¢,, — f and v,, — g pointwise as n — co. Then ¢, + ¥y,
is an increasing sequence of positive simple functions such that ¢, + ¥, — f + g.
It follows from the monotone convergence theorem (Theorem and the linearity
of the integral on simple functions that

/(f+9) du = nlggo/(% + ) du

= (fouans [vnn)

lim [ ¢p,du+ lim /wn du
n—oo

n—oo

/fdwr/gdu,

which proves the result. O

4.3. Measurable functions

If f: X — R is an extended real-valued function, we define the positive and
negative parts f, f~ : X — [0,00] of f by
(4.3) f=1"=f"  ff=max{f0}, [ =max{-f 0}
For this decomposition,
fl=f"+f

Note that f is measurable if and only if f* and f~ are measurable.

Definition 4.8. If f: X — R is a measurable function, then

/fdu=/f+du—/f‘du,

provided that at least one of the integrals [ f* du, [ f~ dp is finite. The function
[ is integrable if both [ f* du, [ f~ du are finite, which is the case if and only if

[171dn <.

Note that, according to Definition the integral may take the values —oo or
o0, but it is not defined if both [ f* du, [ f~ dp are infinite. Thus, although the
integral of a positive measurable function always exists as an extended real number,
the integral of a general, non-integrable real-valued measurable function may not
exist.
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This Lebesgue integral has all the usual properties of an integral. We restrict
attention to integrable functions to avoid undefined expressions involving extended
real numbers such as co — co.

Proposition 4.9. If f,g: X — R are integrable functions, then:

/kfdu:k/fd,u if k € R;

/(f+g) du=/fdu+/gdu;

/fduﬁ/gdu if f<y;

‘/fdu‘ < [1s1dn

PROOF. These results follow by writing functions into their positive and neg-
ative parts, as in (4.3)), and using the results for positive functions.
If f=f*—f" and k >0, then (kf)" =kf* and (kf)” =kf~,

/szdu /k:f*du /kf dp = k/f*du k/f du—k/fdu

Similarly, (—f)* = f~ and (—f)” = fT, so

Jepai= [ an- [ an=- [ ran

If h=f+gand
f=f=f. g9g=9g"-9, h=ht-h"
are the decompositions of f, g, h into their positive and negative parts, then
Wt —h™=ft—f"+g" -
It need not be true that ht = f* 4 g+, but we have
fTHg +ht=fT+gt+h.

The linearity of the integral on positive functions gives

/f_du+/g_du+/h+du:/f+du+/g+du+/h_du,

which implies that

[rran= [1an=[ran= [ 5 aus [o*an- [ o du.

or [(f+g)du= [ fdu+ [gdu.
It follows that if f < g, then

OS/(g—f)du=/gdu—/fdu7

so [ fdu < [gdu. The last result is then a consequence of the previous results
and —[f| < f < [f]. O

Let us give two basic examples of the Lebesgue integral.



44 4. INTEGRATION

Example 4.10. Suppose that X = N and v : P(N) — [0, 00| is counting measure
on N. If f: N — R and f(n) = x,, then

dv = ny
/Nfz/ ;x

where the integral is finite if and only if the series is absolutely convergent. Thus,
the theory of absolutely convergent series is a special case of the Lebesgue integral.
Note that a conditionally convergent series, such as the alternating harmonic series,
does not correspond to a Lebesgue integral, since both its positive and negative
parts diverge.

Example 4.11. Suppose that X = [a, b] is a compact interval and p : L£([a, b]) — R
is Lesbegue measure on [a, b]. We note in Section that any Riemann integrable
function f : [a,b] — R is integrable with respect to Lebesgue measure p, and its
Riemann integral is equal to the Lebesgue integral,

/abf(x) dz = /[a,b] Fdp.

Thus, all of the usual integrals from elementary calculus remain valid for the
Lebesgue integral on R. We will write an integral with respect to Lebesgue measure

on R, or R, as
/fd:c.

Even though the class of Lebesgue integrable functions on an interval is wider
than the class of Riemann integrable functions, some improper Riemann integrals
may exist even though the Lebesegue integral does not.

Example 4.12. The integral

/1 (1 ' 1 1)
—sin — +cos— | dx
0 \Z& x x
is not defined as a Lebesgue integral, although the improper Riemann integral
1 1
1 1 1 d 1
lim ( sin — + cos ) dr = lim — [x cos } dx = cos1
e—0t J. \x =z x e—0t J. dx T
exists.
Example 4.13. The integral
1
1
/ —dz
1z

is not defined as a Lebesgue integral, although the principal value integral

1 —e€ 1
1 1 1
p.V./ —dr = lim {/ fder/ dx}()
1T e—0t 1 T e T

exists. Note, however, that the Lebesgue integrals

1 0
1 1
/ —dz = oo, / —dr = —00

are well-defined as extended real numbers.
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The inability of the Lebesgue integral to deal directly with the cancelation
between large positive and negative parts in oscillatory or singular integrals, such
as the ones in the previous examples, is sometimes viewed as a defect (although the
integrals above can still be defined as an appropriate limit of Lebesgue integrals).
Other definitions of the integral such as the Henstock-Kurzweil integral, which is a
generalization of the Riemann integral, avoid this defect but they have not proved
to be as useful as the Lebesgue integral. Similar issues arise in connection with
Feynman path integrals in quantum theory, where one would like to define the
integral of highly oscillatory functionals on an infinite-dimensional function-space.

4.4. Absolute continuity

The following results show that a function with finite integral is finite a.e. and
that the integral depends only on the pointwise a.e. values of a function.

Proposition 4.14. If f : X — R is an integrable function, meaning that f |fldu <
00, then f is finite p-a.e. on X.

PrOOF. We may assume that f is positive without loss of generality. Suppose
that
E={zeX:f=0c}
has nonzero measure. Then for any ¢ > 0, we have f > txg, so
/fdu > /tXE dp = tu(E),
which implies that [ fdu = oc. O

Proposition 4.15. Suppose that f : X — R is an extended real-valued measurable
function. Then [ |f|dp =0 if and only if f =0 p-a.e.

PROOF. By replacing f with |f|, we can assume that f is positive without loss
of generality. Suppose that f =0 a.e. If 0 < ¢ < f is a simple function,

N
¢ = Z CiXE;
i=1

then ¢ =0 a.e., so ¢; = 0 unless u(E;) = 0. It follows that

N
[odn=3"cntr) =0
i=1

and Definition 4.4] implies that [ fdu = 0.
Conversely, suppose that f fdu=0. For n € N, let

E,={zeX: f(z)>1/n}.
Then 0 < (1/n)xg, < f, so that

1 1
0< —u(En) :/*XEndHS /fdu:(L
n n
and hence u(E,) = 0. Now observe that
{zeX:f(z)>0}= ] E,,

n=1

so it follows from the countable additivity of u that f =0 a.e. (]
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In particular, it follows that if f : X — R is any measurable function, then

(4.4) /,4de =0 if u(A) =0.

For integrable functions we can strengthen the previous result to get the fol-
lowing property, which is called the absolute continuity of the integral.

Proposition 4.16. Suppose that f : X — R is an integrable function, meaning
that [|f|dp < oo. Then, given any € > 0, there exists § > 0 such that

(15) 0< [ I7ldu <
A
whenever A is a measurable set with p(A) < 4.

PROOF. Again, we can assume that f is positive. For n € N, define f, : X —
[0, 00] by
n if f(z) > n,

fnl@) = { F(x) if0< f(z) < n.

Then {f,} is an increasing sequence of positive measurable functions that converges
pointwise to f. We estimate the integral of f over A as follows:

fdp= [ (f = fa)du+ [ fndp
fra=, /.
< /X (f = fu) di+ npu(A).

By the monotone convergence theorem,

/andu—>‘/xfdu<oo

as n — o0o. Therefore, given € > 0, we can choose n such that

0< [ (r=r)du<s,

and then choose

- &
C2n’
If u(A) < 6, we get (4.5), which proves the result. O

Proposition may fail if f is not integrable.
Example 4.17. Define v : B((0,1)) — [0, 0] by

V(A):/A%dx,

where the integral is taken with respect to Lebesgue measure p. Then v(A) = 0 if
w(A) =0, but (4.5) does not hold.

There is a converse to this theorem concerning the representation of absolutely
continuous measures as integrals (the Radon-Nikodym theorem, stated in Theo-

rem .
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4.5. Convergence theorems

One of the most basic questions in integration theory is the following: If f,, — f
pointwise, when can one say that

(4.6) / fodp — / fdu?

The Riemann integral is not sufficiently general to permit a satisfactory answer to
this question.

Perhaps the simplest condition that guarantees the convergence of the integrals
is that the functions f,, : X — R converge uniformly to f : X — R and X has finite
measure. In that case

/fndu—/fdu’</|fn—f| o < p(X)sup o = 1 =0

asn — 0o. The assumption of uniform convergence is too strong for many purposes,
and the Lebesgue integral allows the formulation of simple and widely applicable
theorems for the convergence of integrals. The most important of these are the
monotone convergence theorem (Theorem and the Lebesgue dominated con-
vergence theorem (Theorem . The utility of these results accounts, in large
part, for the success of the Lebesgue integral.

Some conditions on the functions f;, in are, however, necessary to ensure
the convergence of the integrals, as can be seen from very simple examples. Roughly
speaking, the convergence may fail because ‘mass’ can leak out to infinity in the
limit.

Example 4.18. Define f,, : R — R by

f(x):{ n if0<z<1/n,

0 otherwise.

Then f, — 0 as n — oo pointwise on R, but
/fnd:zzzl for every n € N.

By modifying this example, and the following ones, we can obtain a sequence f,, that
converges pointwise to zero but whose integrals converge to infinity; for example

n? if0<z<1/n,
folz) = { 0  otherwise.

Example 4.19. Define f,, : R — R by

[ 1/n if0<z<n,
Julw) = { 0 otherwise.

Then f,, — 0 as n — oo pointwise on R, and even uniformly, but

/fndle for every n € N.

Example 4.20. Define f,, : R — R by

1 ifn<z<n+1,
0 otherwise.

fu(x) =
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Then f,, — 0 as n — oo pointwise on R, but
/fndle for every n € N.

The monotone convergence theorem implies that a similar failure of convergence
of the integrals cannot occur in an increasing sequence of functions, even if the
convergence is not uniform or the domain space does not have finite measure. Note
that the monotone convergence theorem does not hold for the Riemann integral;
indeed, the pointwise limit of a monotone increasing, bounded sequence of Riemann
integrable functions need not even be Riemann integrable.

Example 4.21. Let {g; : ¢ € N} be an enumeration of the rational numbers in the
interval [0, 1], and define f, : [0,1] — [0, 00) by

_ 1 if x =¢; for some 1 <7 < n,
fnlz) = { 0 otherwise.

Then {f,} is a monotone increasing sequence of bounded, positive, Riemann in-
tegrable functions, each of which has zero integral. Nevertheless, as n — oo the
sequence converges pointwise to the characteristic function of the rationals in [0, 1],
which is not Riemann integrable.

A useful generalization of the monotone convergence theorem is the following
result, called Fatou’s lemma.

Theorem 4.22. Suppose that {f, : n € N} is sequence of positive measurable
functions fn, : X —[0,00]. Then

(4.7) /lim inf f,, du < lim inf/fn du.
n—oo n—oo
Proor. For each n € N let
gn = éga fr-

Then {g, } is a monotone increasing sequence which converges pointwise to liminf f,
as n — 00, so by the monotone convergence theorem

(4.8) lim [ g,dp= /lim inf f,, dp.
n—oo

n—oo

Moreover, since g, < fi for every k > n, we have

/gn dj < égg/ﬁedu,

so that
lim [ g,dp <liminf / fndu.
n— oo n—00
Using (4.8)) in this inequality, we get the result. O

We may have strict inequality in (4.7]), as in the previous examples. The mono-
tone convergence theorem and Fatou’s Lemma enable us to determine the integra-
bility of functions.
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Example 4.23. For a € R, consider the function f : [0,1] — [0, co] defined by

7 if0<z <1,

f(x)_{oo if z=0.

For n € N, let

= ifl/n<z<1,

falz) = { n® fo<z<1/n.

Then {f,} is an increasing sequence of Lebesgue measurable functions (e.g since
fn is continuous) that converges pointwise to f. We denote the integral of f with

respect to Lebesgue measure on [0, 1] by fol f(z)dx. Then, by the monotone con-
vergence theorem,
1 1
/ f(z)dz = lim fn(z) de.
0 n— oo 0

From elementary calculus,

0 l-«o

asn — 0o if @ < 1, and to oo if @ > 1. Thus, f is integrable on [0, 1] if and only if
a <1

Perhaps the most frequently used convergence result is the following dominated
convergence theorem, in which all the integrals are necessarily finite.

Theorem 4.24 (Lebesgue Dominated Convergence Theorem). If {f, : n € N} is
a sequence of measurable functions f, : X — R such that f, — [ pointwise, and
|fn| < g where g : X — [0,00] is an integrable function, meaning that [ gdu < oo,
then

/fndu%/fdu as n — oo.
PROOF. Since g + f, > 0 for every n € N, Fatou’s lemma implies that

/(g+f)duéliminf/(ngfn)duS /gdu+liminf/fndu,
n— oo n—oo

which gives

/fd,u < liminf/fn du.
n— o0
Similarly, g — f, >0, so

/(g—f)duélgln;gf/(g—fn)dus /gdu—limsup/fndu,

n— o0
which gives
fdu > limsup / Fudi,

n—0o0

and the result follows. O

An alternative, and perhaps more illuminating, proof of the dominated conver-
gence theorem may be obtained from Egoroff’s theorem and the absolute continuity
of the integral. Egoroff’s theorem states that if a sequence { f,,} of measurable func-
tions, defined on a finite measure space (X, A, 1), converges pointwise to a function
f, then for every € > 0 there exists a measurable set A C X such that {f,,} converges
uniformly to f on A and pu(X \ A) < e. The uniform integrability of the functions
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and the absolute continuity of the integral imply that what happens off the set A
may be made to have arbitrarily small effect on the integrals. Thus, the convergence
theorems hold because of this ‘almost’ uniform convergence of pointwise-convergent
sequences of measurable functions.

4.6. Complex-valued functions and a.e. convergence

In this section, we briefly indicate the generalization of the above results to
complex-valued functions and sequences that converge pointwise almost every-
where. The required modifications are straightforward.

If f: X — C is a complex valued function f = g + ¢h, then we say that f is
measurable if and only if its real and imaginary parts g, h : X — R are measurable,
and integrable if and only if g, h are integrable. In that case, we define

/fdu:/gdu—i—i/hdu.

Note that we do not allow extended real-valued functions or infinite integrals here.
It follows from the discussion of product measures that f : X — C, where C is
equipped with its Borel o-algebra B(C), is measurable if and only if its real and
imaginary parts are measurable, so this definition is consistent with our previous
one.

The integral of complex-valued functions satisfies the properties given in Propo-
sition where we allow k£ € C and the condition f < g is only relevant for
real-valued functions. For example, to show that | [ fdu| < [ |f|du, we let

/fdu=‘/fdu

for a suitable argument 6, and then

[ran=e [ gau= [Repan< [ e nlan< [ ifldn

Complex-valued functions also satisfy the properties given in Section [£.4]

The monotone convergence theorem holds for extended real-valued functions
if f, T f pointwise a.e., and the Lebesgue dominated convergence theorem holds
for complex-valued functions if f,, — f pointwise a.e. and |f,| < g pointwise a.e.
where g is an integrable extended real-valued function. If the measure space is not
complete, then we also need to assume that f is measurable. To prove these results,
we replace the functions f,, for example, by f,xne where N is a null set off which
pointwise convergence holds, and apply the previous theorems; the values of any
integrals are unaffected.

619

4.7. L' spaces

We introduce here the space L'(X) of integrable functions on a measure space
X; we will study its properties, and the properties of the closely related LP spaces,
in more detail later on.

Definition 4.25. If (X, A, ;1) is a measure space, then the space L*(X) consists
of the integrable functions f : X — R with norm

1l = / fldu < oo,
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where we identify functions that are equal a.e. A sequence of functions

{fn e L'(X)}

converges in L!, or in mean, to f € L}(X) if

||f—fn||L1:/|f—fn|du—>0 as n — 0o.

We also denote the space of integrable complex-valued functions f : X — C by
L'(X). For definiteness, we consider real-valued functions unless stated otherwise;
in most cases, the results generalize in an obvious way to complex-valued functions

Convergence in mean is not equivalent to pointwise a.e.-convergence. The se-
quences in Examples converges to zero pointwise, but they do not con-
verge in mean. The following is an example of a sequence that converges in mean
but not pointwise a.e.

Example 4.26. Define f, : [0,1] = R by

B Cf1ifo<z<1/2 [0 f0<z<1/2
fi@) =1, fQ(x)_{o if1/2 <z <1, f3(x)_{1 if1/2<z<1,

0 if0<az<1/4,
fs(z) = 1 if1/4<2<1/2,
0 if1/2z <z <1,

and so on. That is, for 2™ < n < 2™ — 1, the function f,, consists of a spike of
height one and width 2™ that sweeps across the interval [0, 1] as n increases from
2™ to 2™ — 1. This sequence converges to zero in mean, but it does not converge
pointwise as any point x € [0, 1].

[ 1 ifo<az<1/4,
f4(x)_{1 if 1/4 <2 <1,

We will show, however, that a sequence which converges sufficiently rapidly in
mean does converge pointwise a.e.; as a result, every sequence that converges in
mean has a subsequence that converges pointwise a.e. (see Lemma and Corol-
lary .

Let us consider the particular case of L'(R™). As an application of the Borel
regularity of Lebesgue measure, we prove that integrable functions on R™ may be
approximated by continuous functions with compact support. This result means
that L*(R™) is a concrete realization of the completion of C,.(R™) with respect to the
LY(R™)-norm, where C.(R™) denotes the space of continuous functions f : R™ — R
with compact support. The support of f is defined by

suppf = {z € R™: f(z) # 0}.

Thus, f has compact support if and only if it vanishes outside a bounded set.

Theorem 4.27. The space C.(R") is dense in L*(R™). Eaplicitly, if f € L*(R"™),
then for any € > 0 there exists a function g € C.(R™) such that

1f =gl <e
ProOF. Note first that by the dominated convergence theorem
Hf_fXBR(O)HLl -0 as R — oo,

so we can assume that f € L!(R") has compact support. Decomposing f = f*—f~
into positive and negative parts, we can also assume that f is positive. Then there
is an increasing sequence of compactly supported simple functions that converges
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to f pointwise and hence, by the monotone (or dominated) convergence theorem,
in mean. Since every simple function is a finite linear combination of characteristic
functions, it is sufficient to prove the result for the characteristic function x4 of a
bounded, measurable set A C R"”.

Given € > 0, by the Borel regularity of Lebesgue measure, there exists a
bounded open set G and a compact set K such that K C A C G and u(G\ K) < e.
Let g € C.(R™) be a Urysohn function such that ¢ = 1 on K, g = 0 on G¢, and
0 < g < 1. For example, we can define g explicitly by

(l’) _ d(xﬂ GC)

I = 4z, K) + d(z, G°)

where the distance function d(-, F) : R" — R from a subset F' C R" is defined by
d(z,F)=inf{|lx —y|:y € F}.

If F is closed, then d(-, F) is continuous, so ¢ is continuous.
We then have that

a =gl = [ Ixa—glde < p(G\K) <
G\K
which proves the result. O

4.8. Riemann integral

Any Riemann integrable function f : [a,b] — R is Lebesgue measurable, and in
fact integrable since it must be bounded, but a Lebesgue integrable function need
not be Riemann integrable. Using Lebesgue measure, we can give a necessary and
sufficient condition for Riemann integrability.

Theorem 4.28. If f : [a,b] — R is Riemann integrable, then [ is Lebesgue in-
tegrable on [a,b] and its Riemann integral is equal to its Lebesgue integral. A
Lebesgue measurable function f : [a,b] — R is Riemann integrable if and only
if it is bounded and the set of discontinuities {x € [a,b] : f is discontinuous at x}
has Lebesgue measure zero.

For the proof, see e.g. Folland [4].

Example 4.29. The characteristic function of the rationals xgno,1] is discontin-
uous at every point and it is not Riemann integrable on [0, 1]. This function is,
however, equal a.e. to the zero function which is continuous at every point and is
Riemann integrable. (Note that being continuous a.e. is not the same thing as being
equal a.e. to a continuous function.) Any function that is bounded and continuous
except at countably many points is Riemann integrable, but these are not the only
Riemann integrable functions. For example, the characteristic function of a Cantor
set with zero measure is a Riemann integrable function that is discontinuous at
uncountable many points.

4.9. Integrals of vector-valued functions

In Definition we use the ordering properties of R to define real-valued
integrals as a supremum of integrals of simple functions. Finite integrals of complex-
valued functions or vector-valued functions that take values in a finite-dimensional
vector space are then defined componentwise.
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An alternative method is to define the integral of a vector-valued function
f: X — Y from a measure space X to a Banach space Y as a limit in norm of
integrals of vector-valued simple functions. The integral of vector-valued simple
functions is defined as in (4.I), assuming that p(E,) < oo; linear combinations of
the values ¢, € Y make sense since Y is a vector space. A function f: X — Y is
integrable if there is a sequence of integrable simple functions {¢,, : X — Y} such
that ¢, — f pointwise, where the convergence is with respect to the norm || - || on
Y, and

/||f—<bn||du—>0 as n — oo.

/fdu:nlggo/%du,

where the limit is the norm-limit in Y.

This definition of the integral agrees with the one used above for real-valued,
integrable functions, and amounts to defining the integral of an integrable function
by completion in the L'-norm. We will not develop this definition here (see [6],
for example, for a detailed account), but it is useful in defining the integral of
functions that take values in an infinite-dimensional Banach space, when it leads to
the Bochner integral. An alternative approach is to reduce vector-valued integrals
to scalar-valued integrals by the use of continuous linear functionals belonging to
the dual space of the Banach space.

Then we define






CHAPTER 5

Product Measures

Given two measure spaces, we may construct a natural measure on their Carte-
sian product; the prototype is the construction of Lebesgue measure on R? as the
product of Lebesgue measures on R. The integral of a measurable function on
the product space may be evaluated as iterated integrals on the individual spaces
provided that the function is positive or integrable (and the measure spaces are
o-finite). This result, called Fubini’s theorem, is another one of the basic and most
useful properties of the Lebesgue integral. We will not give complete proofs of all
the results in this Chapter.

5.1. Product o-algebras

We begin by describing product o-algebras. If (X, .A) and (Y, B) are measurable
spaces, then a measurable rectangle is a subset A x B of X XY where A € A and
B € B are measurable subsets of X and Y, respectively. For example, if R is
equipped with its Borel o-algebra, then Q x Q is a measurable rectangle in R x R.
(Note that the ‘sides” A, B of a measurable rectangle A x B C R x R can be
arbitrary measurable sets; they are not required to be intervals.)

Definition 5.1. Suppose that (X,.A) and (Y, B) are measurable spaces. The prod-
uct o-algebra A ® B is the o-algebra on X x Y generated by the collection of all
measurable rectangles,

AB=0c({AxB:Ac A BeB}).
The product of (X,.A) and (Y, B) is the measurable space (X x Y, A® B).

Suppose that £ C X x Y. For any x € X and y € Y, we define the z-section
FE, CY and the y-section EY C X of E by

E,={yeY:(z,y) € E}, EY={zxeX:(x,y) € E}.
As stated in the next proposition, all sections of a measurable set are measurable.

Proposition 5.2. If (X, A) and (Y, B) are measurable spaces and E € AQ B, then
E, € B for every x € X and EY € A for everyy € Y.

PROOF. Let
M={ECXxXxY:E, €Bforevery x € X and EY € A for every y € Y} .

Then M contains all measurable rectangles, since the z-sections of A x B are either
@ or B and the y-sections are either @ or A. Moreover, M is a g-algebra since, for
example, if £, E; C X xY and z € X, then

w.-@r. (Us) U,

i=1

55
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It follows that M D A ® B, which proves the proposition. O
As an example, we consider the product of Borel o-algebras on R".
Proposition 5.3. Suppose that R™, R™ are equipped with their Borel o-algebras
B(R™), B(R") and let R™T" = R™ x R™. Then
BR™™) = B(R™) @ B(R™).
PRrROOF. Every (m + n)-dimensional rectangle, in the sense of Definition is
a product of an m-dimensional and an n-dimensional rectangle. Therefore
B(R™) @ B(R™) D R(R™™)
where R(R™T") denotes the collection of rectangles in R™*". From Proposi-
tion 2:21] the rectangles generate the Borel o-algebra, and therefore
B(R™) @ B(R™) D> B(R™*™).
To prove the the reverse inclusion, let
M={ACR™: AxR"e B(R™"")}.
Then M is a o-algebra, since B(R™"") is a o-algebra and
A°x R™ = (A x R™), (UAZ)XR”—U(AZ-XR").
i=1 i=1
Moreover, M contains all open sets, since G x R” is open in R™™" if G is open
in R™. Tt follows that M D B(R™), so A x R"™ € B(R™*") for every A € B(R™),
meaning that
B(R™™) 5 {AxR": Ac B(R™)}.
Similarly, we have
BR™™) > {R" x B: B € B(R")}.
Therefore, since B(R™*™) is closed under intersections,
B(R™™) > {Ax B: A< BR™), BeBR")},

which implies that
B(R™™) o B(R™) @ B(R™).
O

By the repeated application of this result, we see that the Borel o-algebra on
R™ is the n-fold product of the Borel o-algebra on R. This leads to an alternative
method of constructing Lebesgue measure on R™ as a product of Lebesgue measures
on R, instead of the direct construction we gave earlier.

5.2. Premeasures

Premeasures provide a useful way to generate outer measures and measures,
and we will use them to construct product measures. In this section, we derive
some general results about premeasures and their associated measures that we use
below. Premeasures are defined on algebras, rather than o-algebras, but they are
consistent with countable additivity.

Definition 5.4. An algebra on a set X is a collection of subsets of X that contains
@ and X and is closed under complements, finite unions, and finite intersections.
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If F C P(X) is a family of subsets of a set X, then the algebra generated by F is
the smallest algebra that contains F. It is much easier to give an explicit description
of the algebra generated by a family of sets F than the o-algebra generated by F.
For example, if F has the property that for A, B € F, the intersection AN B € F
and the complement A° is a finite union of sets belonging to F, then the algebra
generated by F is the collection of all finite unions of sets in F.

Definition 5.5. Suppose that £ is an algebra of subsets of a set X. A premeasure
Aon &, or on X if the algebra is understood, is a function A : £ — [0, 0o] such that:

(a) AM(2) =0;
(b) if {A; € £:i € N} is a countable collection of disjoint sets in £ such that
U Ai S 8,
i=1
then

i=1 i=1

Note that a premeasure is finitely additive, since we may take A; = @ for
i > N, and monotone, since if A D B, then A\(A) = A(A\ B) + A\(B) > A(B).

To define the outer measure associated with a premeasure, we use countable
coverings by sets in the algebra.

Definition 5.6. Suppose that £ is an algebra on a set X and A : £ — [0,00] is a
premeasure. The outer measure \* : P(X) — [0, 00] associated with A is defined
for E C X by

\*(E) = inf {Z AMA4;) : EC U2, A; where A; € 5} :
i=1

As we observe next, the set-function \* is an outer measure. Moreover, every
set belonging to £ is A*-measurable and its outer measure is equal to its premeasure.

Proposition 5.7. The set function \* : P(X) — [0,00] given by Definition [5.6
is an outer measure on X. FEvery set A € & is Carathéodory measurable and

N*(4) = A\(A).

PROOF. The proof that \* is an outer measure is identical to the proof of
Theorem for outer Lebesgue measure.

If A e &, then \*(A) < A(A) since A covers itself. To prove the reverse
inequality, suppose that {A; : i € N} is a countable cover of A by sets 4; € £. Let
B; = AN A; and

j—1
i=1

Then B; € A and A is the disjoint union of {B; : j € N}. Since B; C A;, it follows

that
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If EC X, Ae&, and € > 0, then there is a cover {B; € £ : i € N} of F such
that

N (E) + € > i)\(Bi).
=1

Since A is countably additive on &,
N(E)+e>> ABiNA) + > ABiNAY) > X (ENA)+ X (ENAY),
i=1 i=1
and since € > 0 is arbitrary, it follows that A*(E) > A*(EN A) 4+ A*(E N A°), which
implies that A is measurable. O

Using Theorem [2.9] we see from the preceding results that every premeasure on
an algebra £ may be extended to a measure on o(£). A natural question is whether
such an extension is unique. In general, the answer is no, but if the measure space
is not ‘too big,” in the following sense, then we do have uniqueness.

Definition 5.8. Let X be a set and A a premeasure on an algebra & C P(X).
Then A is o-finite if X = (J;2, A; where A4; € £ and \(4;) < cc.

Theorem 5.9. If A : & — [0,00] is a o-finite premeasure on an algebra £ and A is
the o-algebra generated by &, then there is a unique measure p : A — [0,00] such
that p(A) = A(A) for every A € £.

5.3. Product measures

Next, we construct a product measure on the product of measure spaces that
satisfies the natural condition that the measure of a measurable rectangle is the
product of the measures of its ‘sides.” To do this, we will use the Carathéodory
method and first define an outer measure on the product of the measure spaces in
terms of the natural premeasure defined on measurable rectangles. The procedure
is essentially the same as the one we used to construct Lebesgue measure on R”.

Suppose that (X,.A) and (Y, B) are measurable spaces. The intersection of
measurable rectangles is a measurable rectangle

(AxB)N(CxD)=(ANC) x (BN D),

and the complement of a measurable rectangle is a finite union of measurable rect-
angles
(Ax B) = (A°x B)U (A x B°)U (A° x B°).

Thus, the collection of finite unions of measurable rectangles in X x Y forms an
algebra, which we denote by £. This algebra is not, in general, a g-algebra, but
obviously it generates the same product o-algebra as the measurable rectangles.

Every set E € £ may be represented as a finite disjoint union of measurable
rectangles, though not necessarily in a unique way. To define a premeasure on &,
we first define the premeasure of measurable rectangles.

Definition 5.10. If (X, A, u) and (Y, B,v) are measure spaces, then the product
premeasure A(A x B) of a measurable rectangle A x B C X x Y is given by

A(A x B) = p(A)v(B)

where 0 - 0o = 0.
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The premeasure A is countably additive on rectangles. The simplest way to
show this is to integrate the characteristic functions of the rectangles, which allows
us to use the monotone convergence theorem.

Proposition 5.11. If a measurable rectangle A X B is a countable disjoint union
of measurable rectangles {A; x B; :i € N}, then

=1

Proor. If
o0
AXBZU(AiXBi)
i=1
is a disjoint union, then the characteristic function xaxp : X XY — [0, 00) satisfies

Xaxp(®,y) = > Xa,xn,(2,y)-

=1

Therefore, since xaxp(z,y) = xa(x)x5(Yy),
Xa(@)xs(y) =D xa (@)x5,(1)-

=1

Integrating this equation over Y for fixed x € X and using the monotone conver-
gence theorem, we get

xa(@)v(B) =Y xa,(2)v(By).
i=1
Integrating again with respect to x, we get
uAw(B) =Y pu(Aiv(Bi),
i=1

which proves the result. ([l

In particular, it follows that A is finitely additive on rectangles and therefore
may be extended to a well-defined function on £. To see this, note that any two
representations of the same set as a finite disjoint union of rectangles may be de-
composed into a common refinement such that each of the original rectangles is a
disjoint union of rectangles in the refinement. The following definition therefore
makes sense.

Definition 5.12. Suppose that (X, A, 1) and (Y, B,v) are measure spaces and &
is the algebra generated by the measurable rectangles. The product premeasure
A: € = [0,00] is given by

N N

ME) = pAw(Bi),  E=|JAixB

i=1 i=1
where E = Uf\il A; x B; is any representation of £ € £ as a disjoint union of
measurable rectangles.
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Proposition implies that A\ is countably additive on £, since we may de-
compose any countable disjoint union of sets in £ into a countable common disjoint
refinement of rectangles, so A is a premeasure as claimed. The outer product mea-
sure associated with A, which we write as (z ® v)*, is defined in terms of countable
coverings by measurable rectangles. This gives the following.

Definition 5.13. Suppose that (X, A, u) and (Y, B,v) are measure spaces. Then
the product outer measure

(L)' : P(X xY)—[0,00]
on X x Y is defined for £ C X x Y by

(u®v)*(E) = inf {iN(Ai)V(Bi) : B c U2 (A; x B;) where A; € A, B; € B} .

The product measure
(h@v): A®B = 0,00,  (LOV)= (1@ V)| g5
is the restriction of the product outer measure to the product o-algebra.
It follows from Proposition that (4 ® v)* is an outer measure and every
measurable rectangle is (i ® v)*-measurable with measure equal to its product

premeasure. We summarize the conclusions of the Caratheodory theorem and The-
orem in the case of product measures as the following result.

Theorem 5.14. If (X, A, u) and (Y, B,v) are measure spaces, then
(Lev): A® B — [0,
is a measure on X XY such that
(u@v)(Ax B)=pu(Av(B)  forevery Ac A, B€B.
Moreover, if (X, A, u) and (Y, B,v) are o-finite measure spaces, then (u® v) is the

unique measure on A @ B with this property.

Note that, in general, the o-algebra of Carathéodory measurable sets associated
with (u®v)* is strictly larger than the product o-algebra. For example, if R™ and
R™ are equipped with Lebesgue measure defined on their Borel o-algebras, then the
Carathéodory o-algebra on the product R™*" = R™ x R™ is the Lebesgue o-algebra
L(R™F1)  whereas the product o-algebra is the Borel o-algebra B(R™*™).

5.4. Measurable functions

If f: XxY — Cis a function of (z,y) € X XY, then for each x € X we define
the x-section f, : Y — C and for each y € Y we define the y-section f¥ : Y — C
by

foy) = flzy),  fU(2) = fz,y).

Theorem 5.15. If (X, A, u), (Y,B,v) are measure spaces and f: X xY — C is
a measurable function, then f, :' Y — C, f¥ : X — C are measurable for every
x € X,y €Y. Moreower, if (X, A,pn), (Y,B,v) are o-finite, then the functions
g: X =>C, h:Y — C defined by

g(fﬂ)Z/fde, h(y):/fy du

are measurable.
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5.5. Monotone class theorem

We prove a general result about o-algebras, called the monotone class theorem,
which we will use in proving Fubini’s theorem. A collection of subsets of a set
is called a monotone class if it is closed under countable increasing unions and
countable decreasing intersections.

Definition 5.16. A monotone class on a set X is a collection C C P(X) of subsets
of X such that if E;, F; € C and

EFiCcEy,C---CE;C..., Fi>oF,>---DF;,D...,

then
U L e C, m F; eC.
=1 =1

Obviously, every o-algebra is a monotone class, but not conversely. As with
o-algebras, every family F C P(X) of subsets of a set X is contained in a smallest
monotone class, called the monotone class generated by F, which is the intersection
of all monotone classes on X that contain F. As stated in the next theorem, if F
is an algebra, then this monotone class is, in fact, a o-algebra.

Theorem 5.17 (Monotone Class Theorem). If F is an algebra of sets, the mono-
tone class generated by F coincides with the o-algebra generated by F.

5.6. Fubini’s theorem

Theorem 5.18 (Fubini’s Theorem). Suppose that (X, A, u) and (Y,B,v) are o-
finite measure spaces. A measurable function f : X xY — C is integrable if and
only if either one of the iterated integrals

(oo [(fsis)

is finite. In that case

/fdu®dy:/(/fydu> du:/(/fxdu) dp.

Example 5.19. An application of Fubini’s theorem to counting measure on N X
N implies that if {a;,, € C|m,n € N} is a doubly-indexed sequence of complex

numbers such that
> (3 o) <

m=1 \n=1

00 00 oo 00
E Amn | = E mn | -
m=1 \n=1 n=1 \m=1

5.7. Completion of product measures

then

The product of complete measure spaces is not necessarily complete.
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Example 5.20. If N C R is a non-Lebesgue measurable subset of R, then {0} x N
does not belong to the product o-algebra £(R) ® L(R) on R? = R x R, since every
section of a set in the product o-algebra is measurable. It does, however, belong to
L(R?), since it is a subset of the set {0} x R of two-dimensional Lebesgue measure
zero, and Lebesgue measure is complete. Instead one can show that the Lebesgue
o-algebra on R™*" is the completion with respect to Lebesgue measure of the
product of the Lebesgue o-algebras on R™ and R™:

LR™) = LR™) @ L(R").

We state a version of Fubini’s theorem for Lebesgue measurable functions on
R™.

Theorem 5.21. A Lebesgue measurable function f : R™T" — C is integrable,
meaning that

[ 1) dody < o
Rm+n

if and only if either one of the iterated integrals

L(Lrwaa)a [ ([ 1@l a

is finite. In that case,

/Rmm [, y) dedy = /n ( - [z, y) dfv) dy = /m ( . f(z,y) dy) dz,

where all of the integrals are well-defined and finite a.e.



CHAPTER 6

Differentiation

The generalization from elementary calculus of differentiation in measure theory
is less obvious than that of integration, and the methods of treating it are somewhat
involved.

Consider the fundamental theorem of calculus (FTC) for smooth functions of
a single variable. In one direction (FTC-I, say) it states that the derivative of the
integral is the original function, meaning that

(6.1) f@) =2 [ s

In the other direction (FTC-II, say) it states that we recover the original function
by integrating its derivative

(6.2) Fa) = Fla)+ [ Cfwdy,  f=F.

As we will see, holds pointwise a.e. provided that f is locally integrable, which
is needed to ensure that the right-hand side is well-defined. Equation , however,
does not hold for all continuous functions F' whose pointwise derivative is defined
a.e. and integrable; we also need to require that F' is absolutely continuous. The
Cantor function is a counter-example.

First, we consider a generalization of to locally integrable functions on
R™, which leads to the Lebesgue differentiation theorem. We say that a function
f+R™ — R is locally integrable if it is Lebesgue measurable and

/K|f|dx<oo

for every compact subset K C R"; we denote the space of locally integrable func-
tions by Li .(R™).
Let

(6.3) B.(x)={yeR": |y —z| <r}

denote the open ball of radius r and center z € R". We denote Lebesgue measure
on R™ by p and the Lebesgue measure of a ball B by u(B) = |B|.

To motivate the statement of the Lebesgue differentiation theorem, observe
that may be written in terms of symmetric differences as

x+r
(6.4) f@) = tm o [ sy

r—0+ 2r T

In other words, the value of f at a point x is the limit of local averages of f over
intervals centered at x as their lengths approach zero. An n-dimensional version of

63
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ED s

(6.5) f(z) = :

Iim ———
r—0+ |Br(2)| Jp, (2)

where the integral is with respect n-dimensional Lebesgue measure. The Lebesgue
differentiation theorem states that holds pointwise p-a.e. for any locally inte-
grable function f.

To prove the theorem, we will introduce the maximal function of an integrable
function, whose key property is that it is weak-L!, as stated in the Hardy-Littlewood
theorem. This property may be shown by the use of a simple covering lemma, which
we begin by proving.

Second, we consider a generalization of on the representation of a function
as an integral. In defining integrals on a general measure space, it is natural to
think of them as defined on sets rather than real numbers. For example, in ,
we would write F'(z) = v([a,z]) where v : B([a,b]) — R is a signed measure. This
interpretation leads to the following question: if u, v are measures on a measurable
space X is there a function f : X — [0, 00] such that

/fdu

If so, we regard f = dv/du as the (Radon-Nikodym) derivative of v with respect to
. More generally, we may consider signed (or complex) measures, whose values are
not restricted to positive numbers. The Radon-Nikodym theorem gives a necessary
and sufficient condition for the differentiability of v with respect to u, subject to a
o-finiteness assumption: namely, that v is absolutely continuous with respect to pu.

fy)dy

6.1. A covering lemma

We need only the following simple form of a covering lemma; there are many
more sophisticated versions, such as the Vitali and Besicovitch covering theorems,
which we do not consider here.

Lemma 6.1. Let {By, Ba,...,Bn} be a finite collection of open balls in R™. There
is a disjoint subcollection {B1, By, ..., By} where B} = B, such that

N M
o(Us) <oyl

i=1 i=1

PRrROOF. If B is an open ball, let B denote the open ball with the same center
as B and three times the radius. Then

|B| = 3"|B.

Moreover, if By, By are nondisjoint open balls and the radius of B; is greater than
or equal to the radius of Bs, then El D Bs.

We obtain the subfamily {B’} by an iterative procedure. Choose Bj to be a
ball with the largest radius from the collection { By, Bs, ..., By}. Delete from the
collection all balls B; that intersect Bf, and choose B} to be a ball with the largest
radius from the remaining balls. Repeat this process until the balls are exhausted,
which gives M < N balls, say.
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By construction, the balls {B{, Bj, ..., B),} are disjoint and

It follows that

which proves the result. O

6.2. Maximal functions

The maximal function of a locally integrable function is obtained by taking the
supremum of averages of the absolute value of the function about a point. Maximal
functions were introduced by Hardy and Littlewood (1930), and they are the key
to proving pointwise properties of integrable functions. They also play a central
role in harmonic analysis.

Definition 6.2. If f € L} (R"), then the maximal function M f of f is defined by
1

Mf(x) e ATERES T |f ()l dy.

The use of centered open balls to define the maximal function is for convenience.
We could use non-centered balls or other sets, such as cubes, to define the maximal
function. Some restriction on the shapes on the sets is, however, required; for
example, we cannot use arbitrary rectangles, since averages over progressively longer
and thinner rectangles about a point whose volumes shrink to zero do not, in
general, converge to the value of the function at the point, even if the function is
continuous.

Note that any two functions that are equal a.e. have the same maximal function.

Example 6.3. If f : R — R is the step function

1 ifz>0,
f(””)_{ 0 ifz<0,

then
1 if z >0,

Mf(x):{ 1/2 ifz<0.

This example illustrates the following result.

Proposition 6.4. If f € L} (R™), then the mazimal function M f is lower semi-
continuous and therefore Borel measurable.

PROOF. The function M f > 0 is lower semi-continuous if
Ey={z: Mf(zx) >t}

is open for every 0 < t < co. To prove that E, is open, let © € E;. Then there

exists r > 0 such that
1 /
|f(y)|dy > t.
|Br(7)] /B, (2)
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Choose r’ > r such that we still have
1
1By (2)| J B, (2)
If |2/ — z| < r' —r, then B,.(z) C B, ('), so

[f(y)ldy > t.

! F)ldy < £ dy < MF(),

1
|B (@) JB, ) 1B, (2] /., o)

It follows that 2’ € Fy, which proves that Fj; is open. ([l

The maximal function of a non-zero function f € L'(R™) is not in L'(R™)
because it decays too slowly at infinity for its integral to converge. To show this,
let a > 0 and suppose that |z| > a. Then, by considering the average of |f| at x
over a ball of radius r = 2|x| and using the fact that Byj,|(x) D Ba(0), we see that

1
|BQ‘$‘( )| Bzm(m)

| /
|z|™ B(O)| )l

a

Mf(x) > [f(y)l dy

where C' > 0. The function 1/|z|™ is not integrable on R™ \ B,(0), so if M f is
integrable then we must have

/ @)y =0
Ba(0)

for every a > 0, which implies that f =0 a.e. in R™.
Moreover, as the following example shows, the maximal function of an inte-
grable function need not even be locally integrable.

Example 6.5. Define f : R — R by

[ 1/(xlog®x) if0 <z <1/2,
@) = { 0 otherwise.

The change of variable u = log z implies that

1/2 1
/ L
o |logzl

is finite if and only if n > 1. Thus f € L'(R) and for 0 < z < 1/2

Mf(x)Z/h )l dy

> o=

d
2z Jo ylogy Y
1

>
~ 2x|log x|

S0 Mf ¢ Lloc( )
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6.3. Weak-L' spaces

Although the maximal function of an integrable function is not integrable, it
is not much worse than an integrable function. As we show in the next section, it
belongs to the space weak-L', which is defined as follows

Definition 6.6. The space weak-L!(R") consists of measurable functions
fR*=>R

such that there exists a constant C, depending on f but not on ¢, with the property
that for every 0 < t < co

u{xER”:|f(a:)|>t}§%.

An estimate of this form arises for integrable function from the following, almost
trivial, Chebyshev inequality.

Theorem 6.7 (Chebyshev’s inequality). Suppose that (X, A, 1) is a measure space.
If f: X — R is integrable and 0 < t < oo, then

(6.6) plfe € X 1f@) > 1) < 7 1l

PRrROOF. Let By = {z € X :|f(x)| > t}. Then

/Ifldu z[E Fldu > tu(B),

which proves the result. [l

Chebyshev’s inequality implies immediately that if f belongs to L'(R™), then
f belongs to weak-L!(R™). The converse statement is, however, false.

Example 6.8. The function f : R — R defined by

1
f(z) = =
for x # 0 satisfies
ple € R:1f@)] > 1) =2,

so f belongs to weak-L!(R), but f is not integrable or even locally integrable.

6.4. Hardy-Littlewood theorem

The following Hardy-Littlewood theorem states that the maximal function of
an integrable function is weak-L*.

Theorem 6.9 (Hardy-Littlewood). If f € L*(R™), there is a constant C such that
for every 0 <t < oo

plfr R MI@) > 1) < &

(AP

where C' = 3™ depends only on n.
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ProoF. Fix t > 0 and let
E,={zeR": Mf(z) >t}.
By the inner regularity of Lebesgue measure
w(Ey) =sup {u(K): K C E; is compact}

so it is enough to prove that

for every compact subset K of Ej.
If x € K, then there is an open ball B, centered at x such that

y)| dy > t.
i

Since K is compact, we may extract a finite subcover { By, Bs,..., By} from the
open cover {B, : x € K}. By Lemma there is a finite subfamily of disjoint
balls {B1, B, ..., Bj,;} such that

\ N

N
=21
s3"Z\B§-|

< RZ/ |f| dz

gT/mm

which proves the result with C' = 3™. (]

6.5. Lebesgue differentiation theorem
The maximal function provides the crucial estimate in the following proof.
Theorem 6.10. If f € L} (R"), then for a.e. z € R"

o
|Br(z)| /B, (2)

11m
r—0+

f) dy] = f(=).

Moreover, for a.e. x € R

. 1 _
PROOF. Since
1
B o o T @y < s [ 1)~ s ay

we just need to prove the second result. We define f* : R™ — [0, oco] by

f*(x) = limsup

r—0t

1
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We want to show that f* = 0 pointwise a.e.
If g € C.(R™) is continuous, then given any € > 0 there exists § > 0 such that
lg(z) — g(y)| < € whenever |z —y| < J. Hence if r < §

1
- - dy < €
Bo(0) BT(w)If(y) f(x)| dy <,

which implies that g* = 0. We prove the result for general f by approximation
with a continuous function.

First, note that we can assume that f € L'(R") is integrable without loss of
generality; for example, if the result holds for fxp, () € L'(R") for each k € N
except on a set Ej of measure zero, then it holds for f € L} _(R") except on
Ure; Ek, which has measure zero.

Next, observe that since

1f(W) +9(y) = [f(2) + 9@)]| < [f(y) — f(@)| + |9(y) — g(z)]
and limsup(A + B) < limsup A + limsup B, we have
(f+g) <[ +g"
Thus, if f € L'(R") and g € C.(R"), we have
(f=9) <f 49" =1,
[ff=0(-9+9)"<(f-9)"+g =(-9),
which shows that (f —g)* = f*.

If f € LY(R™), then we claim that there is a constant C, depending only on n,
such that for every 0 < t < oo
C
t

(6.7) p{z eR": f*(x) > t}) < —|[fll: -

To show this, we estimate

* 1 _
f (a?)S?g% B0 Br(x)lf(y) f(@)] dy]
1
Si‘i% B0 Br(x)lf(y)ldy + | f(z)]

< Mf(z) +[f(z)]
It follows that

{f* >ty C{Mf+|fI >t} C{M[f >t/2} ULIf] > t/2}.
By the Hardy-Littlewood theorem,

9.

3n
11

p{z € R": Mf(z) >t/2}) < —

and by the Chebyshev inequality

p({e € R @) > 1/2)) < 2| fle.

Combining these estimates, we conclude that (6.7) holds with C' =2 (3™ + 1).
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Finally suppose that f € L!(R") and 0 < ¢ < oo. From Theorem for any
€ > 0, there exists g € C.(R™) such that || f — g||z: < e. Then

p{z eR": f7(z) > t}) = p({z € R : (f = g)"(x) > 1})

s gl
Ce
< —.
-t
Since € > 0 is arbitrary, it follows that
in({z €R: f(2) > 1)) =0,

IN

and hence since

{zeR": f*(z) >0} = | J{z eR": f*(2) > 1/k}
k=1
that
pw({z eR™: f*(z) >0}) =0.
This proves the result. 0

The set of points z for which the limits in Theorem exist for a suitable
definition of f(z) is called the Lebesgue set of f.

Definition 6.11. If f € L. (R"), then a point € R™ belongs to the Lebesgue

loc
set of f if there exists a constant ¢ € R such that

1
TR |f(y) —cl dy
|Br(2)| /B, ()

If such a constant ¢ exists, then it is unique. Moreover, its value depends only
on the equivalence class of f with respect to pointwise a.e. equality. Thus, we can
use this definition to give a canonical pointwise a.e. representative of a function
f € LL (R™) that is defined on its Lebesgue set.

loc

Example 6.12. The Lebesgue set of the step function f in Example [6.3|is R\ {0}.
The point 0 does not belong to the Lebesgue set, since

i |5 [ 1700 =l dy] =5 el + 11— o)

r—0+ | 2r _r

is nonzero for every ¢ € R. Note that the existence of the limit

1 (" 1
li — dy| = =
Jm (g [ swan] =
is not sufficient to imply that 0 belongs to the Lebesgue set of f.

=0.

lim
r—0t

6.6. Signed measures

A signed measure is a countably additive, extended real-valued set function
whose values are not required to be positive. Measures may be thought of as a
generalization of volume or mass, and signed measures may be thought of as a
generalization of charge, or a similar quantity. We allow a signed measure to take
infinite values, but to avoid undefined expressions of the form co — oo, it should not
take both positive and negative infinite values.
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Definition 6.13. Let (X,A) be a measurable space. A signed measure v on X is
a function v : 4 — R such that:

(a) v(2) =0;

(b) v attains at most one of the values oo, —oc;

(c) if {4; € A:i € N} is a disjoint collection of measurable sets, then

We say that a signed measure is finite if it takes only finite values. Note that
since v ({J;2; A;) does not depend on the order of the A;, the sum > >, v(4;)
converges unconditionally if it is finite, and therefore it is absolutely convergent.
Signed measures have the same monotonicity property as measures, with
essentially the same proof. We will always refer to signed measures explicitly, and
‘measure’ will always refer to a positive measure.

Example 6.14. If (X, A, ) is a measure space and vt,v™ : A — [0,00] are
measures, one of which is finite, then v = vT — v~ is a signed measure.

Example 6.15. If (X, A, i) is a measure space and f : X — R is an .A-measurable
function whose integral with respect to u is defined as an extended real number,
then v : A — R defined by

(6.8) V(A) = /A Fdu

is a signed measure on X. As we describe below, we interpret f as the derivative
dv/dp of v with respect to p. If f = f* — f~ is the decomposition of f into positive
and negative parts then v = v — v~ where the measures v, v~ : A — [0, oc] are
defined by

V*(A)Z/Af*du, V_(A)Z/Af_du-

We will show that any signed measure can be decomposed into a difference of
singular measures, called its Jordan decomposition. Thus, Example[6.14]includes all
signed measures. Not all signed measures have the form given in Example As
we discuss this further in connection with the Radon-Nikodym theorem, a signed
measure v of the form must be absolutely continuous with respect to the
measure [.

6.7. Hahn and Jordan decompositions

To prove the Jordan decomposition of a signed measure, we first show that a
measure space can be decomposed into disjoint subsets on which a signed measure
is positive or negative, respectively. This is called the Hahn decomposition.

Definition 6.16. Suppose that v is a signed measure on a measurable space X. A
set A C X is positive for v if it is measurable and v(B) > 0 for every measurable
subset B C A. Similarly, A is negative for v if it is measurable and v(B) < 0 for
every measurable subset B C A, and null for v if it is measurable and v(B) = 0 for
every measurable subset B C A.
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Because of the possible cancelation between the positive and negative signed
measure of subsets, ¥(A) > 0 does not imply that A is positive for v, nor does
v(A) = 0 imply that A is null for v. Nevertheless, as we show in the next result, if
v(A) > 0, then A contains a subset that is positive for v. The idea of the (slightly
tricky) proof is to remove subsets of A with negative signed measure until only a
positive subset is left.

Lemma 6.17. Suppose that v is a signed measure on a measurable space (X, A).
IfAe A and 0 < v(A) < 0o, then there exists a positive subset P C A such that
v(P) > 0.

PRrROOF. First, we show that if A € A is a measurable set with |v(A)|] < oo,
then |v(B)| < oo for every measurable subset B C A. This is because v takes
at most one infinite value, so there is no possibility of canceling an infinite signed
measure to give a finite measure. In more detail, we may suppose without loss of
generality that v : A — [—00, 00) does not take the value co. (Otherwise, consider
—v.) Then v(B) # oo; and if B C A, then the additivity of v implies that

v(B) =v(A) —v(A\ B) # —o©

since v(A) is finite and v(A \ B) # co.
Now suppose that 0 < v(A) < co. Let

0 =inf{v(F): E€ Aand E C A}.

Then —oo < 6; < 0, since @ C A. Choose A; C A such that §; < v(4;) < §1/2
if 67 is finite, or pu(A4;) < —1 if 61 = —oo. Define a disjoint sequence of subsets
{4; C A :i € N} inductively by setting

6;=inf {v(E): Ee Aand Ec A\ (UZ) 45) }

and choosing A; C A\ (U;:ll Aj) such that

Let

Then, since the A; are disjoint, we have
v(B) = v(A).
i=1

As proved above, v(B) is finite, so this negative sum must converge. It follows that
v(A4;) < —1 for only finitely many ¢, and therefore d; is infinite for at most finitely
many ¢. For the remaining ¢, we have

S < 536 <0

so Y 0; converges and therefore §; — 0 as i — oc.
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If E C P, then by construction v(E) > §; for every sufficiently large i € N.
Hence, taking the limit as i — oo, we see that v(E) > 0, which implies that P is
positive. The proof also shows that, since v(B) < 0, we have

v(P)=v(A) —v(B) > v(A) >0,
which proves that P has strictly positive signed measure. (I

The Hahn decomposition follows from this result in a straightforward way.

Theorem 6.18 (Hahn decomposition). If v is a signed measure on a measurable
space (X, A), then there is a positive set P and a negative set N for v such that
PUN =X and PN N = @. These sets are unique up to v-null sets.

PROOF. Suppose, without loss of generality, that v(A) < oo for every A € A.
(Otherwise, consider —v.) Let

m = sup{r(4) : A € A such that A is positive for v},

and choose a sequence {4; : i € N} of positive sets such that v(A4;) — m as i — oo.
Then, since the union of positive sets is positive,

o
=1

is a positive set. Moreover, by the monotonicity of of v, we have v(P) = m. Since
v(P) # oo, it follows that m > 0 is finite.

Let N = X\ P. Then we claim that N is negative for v. If not, there is a subset
A’ C N such that v(A") > 0, so by Lemma [6.17] there is a positive set P’ C A’ with
v(P’) > 0. But then PUP’ is a positive set with v(PUP’) > m, which contradicts
the definition of m.

Finally, if P/, N’ is another such pair of positive and negative sets, then

P\P c PnN

so P\ P’ is both positive and negative for v and therefore null, and similarly for
P’ \ P. Thus, the decomposition is unique up to v-null sets. O

To describe the corresponding decomposition of the signed measure v into the
difference of measures, we introduce the notion of singular measures, which are
measures that are supported on disjoint sets.

Definition 6.19. Two measures p, v on a measurable space (X, .A) are singular,
written p L v, if there exist sets M, N € A such that M NN =2, MUN = X
and pu(M) =0, v(N)=0.

Example 6.20. The §-measure in Example and the Cantor measure in Ex-
ample are singular with respect to Lebesgue measure on R (and conversely,
since the relation is symmetric).

Theorem 6.21 (Jordan decomposition). If v is a signed measure on a measurable
space (X, A), then there exist unique measures v, v~ : A — [0,00], one of which
is finite, such that

—v and vt L v,
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PRrROOF. Let X = PU N where P, N are positive, negative sets for v. Then
vT(A) =v(ANP), v (A)=-v(ANN)

is the required decomposition. The values of v* are independent of the choice of
P, N up to a v-null set, so the decomposition is unique. ([

We call v+ and v~ the positive and negative parts of v, respectively. The total
variation |v| of v is the measure

lv|=vt +v.

We say that the signed measure v is o-finite if |v| is o-finite.

6.8. Radon-Nikodym theorem

The absolute continuity of measures is in some sense the opposite relationship
to the singularity of measures. If a measure v singular with respect to a measure
1, then it is supported on different sets from pu, while if v is absolutely continuous
with respect to u, then it supported on on the same sets as pu.

Definition 6.22. Let v be a signed measure and g a measure on a measurable
space (X,.A). Then v is absolutely continuous with respect to u, written v < p, if
v(A) = 0 for every set A € A such that p(A4) =0.

Equivalently, v < p if every p-null set is a v-null set. Unlike singularity,
absolute continuity is not symmetric.

Example 6.23. If 4 is Lebesgue measure and v is counting measure on B(R), then
U< v, but v & .

Example 6.24. If f : X — R is a measurable function on a measure space (X, A, )
whose integral with respect u is well-defined as an extended real number and the
signed measure v : A — R is defined by

v(4) = [ fan.
A
then (4.4) shows that v is absolutely continuous with respect to p.

The next result clarifies the relation between Definition [6.22] and the absolute
continuity property of integrable functions proved in Proposition [4.16

Proposition 6.25. If v is a finite signed measure and p is a measure, then v < p
if and only if for every € > 0, there exists 6 > 0 such that |v(A)| < € whenever
u(A) < 4.

PROOF. Suppose that the given condition holds. If pu(A) = 0, then |v(A4)| < €
for every € > 0, so v(A) = 0, which shows that v < p.

Conversely, suppose that the given condition does not hold. Then there exists
e > 0 such that for every k € N there exists a measurable set Ay, with |v|(Ag) > €

and p(Ay) < 1/2%. Defining
5= U4

k=1 j=Fk
we see that u(B) = 0 but |v|(B) > €, so v is not absolutely continuous with respect
to u. (]
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The Radon-Nikodym theorem provides a converse to Example [6.24] for abso-
lutely continuous, o-finite measures. As part of the proof, from [4], we also show
that any signed measure v can be decomposed into an absolutely continuous and
singular part with respect to a measure u (the Lebesgue decomposition of v). In
the proof of the theorem, we will use the following lemma.

Lemma 6.26. Suppose that ji, v are finite measures on a measurable space (X, A).
Then either p L v, or there exists € > 0 and a set P such that u(P) > 0 and P is
a positive set for the signed measure v — €pu.

PrOOF. For each n € N, let X = P, UN,, be a Hahn decomposition of X for
the signed measure v — %u. If

P= fj P, N= ﬁ N,
n=1 n=1

then X = PU N is a disjoint union, and
1
0 < v(N) < ~p(N)
n

for every n € N, so v(N) = 0. Thus, either u(P) =0, when v L p, or u(P,) >0
for some n € N, which proves the result with e = 1/n. ([l

Theorem 6.27 (Lebesgue-Radon-Nikodym theorem). Let v be a o-finite signed
measure and p a o-finite measure on a measurable space (X, A). Then there exist
unique o-finite signed measures v,, Vs such that

V=1V, + Vs where v, < 1 and vs L .

Moreover, there exists a measurable function f : X — R, uniquely defined up to
p-a.e. equivalence, such that

va(4) = [ fan
A
for every A € A, where the integral is well-defined as an extended real number.

ProOF. It is enough to prove the result when v is a measure, since we may
decompose a signed measure into its positive and negative parts and apply the
result to each part.

First, we assume that u, v are finite. We will construct a function f and an
absolutely continuous signed measure v, < p such that

ve(A) = /Afdu for all A € A.

We write this equation as dv, = f du for short. The remainder vy = v — v, is the
singular part of v.
Let F be the set of all A-measurable functions g : X — [0, co] such that

/ gdu <v(A) for every A € A.
A

We obtain f by taking a supremum of functions from F. If g,h € F, then
max{g,h} € F. To see this, note that if A € A, then we may write A = BUC
where

B=An{ze X :g(x) > h(x)}, C=An{zre X :g(x) <h(z)},
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and therefore
/ max {g,h} du =/ gdu—!—/ hdu <v(B)+v(C) =v(A).
A B C
Let
m—sup{/ gdu:ge]:} <v(X).
b's

Choose a sequence {g, € F : n € N} such that

lim / gn dp = m.
n—oo X

By replacing g, with max{g1, go, ..., gn}, we may assume that {g, } is an increasing
sequence of functions in F. Let

f= lim g,.

n— oo

Then, by the monotone convergence theorem, for every A € A we have

/ fdu= lim [ g,du<wv(A),
A n—oo A

/ fdu=m.
X
Define v, : A — [0,00) by

) = v(a) = [ .

Then v, is a positive measure on X. We claim that vs L p, which proves the result
in this case. Suppose not. Then, by Lemma there exists € > 0 and a set P
with p(P) > 0 such that vs > ep on P. It follows that for any A € A

v() = [ Fanna)

so f € F and

Z/fdu—f—l/S(AﬂP)
A

en(A
Z/Afdu+ (AN P)

> /A (f +exp) dp.

It follows that f + exp € F but

[+ exe) du=m - culp) > m.

which contradicts the definition of m. Hence v, L p.

If v = vy +vs and v = v, +1/, are two such decompositions, then v, —v), = v, —v;
is both absolutely continuous and singular with respect to g which implies that it
is zero. Moreover, f is determined uniquely by v, up to pointwise a.e. equivalence.

Finally, if u, v are o-finite measures, then we may decompose

- Ua
=1
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into a countable disjoint union of sets with u(4;) < oo and v(A4;) < oco. We
decompose the finite measure v; = v[,  as

V; = Viq + Vis where v;, < p; and v L ;.

Then v = v, + v, is the required decomposition with

oo oo
Vg = E Via, Vs = § Via
i=1 =1

is the required decomposition. [l

The decomposition v = v, + v, is called the Lebesgue decomposition of v, and
the representation of an absolutely continuous signed measure v < p as dv = fdu
is the Radon-Nikodym theorem. We call the function f here the Radon-Nikodym
derivative of v with respect to p, and denote it by

dv
f= du’
i
Some hypothesis of o-finiteness is essential in the theorem, as the following

example shows.

Example 6.28. Let B be the Borel o-algebra on [0, 1], u Lebesgue measure, and
v counting measure on B. Then u is finite and p < v, but v is not o-finite. There
is no function f : [0,1] — [0, 0o] such that

p(a) = [ v =3 fia).
z€A

There are generalizations of the Radon-Nikodym theorem which apply to mea-
sures that are not o-finite, but we will not consider them here.

6.9. Complex measures

Complex measures are defined analogously to signed measures, except that they
are only permitted to take finite complex values.

Definition 6.29. Let (X, .A) be a measurable space. A complex measure v on X
is a function v : A — C such that:

(a) v(@) = 0;

(b) if {A; € A:i € N} is a disjoint collection of measurable sets, then

i=1

There is an analogous Radon-Nikodym theorems for complex measures. The
Radon-Nikodym derivative of a complex measure is necessarily integrable, since the
measure is finite.

Theorem 6.30 (Lebesgue-Radon-Nikodym theorem). Let v be a complex measure
and | a o-finite measure on a measurable space (X, A). Then there exist unique
complex measures v,, Vs such that

V=V, + Vs where v, < pu and vs L p.
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Moreover, there exists an integrable function f : X — C, uniquely defined up to
w-a.e. equivalence, such that

() = [ Fu
for every A € A.

To prove the result, we decompose a complex measure into its real and imagi-
nary parts, which are finite signed measures, and apply the corresponding theorem
for signed measures.



CHAPTER 7
LP spaces

In this Chapter we consider LP-spaces of functions whose pth powers are inte-
grable. We will not develop the full theory of such spaces here, but consider only
those properties that are directly related to measure theory — in particular, den-
sity, completeness, and duality results. The fact that spaces of Lebesgue integrable
functions are complete, and therefore Banach spaces, is another crucial reason for
the success of the Lebesgue integral. The LP-spaces are perhaps the most useful
and important examples of Banach spaces.

7.1. LP spaces

For definiteness, we consider real-valued functions. Analogous results apply to
complex-valued functions.

Definition 7.1. Let (X, A, u) be a measure space and 1 < p < oco. The space
LP(X) consists of equivalence classes of measurable functions f : X — R such that

/ 1P dy < oo,

where two measurable functions are equivalent if they are equal p-a.e. The LP-norm
of f € LP(X) is defined by

1/p
1l = ( / IfIPdM) .

The notation LP(X) assumes that the measure g on X is understood. We say
that f, — f in LP if ||f — falle — 0. The reason to regard functions that are
equal a.e. as equivalent is so that || f||» = 0 implies that f = 0. For example, the
characteristic function g of the rationals on R is equivalent to 0 in LP(R). We will
not worry about the distinction between a function and its equivalence class, except
when the precise pointwise values of a representative function are significant.

Example 7.2. If N is equipped with counting measure, then LP(N) consists of all
sequences {z,, € R:n € N} such that

oo
Z |zn|P < oo.
n=1

We write this sequence space as ¢P(N), with norm

co 1/p
[{zn}Hler = (Z Imnp> :

The space L>°(X) is defined in a slightly different way. First, we introduce the
notion of esssential supremum.

79
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Definition 7.3. Let f : X — R be a measurable function on a measure space
(X, A, ). The essential supremum of f on X is

esssup f =inf{a € R: p{z € X : f(z) > a} =0}.
b's
Equivalently,

esssup f = inf {supg : g = f pointwise a.e.} .
X X

Thus, the essential supremum of a function depends only on its u-a.e. equivalence
class. We say that f is essentially bounded on X if

esssup | f] < oo.
p's

Definition 7.4. Let (X, A, u) be a measure space. The space L*°(X) consists
of pointwise a.e.-equivalence classes of essentially bounded measurable functions
f: X — R with norm

| f|lLee = esssup |f].
X

In future, we will write
esssup f = sup f.
We rarely want to use the supremum instead of the essential supremum when the
two have different values, so this notation should not lead to any confusion.

7.2. Minkowski and Holder inequalities

We state without proof two fundamental inequalities.
Theorem 7.5 (Minkowski inequality). If f,g € LP(X), where 1 < p < oo, then
f+geLP(X) and
If+9lle < WA e + [1f1l e -

This inequality means, as stated previously, that || - ||z» is a norm on LP(X)
for 1 <p < oo. If 0 <p <1, then the reverse inequality holds

1fllze +llglle < I +gllzs
0 || - ||z» is not a norm in that case. Nevertheless, for 0 < p < 1 we have
[f+9l” <IfI7 + 19l

so LP(X) is a linear space in that case also.
To state the second inequality, we define the Holder conjugate of an exponent.

Definition 7.6. Let 1 < p < co. The Holder conjugate p’ of p is defined by

1 1
-+—==1 if 1 <p< oo,
p D

and 1’ = 0o, 00’ = 1.
Note that 1 < p’ < oo, and the Holder conjugate of p’ is p.

Theorem 7.7 (Holder’s inequality). Suppose that (X, A, p) is a measure space and
1<p<oo. If feLP(X) and g € L? (X), then fg € L'(X) and

/ gl d < 1o gl -

For p = p’ = 2, this is the Cauchy-Schwartz inequality.
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7.3. Density

Density theorems enable us to prove properties of LP functions by proving them
for functions in a dense subspace and then extending the result by continuity. For
general measure spaces, the simple functions are dense in LP.

Theorem 7.8. Suppose that (X, A,v) is a measure space and 1 < p < co. Then
the simple functions that belong to LP(X) are dense in LP(X).

PROOF. It is sufficient to prove that we can approximate a positive function
f: X — [0,00) by simple functions, since a general function may be decomposed
into its positive and negative parts.

First suppose that f € LP(X) where 1 < p < oo. Then, from Theorem
there is an increasing sequence of simple functions {¢,,} such that ¢,, T f pointwise.
These simple functions belong to LP, and

|[f = ¢nl” < |fIP € LY(X).

Hence, the dominated convergence theorem implies that

/|f*¢n|pdu%0 as n — 0o,

which proves the result in this case.

If f € L*®(X), then we may choose a representative of f that is bounded.
According to Theorem there is a sequence of simple functions that converges
uniformly to f, and therefore in L (X). (I

Note that a simple function

n
¢ = Z CiXA;
=1

belongs to L? for 1 < p < oo if and only if u(A;) < oo for every A; such that
¢; # 0, meaning that its support has finite measure. On the other hand, every
simple function belongs to L.

For suitable measures defined on topological spaces, Theorem[7.8|can be used to
prove the density of continuous functions in L? for 1 < p < oo, as in Theorem
for Lebesgue measure on R™. We will not consider extensions of that result to more
general measures or topological spaces here.

7.4. Completeness
In proving the completeness of LP(X), we will use the following Lemma.

Lemma 7.9. Suppose that X is a measure space and 1 < p < oo. If
{gr € LP(X) : k € N}

is a sequence of LP-functions such that

oo
> gkl e < o0,
k=1

then there exists a function f € LP(X) such that

o=t
k=1
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where the sum converges pointwise a.e. and in LP.

PRrROOF. Define h,,,h: X — [0, 00] by

n

ho = okl h=>lol.
k=1 k=1

Then {h,} is an increasing sequence of functions that converges pointwise to h, so
the monotone convergence theorem implies that

/hp dp= lim [ kP du.

n—oo

By Minkowski’s inequality, we have for each n € N that

n
Il <3 llgell o < M
k=1

where > 07, [lgkll;» = M. It follows that h € LP(X) with ||h|/;, < M, and in
particular that h is finite pointwise a.e. Moreover, the sum 21?;1 gi. is absolutely
convergent pointwise a.e., so it converges pointwise a.e. to a function f € LP(X)
with |f| < h. Since

‘f—igk (|f|+2|gk> (2h)? € L} (X),
k=1

the dominated convergence theorem implies that

/‘f ng

meaning that Y, ; g, converges to f in LP. (I

du — 0 as n — oo,

The following theorem implies that LP(X) equipped with the LP-norm is a
Banach space.

Theorem 7.10 (Riesz-Fischer theorem). If X is a measure space and 1 < p < oo,
then LP(X) is complete.

PRrOOF. First, suppose that 1 < p < oo. If {f; : k € N} is a Cauchy sequence
in LP(X), then we can choose a subsequence { fx, : j € N} such that

1
kaj+1 Ir; HLP S DY
Writing g; = fx,,, — fk;, we have
o0
> lgjllze < oo,
j=1

so by Lemma the sum

o0
Jry + Zgj
j=1
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converges pointwise a.e. and in L? to a function f € LP. Hence, the limit of the
subsequence

j—1 [e’e)
li =1 | = _
Jim fi, = lim (fkl +;gz> Fra +j_§gg f
exists in LP. Since the original sequence is Cauchy, it follows that
lim f = f
k—o0

in L?. Therefore every Cauchy sequence converges, and LP(X) is complete when
1<p<oo.

Second, suppose that p = co. If {f} is Cauchy in L*°, then for every m € N
there exists an integer n € N such that we have

1
(7.1) Ifi(x) — fe(z)] < — for all j,k > n and xz € N7,
where Nj . is a null set. Let
N= |J Nikm
7, k,meN

Then N is a null set, and for every z € N¢ the sequence {f;(z) : k € N} is Cauchy
in R. We define a measurable function f : X — R, unique up to pointwise a.e.
equivalence, by

f(z) = kl'l)m fr(z) for x € N©.

Letting k — oo in (|7.1)), we find that for every m € N there exists an integer n € N
such that
1
Ifi(z) — flx)] < — for j > n and x € N°.
m

It follows that f is essentially bounded and f; — f in L* as j — oo. This proves
that L° is complete. ([

One useful consequence of this proof is worth stating explicitly.

Corollary 7.11. Suppose that X is a measure space and 1 < p < oo. If {fi} is
a sequence in LP(X) that converges in LP to f, then there is a subsequence { fx;}
that converges pointwise a.e. to f.

As Example [£.26] shows, the full sequence need not converge pointwise a.e.

7.5. Duality

The dual space of a Banach space consists of all bounded linear functionals on
the space.

Definition 7.12. If X is a real Banach space, the dual space of X™* consists of all
bounded linear functionals F': X — R, with norm

|Flx- = sup [F <””)]<oo

zex\{0} L zllx
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A linear functional is bounded if and only if it is continuous. For LP spaces,
we will use the Radon-Nikodym theorem to show that LP(X)* may be identified
with Lp/(X ) for 1 < p < co. Under a o-finiteness assumption, it is also true that
LY(X)* = L>°(X), but in general L*>°(X)* # L'(X).

Holder’s inequality implies that functions in L?" define bounded linear func-
tionals on LP with the same norm, as stated in the following proposition.

Proposition 7.13. Suppose that (X, A, 1) is a measure space and 1 < p < oo. If
f e L¥(X), then

F(g)= [ fgdp
defines a bounded linear functional F : L?(X) = R, and
[ Ell s = ILf Il Lo -

If X is o-finite, then the same result holds for p = 1.

PRrROOF. From Hoélder’s inequality, we have for 1 < p < oo that
[F(g)l < [If1l e llgllze,

which implies that F' is a bounded linear functional on L? with

[E N oe < A 2o

In proving the reverse inequality, we may assume that f # 0 (otherwise the result
is trivial).
First, suppose that 1 < p < co. Let

|f‘ :D//P
o= (i)
Le
Then g € LP, since f € L, and |g||z» = 1. Also, since p//p = p' — 1,

. ] )
Flo) = [(sen s (” =)
1l

Since ||g||z» = 1, we have ||F| o= > |F(g)|, so that

[E N zoe = 1 o

If p = oo, we get the same conclusion by taking g = sgn f € L°. Thus, in these
cases the supremum defining || F||z»+ is actually attained for a suitable function g.
Second, suppose that p = 1 and X is o-finite. For € > 0, let

A={ze X :[f(x)] > |fllL~ —e}.

Then 0 < u(A) < co. Moreover, since X is o-finite, there is an increasing sequence
of sets A,, of finite measure whose union is A such that u(A4,) — u(A), so we can
find a subset B C A such that 0 < u(B) < co. Let

— (sgn f) XE_
g=(sg f)M(B)

Then g € L'(X) with |g||z: = 1, and

Flg) = ﬁ /B Fldu> [l —e
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It follows that
1L 2 (1 fllze =€
and therefore ||F||p1+ > || f||r since € > 0 is arbitrary. O

This proposition shows that the map F' = J(f) defined by
(72) T S X I g [ fedu,

is an isometry from L*" into LP*. The main part of the following result is that J is
onto when 1 < p < 0o, meaning that every bounded linear functional on LP arises
in this way from an LP -function.

The proof is based on the idea that if F' : LP(X) — R is a bounded linear
functional on LP(X), then v(F) = F(xg) defines an absolutely continuous measure
on (X, A, ), and its Radon-Nikodym derivative f = dv/du is the element of )id
corresponding to F.

Theorem 7.14 (Dual space of LP). Let (X, A, ) be a measure space. If 1 <p <

oo, then defines an isometric isomorphism of Lp,(X) onto the dual space of
LP(X).

PROOF. We just have to show that the map J defined in ([7.2)) is onto, meaning
that every F € LP(X)* is given by J(f) for some f € L?' (X).
First, suppose that X has finite measure, and let

F:IP(X) >R

be a bounded linear functional on LP(X). If A € A, then x4 € LP(X), since X has
finite measure, and we may define v : 4 — R by

v(A) = F(xa).

If A=|J;2, 4; is a disjoint union of measurable sets, then

00
XA = Z XA;»
i=1

and the dominated convergence theorem implies that

n
XA — Z XA;
i=1

as n — o0o. Hence, since F' is a continuous linear functional on LP,

— 0

vV(A)=F(xa)=F (Z XAi> => F(xa,)= ZV(Ai),

1= =1

meaning that v is a signed measure on (X, A).

If 4(A) = 0, then x4 is equivalent to 0 in LP and therefore v(A) = 0 by
the linearity of F'. Thus, v is absolutely continuous with respect to p. By the
Radon-Nikodym theorem, there is a function f : X — R such that dv = fdu and

F(xa) = /fXA du for everyA € A.
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Hence, by the linearity and boundedness of F',

F(o)= [ fodu

for all simple functions ¢, and

‘ / f¢>du‘ < M|l¢|w

where M = || F|| .

Taking ¢ = sgn f, which is a simple function, we see that f € L'(X). We may
then extend the integral of f against bounded functions by continuity. Explicitly,
if g € L*>°(X), then from Theorem there is a sequence of simple functions {¢,}
with |¢,| < |g| such that ¢, — g in L>°, and therefore also in LP. Since

[foul < llgllL=|f] € LN(X),

the dominated convergence theorem and the continuity of F' imply that

Flg) = lim F(6,)= lm / S dpt = / fgdu,

n—oo

and that
(7.3) ‘/fgdu‘ < Mlgl||L» for every g € L (X).

Next we prove that f € LP' (X). We will estimate the L? norm of f by a
similar argument to the one used in the proof of Proposition [7.13] However, we
need to apply the argument to a suitable approximation of f, since we do not know
a priori that f € L.

Let {¢,} be a sequence of simple functions such that

On — f pointwise a.e. as n — oo

and |¢,| < |f|. Define

p'/p
9n = (senf) (nfﬁi > |

Then g, € L (X) and ||gn||Lr = 1. Moreover, fg, = |fgn| and

/|¢ngn‘ dM = H(anLp'-

It follows from these equalities, Fatou’s lemma, the inequality |¢,| < |f|, and (7.3)
that

£l < limmint ]
< liminf/|¢ngn| du
n— o0

<timinf [ |f9u] du
n— oo
< M.
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Thus, f € L*" . Since the simple functions are dense in LP and g— [fgduisa

continuous functional on L? when f € L?', it follows that F(g) = | fgdu for every
g € LP(X). Proposition then implies that

1l zes = £l Lo »

which proves the result when X has finite measure.

The extension to non-finite measure spaces is straightforward, and we only
outline the proof. If X is o-finite, then there is an increasing sequence {A,} of sets
with finite measure whose union is X. By the previous result, there is a unique
function f, € L*'(A,,) such that

F(g) = / fngdp  forall g € LP(A,).
An

If m > n, the functions f,,, f, are equal pointwise a.e. on A,,, and the dominated
convergence theorem implies that f = lim,, o fn € L (X)) is the required function.

Finally, if X is not o-finite, then for each o-finite subset A C X, let f4 € L¥’ (A)
be the function such that F(g) = [, fagdu for every g € LP(A). Define

M = Sup{HfAHLp/(A) tAC X is J-ﬁnite} < |1F |l Lo (x)+
and choose an increasing sequence of sets A,, such that
HfAn||LT"(A")4)M/ as n — 0o.
Defining B = |J;—, A,,, one may verify that fz is the required function. ]

A Banach space X is reflexive if its bi-dual X** is equal to the original space
X under the natural identification

L X — X where «(z)(F) = F(z) for every F € X*,

meaning that x acting on F' is equal to F' acting on z. Reflexive Banach spaces
are generally better-behaved than non-reflexive ones, and an immediate corollary
of Theorem is the following.

Corollary 7.15. If X is a measure space and 1 < p < oo, then LP(X) is reflexive.

Theorem [7.14] also holds if p = 1 provided that X is o-finite, but we omit a
detailed proof. On the other hand, the theorem does not hold if p = co. Thus L'
and L are not reflexive Banach spaces, except in trivial cases.

The following example illustrates a bounded linear functional on an L°°-space
that does not arise from an element of L.

Example 7.16. Consider the sequence space ¢*°(N). For
x ={z; 11 € N} € {*(N), ||| e = sup|z;| < o0,
ieN

define F,, € (°(N)* by
1 n
F, (z) = - ; z;,

meaning that F;, maps a sequence to the mean of its first n terms. Then
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for every n € N, so by the Alaoglu theorem on the weak-* compactness of the unit
ball, there exists a subsequence {F,, : j € N} and an element F' € £>°(N)* with

| F||leso~ < 1 such that F,, X F in the weak-* topology on £°°*.
If u € £*° is the unit sequence with u; = 1 for every ¢ € N, then F,,(u) = 1 for
every n € N, and hence
F(u) = lim Fy;(u) =1,
j—o0

so F' # 0; in fact, ||F||s~ = 1. Now suppose that there were y = {y;} € £*(N) such
that

oo
F(x) = inyi for every = € £°°.
i=1

Then, denoting by er € £°° the sequence with kth component equal to 1 and all
other components equal to 0, we have
yr = F(er) = lim Fy, (ex) = lim — =0
J—00 J—00 nj

so y = 0, which is a contradiction. Thus, £>°(N)* is strictly larger than ¢!(N).

We remark that if a sequence x = {z;} € £*° has a limit L = lim;_,, z;, then
F(z) = L, so F defines a generalized limit of arbitrary bounded sequences in terms
of their Cesaro sums. Such bounded linear functionals on £°°(N) are called Banach
limits.

It is possible to characterize the dual of L>°(X) as a space ba(X) of bounded,
finitely additive, signed measures that are absolutely continuous with respect to
the measure g on X. This result is rarely useful, however, since finitely additive
measures are not easy to work with. Thus, for example, instead of using the weak
topology on L*°(X), we can regard L>°(X) as the dual space of L!(X) and use the
corresponding weak-* topology.
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PREFACE

These are lecture notes on integration theory for a eight-week course at the
Chalmers University of Technology and the Géteborg University. The parts
defining the course essentially lead to the same results as the first three
chapters in the Folland book [F], which is used as a text book on the course.
The proofs in the lecture notes sometimes differ from those given in [F'] . Here
is a brief description of the differences to simplify for the reader.

In Chapter 1 we introduce so called 7-systems and o-additive classes,
which are substitutes for monotone classes of sets [F]. Besides we prefer to
emphasize metric outer measures instead of so called premeasures. Through-
out the course, a variety of important measures are obtained as image mea-
sures of the linear measure on the real line. In Section 1.6 positive measures
in R induced by increasing right continuous mappings are constructed in this
way.

Chapter 2 deals with integration and is very similar to [F] and most
other texts.

Chapter 3 starts with some standard facts about metric spaces and relates
the concepts to measure theory. For example Ulam’s Theorem is included.
The existence of product measures is based on properties of mw-systems and
o-additive classes.

Chapter 4 deals with different modes of convergence and is mostly close
to [F]. Here we include a section about orthogonality since many students
have seen parts of this theory before.

The Lebesgue Decomposition Theorem and Radon-Nikodym Theorem
in Chapter 5 are proved using the von Neumann beautiful L?-proof.

To illustrate the power of abstract integration these notes contain several
sections, which do not belong to the course but may help the student to a
better understanding of measure theory. The corresponding parts are set
between the symbols

W

and

(k)

respectively.



Finally I would like to express my deep gratitude to the students in
my classes for suggesting a variety of improvements and a special thank
to Jonatan Vasilis who has provided numerous comments and corrections in
my original text.

Goteborg 2006
Christer Borell
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CHAPTER 1
MEASURES

Introduction

The Riemann integral, dealt with in calculus courses, is well suited for com-
putations but less suited for dealing with limit processes. In this course we
will introduce the so called Lebesgue integral, which keeps the advantages of
the Riemann integral and eliminates its drawbacks. At the same time we will
develop a general measure theory which serves as the basis of contemporary
analysis and probability.

In this introductory chapter we set forth some basic concepts of measure
theory, which will open for abstract Lebesgue integration.

1.1. o-Algebras and Measures

Throughout this course

N = {0,1,2,...} (the set of natural numbers)
Z={.,-2,—-1,0,1,,2, ...} (the set of integers)
Q = the set of rational numbers

R = the set of real numbers

C = the set of complex numbers.

If ACR, A, is the set of all strictly positive elements in A.

If f is a function from a set A into a set B, this means that to every z € A
there corresponds a point f(x) € B and we write f : A — B. A function is
often called a map or a mapping. The function f is injective if

(x #y) = (f(2) # [(y))



and surjective if to each y € B, there exists an = € A such that f(z) = y.
An injective and surjective function is said to be bijective.

A set A is finite if either A is empty or there exist an n € N, and a
bijection f : {1,...,n} — A. The empty set is denoted by ¢. A set A is said
to be denumerable if there exists a bijection f : Ny — A. A subset of a
denumerable set is said to be at most denumerable.

Let X be a set. For any A C X, the indicator function y 4 of A relative
to X is defined by the equation

(x)— lifze A
XA =9 0if z € A°.

The indicator function x, is sometimes written 14. We have the following
relations:

Xac =1— X4
XAnB = min(XAa XB) = XaXB

and
Xaup = max(X 4, X5) = Xa + X — XaXa.

Definition 1.1.1. Let X be a set.
a) A collection A of subsets of X is said to be an algebra in X if A has
the following properties:

(i) X € A
(ii)) A e A=A° € A, where A° is the complement of A relative to X.
(ili) If A, B € Athen AUB € A.

(b) A collection M of subsets of X is said to be a c-algebra in X if M
is an algebra with the following property:

If A, € M for all n € N, then U, A, € M.



If M is a o-algebra in X, (X, M) is called a measurable space and the
members of M are called measurable sets. The so called power set P(X),
that is the collection of all subsets of X, is a o-algebra in X. It is simple to
prove that the intersection of any family of o-algebras in X is a o-algebra. It
follows that if £ is any subset of P(X), there is a unique smallest o-algebra
0(€) containing £, namely the intersection of all o-algebras containing &.

The o-algebra o(€) is called the o-algebra generated by £. The o-algebra
generated by all open intervals in R is denoted by R. It is readily seen that
the o-algebra R contains every subinterval of R. Before we proceed, recall
that a subset F of R is open if to each x € F there exists an open subinterval
of R contained in £ and containing x; the complement of an open set is said
to be closed. We claim that R contains every open subset U of R. To see
this suppose = € U and let x € ]a,b[ C U, where —c0 < a < b < c0. Now
pick 7, s € Q such that a <r < x < s <b. Then z € |r, s| C U and it follows
that U is the union of all bounded open intervals with rational boundary
points contained in U. Since this family of intervals is at most denumberable
we conclude that U € R. In addition, any closed set belongs to R since its
complements is open. It is by no means simple to grasp the definition of R at
this stage but the reader will successively see that the o-algebra R has very
nice properties. At the very end of Section 1.3, using the so called Axiom of
Choice, we will exemplify a subset of the real line which does not belong to
R. In fact, an example of this type can be constructed without the Axiom
of Choice (see Dudley’s book [D]).

In measure theory, inevitably one encounters co. For example the real
line has infinite length. Below [0, co] = [0, co[U{oo} . The inequalities z <y
and r < y have their usual meanings if z,y € [0, 00[. Furthermore, z < oo
if z € [0,00] and = < o0 if & € [0,00[. We define z + co = 00 + 2 = oo if
z,y € [0,00], and

x-oo:oo-x:{ 0 ifz=0
oo if 0 <z <oo.
Sums and multiplications of real numbers are defined in the usual way.

If A, € X, ne Ny, and Ay, N A, = ¢ if k # n, the sequence (A,)nen, is
called a disjoint denumerable collection. If (X, M) is a measurable space, the
collection is called a denumerable measurable partition of A if A =UX A,
and A, € M for every n € N,. Some authors call a denumerable collection
of sets a countable collection of sets.



Definition 1.1.2. (a) Let A be an algebra of subsets of X. A function
p: A— [0, 00] is called a content if

(i) u(o) =0
(i) p(AUB) = u(A) + u(B) if A,B € Aand ANB = 6.

(b) If (X, M) is a measurable space a content p defined on the o-algebra M
is called a positive measure if it has the following property:

For any disjoint denumerable collection (An)neN+ of members of M

M(UZO:lAn) = EZO=1N<ATL) .

If (X, M) is a measurable space and the function pu : M — [0,00] is a
positive measure, (X, M, u) is called a positive measure space. The quantity
i(A) is called the p-measure of A or simply the measure of A if there is
no ambiguity. Here (X, M, p) is called a probability space if u(X) =1, a
finite positive measure space if u(X) < oo, and a o-finite positive measure
space if X is a denumerable union of measurable sets with finite p-measure.
The measure p is called a probability measure, finite measure, and o-finite
measure, if (X, M, ) is a probability space, a finite positive measure space,
and a o-finite positive measure space, respectively. A probability space is
often denoted by (2, F, P). A member A of F is called an event.

As soon as we have a positive measure space (X, M, u), it turns out to
be a fairly simple task to define a so called p-integral

/X f(@)du(z)

as will be seen in Chapter 2.
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The class of all finite unions of subintervals of R is an algebra which is
denoted by Ry. If A € Ry we denote by [(A) the Riemann integral

/_ Z Xa(z)dz

and it follows from courses in calculus that the function [: Ry — [0, 00] is a
content. The algebra Ry is called the Riemann algebra and [ the Riemann
content. If I is a subinterval of R, [(I) is called the length of I. Below we
follow the convention that the empty set is an interval.

If A e P(X), cx(A) equals the number of elements in A, when A is a
finite set, and cx(A) = oo otherwise. Clearly, cx is a positive measure. The
measure cy is called the counting measure on X.

Given a € X, the probability measure 0, defined by the equation 6,(A) =
Xa(a), if A € P(X), is called the Dirac measure at the point a. Sometimes
we write d, = dx, to emphasize the set X.

If 4 and v are positive measures defined on the same o-algebra M, the
sum 4 + v is a positive measure on M. More generally, ap + S is a positive
measure for all real a,, § > 0. Furthermore, if £ € M, the function \(A) =
p(ANE), A € M, is a positive measure. Below this measure A will be
denoted by ¥ and we say that u is concentrated on E. If E € M, the class
Mg = {Ae M; AC E} is a g-algebra of subsets of F and the function
0(A) = pu(A), A € Mg, is a positive measure. Below this measure ¢ will be
denoted by 1 and is called the restriction of p to M.

Let Iy, ..., I,, be subintervals of the real line. The set

L x .. xI,={(x1,...,x,) ER"; zp € I}, k=1,....,n}

is called an n-cell in R™; its volume vol(I; X ... X I,) is, by definition, equal
to
vol(Iy X ... x I,) = TI}_, I(I).

If I, ..., I, are open subintervals of the real line, the n-cell I; x ... X [, is
called an open n-cell. The o-algebra generated by all open n-cells in R” is
denoted by R,. In particular, Ry = R. A basic theorem in measure theory
states that there exists a unique positive measure v,, defined on R,, such that
the measure of any n-cell is equal to its volume. The measure v, is called the
volume measure on R,, or the volume measure on R". Clearly, v,, is o-finite.
The measure v, is called the area measure on R? and v; the linear measure
on R.
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Theorem 1.1.1. The volume measure on R" exists.

Theorem 1.1.1 will be proved in Section 1.5 in the special case n = 1. The
general case then follows from the existence of product measures in Section
3.4. An alternative proof of Theorem 1.1.1 will be given in Section 3.2. As
soon as the existence of volume measure is established a variety of interesting
measures can be introduced.

Next we prove some results of general interest for positive measures.

Theorem 1.1.2. Let A be an algebra of subsets of X and pu a content

defined on A. Then,
(a) p is finitely additive, that is

p(A U UAL) = p(A) + .o+ u(Ay)

if Aq,..., A, are pairwise disjoint members of A.
(b) if A,B € A,

n(A) = p(A\ B) + p(AN B).
Moreover, if (AN B) < oo, then
n(AU B) = u(A) + u(B) — n(AN B)

(c) A C B implies n(A) < u(B) if A, B € A.
(d) p finitely sub-additive, that is

p(AU . UA,) < p(Ar) + .o+ p(Ay)

if Aq,..., A, are members of A.

If (X, M, ) is a positive measure space
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(e) w(An) = (A) if A=Upen,An, A, € M, and
A C A CA3C L.

(f) w(An) — p(A) if A=Npen, An, Ap € M,
A1 DA D A3 D

and pu(A;) < oo.
(8) 11 is sub-additive, that is for any denumerable collection (A),n, of

members of M,
M(UiilAn) < E;:o:l,u(An).

PROOF (a) If A, ..., A, are pairwise disjoint members of A,
(U= Ak) = p(Ar U (Up_5A))

= (A + (U, Ar)

and, by induction, we conclude that y is finitely additive.

(b) Recall that
A\ B=AnNB".

Now A= (A\ B) U(AN B) and we get
u(A) = w(A\ B) + u(AN B).
Moreover, since AU B = (A\ B) U B,
(AU B) = u(A\ B) + u(B)
and, if u(AN B) < oo, we have
(AU B) = u(A) + u(B) — (AN B).

(c) Part (b) yields u(B) = u(B\ A) + u(AN B) = u(B\ A) + u(A), where
the last member does not fall below p(A).
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(d) If (A;)",is a sequence of members of A define the so called disjunction
(By)j_, of the sequence (A;)?; as

Bl = Al and Bk = Ak \ Ufz_llAi for 2 S k S n.

Then By C Ay, Ur_jA; =UF B, k=1,..,n,and B;NB; = ¢ if i # j. Hence,
by Parts (a) and (c),

/L(UzzlAk) = EZ:1N<Bk) < ZZ:l/'L(Ak>'

(e) Set By = Ay and B, = A, \ A,_1 for n > 2. Then A, = By U ....U B,,
B,NB;=¢ifi# jand A= U2, By. Hence

p(An) = E5_1p(Br)

and
p(A) = X2 u(By).

Now e) follows, by the definition of the sum of an infinite series.

(f) Put C,, = A1\ A, n>1. Then C; CCy, C C5 C ...,
A\NA=U2,C,
and pu(A) < p(Ay) < p(Ar) < oo. Thus
H(C) = u(Ar) — p(A,)
and Part (e) shows that

(A1) = p(A) = (AL \ A) = lim p(Cy) = p(Ar) — lim p(Ay).

n—oo n—oo

This proves (f).

(g) The result follows from Parts d) and e).
This completes the proof of Theorem 1.1.2.
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The hypothesis ”1(A;) < oo ” in Theorem 1.1.2 ( f) is not superfluous. If
N, is the counting measure on N and A,, = {n,n +1,...} , then en, (4,) =
oo for all n but A1 O A; O ... and en, (N9 A,) = 0 since N2, A, = ¢.

If A, B C X, the symmetric difference AAB is defined by the equation

AAB =g (A\ B)U (B\ A).

Note that
XAAB :| XA — XB | :

Moreover, we have

AAB = A°AB°

and
(UZ1A)A(UZ B;) € U (4AB;).

Example 1.1.1. Let x4 be a finite positive measure on R. We claim that
to each set ¥ € R and ¢ > 0, there exists a set A, which is finite union of
intervals (that is, A belongs to the Riemann algebra Ry), such that

p(EAA) < e.

To see this let S be the class of all sets £ € R for which the conclusion
is true. Clearly ¢ € S and, moreover, Rg C S. If A € Ry, A° € Ry and
therefore £° € Sif E € §S. Now suppose F; € §,i € N . Then to each ¢ > 0
and 7 there is a set A; € Ry such that u(E;AA;) < 2 . If we set

then
PEAUZA)) < B2 (B AA;) <e.

Here
EA(UZA) ={EN (NZA47) F U{E N (U2, 4:)}

and Theorem 1.1.2 (f) gives that
pn({EN (M2 A7)} U{(E N (UZ,40)}) <e
if n is large enough (hint: N;e;(D; U F) = (NierD;) U F). But then

pEAUL, A) = p({E 0 (N2 A7)} U{E N (UL A)}) < e
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if n is large enough we conclude that the set £ € S. Thus § is a g-algebra
and since Rg C S C R it follows that S = R.

Exercises

1. Prove that the sets N x N = {(7,j); i,7 € N} and Q are denumerable.

2. Suppose A is an algebra of subsets of X and y and v two contents on A
such that p < v and p(X) = v(X) < co. Prove that u = v.

3. Suppose A is an algebra of subsets of X and p a content on A with
p(X) < oo. Show that

(AU BUC) = p(A) + u(B) + u(C)

—uw(ANB) —u(ANC) —u(BNO)+u(AnBNC).

4. (a) A collection C of subsets of X is an algebra with the following property:
If A, €eC,neNyand Ay NA, =0¢if k#n, then UX A, €C.
Prove that C is a o-algebra.

(b) A collection C of subsets of X is an algebra with the following property:
IftE,eCand E, C E,y1,n €Ny, then UPE, € C.
Prove that C is a o-algebra.

5. Let (X, M) be a measurable space and (u,),-, a sequence of positive
measures on M such that p; < py < pg < ... . Prove that the set function

p(A) = lim g, (A), AeM

k—o00

is a positive measure.
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6. Let (X, M, 1) be a positive measure space. Show that

(M= Ar) < /TRy p(Ar)

for all Ay,..., A, € M.

7. Let (X, M, ) be a o-finite positive measure space with (X) = co. Show
that for any r € [0, co| there is some A € M with r < u(A) < oco.

8. Show that the symmetric difference of sets is associative:

AA(BAC) = (AAB)AC.

9. (X, M, ) is a finite positive measure space. Prove that

| 1(A) = u(B) [< p(AAB).

10. Let £ = 2N. Prove that
cn(EAA) = o0

if A is a finite union of intervals.

11. Suppose (X, P(X), 1) is a finite positive measure space such that u({z}) >
0 for every x € X. Set

d(A, B) = u(AAB), A, B € P(X).

Prove that
d(A,B) =0 < A= B,

d(A, B) = d(B, A)
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and
d(A,B) < d(A,C)+d(C, B).

12. Let (X, M, i) be a finite positive measure space. Prove that
(Ui Ai) > B pu(A) — Sicicj<npt(Ai N Aj)

for all Ay, ..., A, € M and integers n > 2.

13. Let (X, M, 1) be a probability space and suppose the sets A4, ..., 4,, € M
satisfy the inequality Y pu(A;) > n — 1. Show that p(NfA;) > 0.

1.2. Measure Determining Classes

Suppose p and v are probability measures defined on the same g-algebra M,
which is generated by a class €. If 1 and v agree on &, is it then true that
and v agree on M? The answer is in general no. To show this, let

X =1{1,2,3,4}
and

&={{1,2},{1,3}}.
Then o(€) = P(X). If = jcx and

1 1 1 1
=0 -0 -0 -0
v 6 X,1+3 X,2+3 X,3+6 X4

then = v on £ and pu # v.

In this section we will prove a basic result on measure determining classes
for o-finite measures. In this context we will introduce so called 7-systems
and o-additive classes, which will also be of great value later in connection
with the construction of so called product measures in Chapter 3.
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Definition 1.2.1. A class G of subsets of X is a m-system if ANB € G
forall A,B € G.

The class of all open n-cells in R" is a 7-system.

Definition 1.2.2. A class D of subsets of X is called a o-additive class if
the following properties hold:
(a) X € D.
(b)If A,B€Dand AC B, then B\ A€ D.
(c) If (An)nen, is a disjoint denumerable collection of members of the
class D, then U, A, € D.

Theorem 1.2.1. If a o-additive class M 1is a w-system, then M is a o-
algebra.

PROOF. If A € M, then A° = X\ A € M since X € M and M is a o-
additive class. Moreover, if (A, ),en, is a denumerable collection of members
of M,

AU UA, =ATN.NA) e M

for each n, since M is a o-additive class and a m-system. Let (B,,)°; be the
disjunction of (A,)22,. Then (B,)nen, is a disjoint denumerable collection of
members of M and Definition 1.2.2(c) implies that U, A, = UX | B,, € M.

Theorem 1.2.2. Let G be a w-system and D a o-additive class such that
G C D. Then o(G) C D.

PROOF. Let M be the intersection of all o-additive classes containing .
The class M is a o-additive class and G C M C D. In view of Theorem 1.2.1
M is a o-algebra, if M is a m-system and in that case 0(G) C M. Thus the
theorem follows if we show that M is a 7-system.

Given C' C X, denote by D¢ be the class of all D C X such that DNC €
M.
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CLAIM 1. If C € M, then D¢ is a o-additive class.

PROOF OF CLAIM 1. First X € D¢ since X NC = C' € M. Moreover, if
A, Be€Dsand AC B, then ANC,BNC € M and

(B\A)NC =(BNC)\ (ANC) € M.

Accordingly from this, B\ A € D¢. Finally, if (A,)nen, is a disjoint denumer-
able collection of members of D¢, then (A4, NC),en, is disjoint denumerable
collection of members of M and

(Unen, A,) NC = Upen, (A4, NC) € M.

Thus Upen, Ay € De.

CLAIM 2. If A € G, then M C D,.

PROOF OF CLAIM 2. If Be€ G, ANB € GC M. Thus B € Dy. We
have proved that G C D4 and remembering that M is the intersection of all
o-additive classes containing G Claim 2 follows since D, is a o-additive class.

To complete the proof of Theorem 1.2.2, observe that B € D, if and only
if A€ Dg. By Claim 2, if A € G and B € M, then B € D, that is A € Dp.
Thus G C Dp if B € M. Now the definition of M implies that M C Dp if
B € M. The proof is almost finished. In fact, if A,B € M then A € Dp
that is AN B € M. Theorem 1.2.2 now follows from Theorem 1.2.1.

Theorem 1.2.3. Let pu and v be positive measures on M = o(G), where
G is a w-system, and suppose j(A) = v(A) for every A € G.

(a) If p and v are probability measures, then p = v.

(b) Suppose there ezist E, € G, n € Ny, such that X = U° | E,,
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w(E,) =v(E,) < oo, alln € N,.
Then p = v.

PROOF. (a) Let
D={AeM; u(A)= v(A)}.

It is immediate that D is a o-additive class and Theorem 1.2.2 implies that
M =0(G) C Dsince G C D and G is a m-system.

(b) If u(E,) =v(E,) =0 for all all n € N, then

p(X) = lim p(E,) =0

n—oo

and, in a similar way, v(X) = 0. Thus u = v. If u(E,) = v(E,) > 0, set

w,(A) = #(En>u(A NE,) and v,(A) = v(ANE,)

for each A € M. By Part (a) p,, = v,, and we get
w(ANE,) =v(ANE,)

for each A € M. Theorem 1.1.2(e) now proves that u = v.

Theorem 1.2.3 implies that there is at most one positive measure defined
on R, such that the measure of any open n-cell in R" equals its volume.

Next suppose f: X — Y andlet A C X and B C Y. The image of A
and the inverse image of B are

f(A) ={y; y= f(x) for some = € A}

and

fH(B) ={=; f(z) € B}
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respectively. Note that
) =X
and
Y\ B) =X\ f71(B).
Moreover, if (A;);e;r is a collection of subsets of X and (B;);c; is a collection
of subsets of Y’

fUierd4;) = Uier f(A))
and
F ' (UierBi) = Uier fH(By).
Given a class £ of subsets of Y, set
fUE) = {7 B); Beg},

If (Y, N) is a measurable space, it follows that the class f~1 () is a o-algebra
in X. If (X, M) is a measurable space

{BeP(Y); f'(B)e M}
is a o-algebra in Y. Thus, given a class £ of subsets of Y,

o(f7H(E) = [ (a()).

Definition 1.2.3. Let (X, M) and (Y, ) be measurable spaces. The func-
tion f: X — Y is said to be (M, N)-measurable if f~*(N) C M. If we say
that f: (X, M) — (Y,N) is measurable this means that f : X — Y is an
(M, N)-measurable function.

Theorem 1.2.4. Let (X, M) and (Y,N) be measurable spaces and suppose

E generates N'. The function [ : X —Y is (M, N)-measurable if
M.

PROOF. The assumptions yield

o(f (&) M.



22

Since
we are done.

Corollary 1.2.1. A function f:X — R is (M, R)-measurable if and only
if the set f~1(Ja,00]) € M for all o € R.

If f: X - Y is (M, N)-measurable and p is a positive measure on M,
the equation

v(B) = u(f(B)), BEN

defines a positive measure v on N. We will write v = puf~!, v = f(u) or
v = jiy. The measure v is called the image measure of ;1 under f and f is
said to transport p to v. Two (M, N')-measurable functions f : X — Y and
g: X — Y are said to be u-equimeasurable if f(u) = g(u).

As an example, let ¢ € R™ and define f(z) = x+aif x € R". If B C R",

f(B)={z; v +a€ B}y=B—a.

Thus f~!(B) is an open n-cell if B is, and Theorem 1.2.4 proves that f is
(R, Ry)-measurable. Now, granted the existence of volume measure v,,, for
every B € R,, define

p(B) = f(vn)(B) = va(B — a).

Then u(B) = v,(B) if B is an open n-cell and Theorem 1.2.3 implies that
i = v,. We have thus proved the following

Theorem 1.2.5. For any A € R,, and © € R"
A+zeR,

and
(A + ) = v, (A).



23

Suppose (2, F, P) is a probability space. A measurable function ¢ defined
on {2 is called a random variable and the image measure P is called the
probability law of £. We sometimes write

Here are two simple examples.

If the range of a random variable £ consists of n points S = {s1,..., s, }
(n>1) and Py = %05, ¢ is said to have a uniform distribution in S. Note
that .

P§ = 52221581@'
Suppose A > 0 is a constant. If a random variable ¢ has its range in N

and
n

A
P = 23‘;05@45”

then ¢ is said to have a Poisson distribution with parameter .

Exercises

1. Let f: X =Y, AC X, and B CY. Show that

f(fH(B)) C Band f'(f(A) 2 A.

2. Let (X, M) be a measurable space and suppose A C X. Show that the
function x4 is (M, R)-measurable if and only if A € M.

3. Suppose (X, M) is a measurable space and f, : X — R, n € N, a
sequence of (M, R)-measurable functions such that

lim f,(z) exists and = f(z) € R

n—oo

for each = € X. Prove that f is (M, R)-measurable.
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4. Suppose f : (X,M) — (Y,N) and g : (Y,N) — (Z,S) are measurable.
Prove that g o f is (M, S)-measurable.

5. Granted the existence of volume measure v,,, show that v, (rA4) = r"v,(A)
ifr>0and AeR,.

6. Let u be the counting measure on Z? and f(z,y) = z, (x,y) € Z*. The
positive measure i is o-finite. Prove that the image measure f(u) is not a
o-finite positive measure.

7. Let u,v : R — [0, 00| be two positive measures such that u(1) = v(I) < oo
for each open subinterval of R. Prove that ;= v.

8. Let f: R™ — R* be continuous. Prove that f is (R,, Ry)-measurable.

9. Suppose ¢ has a Poisson distribution with parameter A. Show that P, [2N] =
e~ cosh \.

9. Find a o-additive class which is not a o-algebra.

1.3. Lebesgue Measure

Once the problem about the existence of volume measure is solved the exis-
tence of the so called Lebesgue measure is simple to establish as will be seen
in this section. We start with some concepts of general interest.

If (X, M,p) is a positive measure space, the zero set Z, of p is, by
definition, the set at all A € M such that pu(A) = 0. An element of Z, is
called a null set or p-null set. If

(Ac Z,and BCA)=BeM
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the measure space (X, M, i) is said to be complete. In this case the measure
 is also said to be complete. The positive measure space (X, {¢, X'}, u),
where X = {0,1} and o = 0, is not complete since X € Z, and {0} ¢ {¢, X }.

Theorem 1.3.1 If (E,):, is a denumerable collection of members of Z,
then Uy B, € Z,,.

PROOF We have
0 < pu(Upl En) < E02 pu(Ey) =0

which proves the result.

Granted the existence of linear measure v; it follows from Theorem 1.3.1
that Q € Z,, since Q is countable and {a} € Z,, for each real number a.

Suppose (X, M, ) is an arbitrary positive measure space. It turns out
that p is the restriction to M of a complete measure. To see this suppose
M~ is the class of all £ C X is such that there exist sets A, B € M such that
ACFECBand B\ Ae Z,. It is obvious that X € M~ since M C M™. If
E € M~, choose A,B € M such that A C E C B and B\ A € Z,. Then
B¢ C E° C A®and A°\ B° = B\ A € Z, and we conclude that £° € M~ If
(E;)$2, is a denumerable collection of members of M~ for each i there exist
sets A;, B; € M such that A; C E C B; and B; \ A; € Z,. But then

UZ1Ai C UZ B © UZ, B
where U, A;, U2, B; € M. Moreover, (U2, B;) \ (U2, A4;) € Z, since
(U1 Bi) \ (U2, Ai) © U (B \ 4y).

Thus U2, E; € M~ and M~ is a o-algebra.
If E € M, suppose A;, B; € M are such that A; C F'C B; and B; \ A4; €
Z, for i = 1,2. Then for each i, (B; N Bs) \ 4; € Z, and

p(By N Ba) = p((B1 N Ba) \ Ai) + pu(Ai) = p(As).

Thus the real numbers p(A;) and p(As) are the same and we define u(FE) to
be equal to this common number. Note also that u(B;) = (E). It is plain
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that a(¢) = 0. If (E;)$°, is a disjoint denumerable collection of members
of M, for each i there exist sets A;, B; € M such that A; C F; C B; and
B;\ A; € Z,. From the above it follows that

ﬁ(U?;Ei) = U(U?;Ai) = E??:m(Ai) = 220:1!2(&)-

We have proved that p is a positive measure on M~. If £ € Z; the
definition of i shows that any set A C E belongs to the o-algebra M~. It
follows that the measure i is complete and its restriction to M equals p.

The measure [ is called the completion of  and M~ is called the com-
pletion of M with respect to .

Definition 1.3.1 The completion of volume measure v, on R" is called
Lebesgue measure on R" and is denoted by m,,. The completion of R, with
respect to v, is called the Lebesgue o-algebra in R" and is denoted by R, .
A member of the class R, is called a Lebesgue measurable set in R" or a
Lebesgue set in R™. A function f : R” — R is said to be Lebesgue measurable
if it is (R,,, R)-measurable. Below, m; is written m if this notation will not
lead to misunderstanding. Furthermore, R; is written R~.

Theorem 1.3.2. Suppose ' € R, and x €R". Then E +x € R, and
mu(E + ) = m,(F).

PROOF. Choose A, B € R,, such that A C £ C Band B\ A € Z, . Then,
by Theorem 1.2.5, A+ x, B+ x € Ry, v,(A+ x) = v,(A) = m,(F), and
(B+z)\(A+2)=(B\A)+z€ 2Z,,. Since A+x C E+ a2 C B+ z the
theorem is proved.

The Lebesgue o-algebra in R™ is very large and contains each set of
interest in analysis and probability. In fact, in most cases, the o-algebra R, is
sufficiently large but there are some exceptions. For example, if f : R* — R"
is continuous and A € R,,, the image set f(A) need not belong to the class
R, (see e.g. the Dudley book [D]). To prove the existence of a subset of the
real line, which is not Lebesgue measurable we will use the so called Axiom
of Choice.
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Axiom of Choice. If (A;);c; is a non-empty collection of non-empty sets,
there exists a function f : I — U;crA; such that f(i) € A; for every i € I.

Let X and Y be sets. The set of all ordered pairs (z,y), where x € X
and y € Y is denoted by X x Y. An arbitrary subset R of X x Y is called a

relation. If (z,y) € R, we write x ~ y. A relation is said to be an equivalence
relation on X if X =Y and

(i) x ~ z (reflexivity)
(ii) x ~ y = y ~ z (symmetry)
(iii) (z ~y and y ~ z) = x ~ z (transitivity)

The equivalence class R(x) =4 {y; y ~ =} . The definition of the equiv-
alence relation ~ implies the following:

(a) x € R(x)
(b) R(z) N R(y) # ¢ = R(z) = R(y)
(C) UzEXR(x) - .

An equivalence relation leads to a partition of X into a disjoint collection
of subsets of X.

Let X = [—%, %} and define an equivalence relation for numbers z, y in X
by stating that x ~ y if x — y is a rational number. By the Axiom of Choice
it is possible to pick exactly one element from each equivalence class. Thus
there exists a subset NL of X which contains exactly one element from each
equivalence class.

If we assume that NL € R~ we get a contradiction as follows. Let (r;)$2,

be an enumeration of the rational numbers in [—1,1]. Then
X CUZ(ri+ NL)

and it follows from Theorem 1.3.1 that r; + NL ¢ Z,, for some i. Thus, by
Theorem 1.3.2, NL ¢ Z,,,.
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Now assume (r; + NL) N (r; + NL) # ¢. Then there exist a’,a” € NL
such that 7, +a' =r; +a" or @’ —a" = r; — r;. Hence o’ ~ a” and it follows
that o’ and a” belong to the same equivalence class. But then o’ = a”. Thus
r; = r; and we conclude that (r; + NL);en, is a disjoint enumeration of
Lebesgue sets. Now, since

3 3
U2, (r; + NL)C |—=, =
=+ ND) € |-5.3]
it follows that
3>m(U (r; + NL)) = X2 m(NL).

But then NL € Z,,, which is a contradiction. Thus NL ¢ R™.

In the early 1970’ Solovay [S] proved that it is consistent with the usual
axioms of Set Theory, excluding the Axiom of Choice, that every subset of
R is Lebesgue measurable.

From the above we conclude that the Axiom of Choice implies the exis-
tence of a subset of the set of real numbers which does not belong to the class
R. Interestingly enough, such an example can be given without any use of
the Axiom of Choice and follows naturally from the theory of analytic sets.
The interested reader may consult the Dudley book [D] .

Exercises

1. (X, M, u) is a positive measure space. Prove or disprove: If A C E C B
and p(A) = p(B) then E belongs to the domain of the completion fi.

2. Prove or disprove: If A and B are not Lebesgue measurable subsets of
R, then AU B is not Lebesgue measurable.

3. Let (X, M, ) be a complete positive measure space and suppose A, B €
M, where B\ A is a p-null set. Prove that £ € M if A C E C B (stated
otherwise M~ = M).
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4. Suppose E C R and E ¢ R~. Show there is an € > 0 such that
m(B\ A) > ¢

for all A, B € R suchthat AC F C B.

5. Suppose (X, M, ;1) is a positive measure space and (Y, N') a measurable
space. Furthermore, suppose f : X — Y is (M, N)-measurable and let
v = puf~t that is v(B) = u(f~!(B)), B € N. Show that f is (M~ ,N")-
measurable, where M~ denotes the completion of M with respect to ;1 and
N~ the completion of NV with respect to v.

1.4. Carathéodory’s Theorem

In these notes we exhibit two famous approaches to Lebesgue measure. One
is based on the Carathéodory Theorem, which we present in this section, and
the other one, due to F. Riesz, is a representation theorem of positive linear
functionals on spaces of continuous functions in terms of positive measures.
The latter approach, is presented in Chapter 3. Both methods depend on
topological concepts such as compactness.

Definition 1.4.1. A function 6 : P(X) — [0,00] is said to be an outer
measure if the following properties are satisfied:

(i) 6(¢) = 0.
(i) 6(A) < 0(B) if A C B.
(iii) for any denumerable collection (A,,)2 ; of subsets of X

O(U32, A,) < T52,0(A,).
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Since
E=(ENA)U(ENAY
an outer measure 6 satisfies the inequality
O(E) <O(ENA)+0(EnNA°.

If 0 is an outer measure on X we define M(f) as the set of all A C X
such that
G(E)=0ENA)+0(ENA°) foral ECX

or, what amounts to the same thing,
O(F)>0(ENA)+60(EnNA° for all E C X.

The next theorem is one of the most important in measure theory.

Theorem 1.4.1. (Carathéodory’s Theorem) Suppose 0 is an outer
measure. The class M(0) is a o-algebra and the restriction of 0 to M(0) is
a complete measure.

PROOF. Clearly, ¢ € M(f) and A° € M(0) if A € M(#). Moreover, if
A,Be M(0) and E C X
O(E) =0(ENA)+6(EnN A

=0(ENANB)+60(ENANB°
+0(ENA°NB)+0(ENA°N B°).

But
AUB=(ANB)U(ANB°)U(A°NB)
and
A°NB°=(AUB)*°
and we get

O(F)>0(EN(AUB))+0(EN(AUB)°).

It follows that AU B € M(f) and we have proved that the class M(0) is an
algebra. Now if A, B € M(#) are disjoint

B(AUB) = 0((AUB) N A) +0((AUB) N A%) = 0(A) + 0(B)
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and therefore the restriction of 6 to M(0) is a content.
Next we prove that M(0) is a o-algebra. Let (A;)°, be a disjoint denu-
merable collection of members of M(f) and set for each n € N

Bn = UlgiSnAi and B = UfilAz
(here By = ¢). Then for any F C X
0(ENB,) =0ENB,NA,)+0(ENB,NA)

=0(ENA,)+0(ENB,_1)

and, by induction,
O(ENB,) =3 ,0(ENA;).

But then
6(FE)=60(ENB,) +6(ENB)

> ¥ 0(ENA)+0(ENBY
and letting n — o0,
O(F) > X2 0(ENA;)+0(EnN B
> 0(U, (BN A) + 0(E N BY)
=0(ENB)+0(ENB°) >0(FE).

All the inequalities in the last calculation must be equalities and we conclude
that B € M(6) and, choosing F = B, results in

6(B) = £2,6(A,).

Thus M(0) is a o-algebra and the restriction of 6 to M(f) is a positive
measure.

Finally we prove that the the restriction of 6 to M(f) is a complete
measure. Suppose B C A € M(f) and 0(A) =0. If £ C X,

0(E) < 0(EN B) + 0(E N B%) < 0(E N B%) < (E)

and so B € M(). The theorem is proved.
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Exercises

1. Suppose 0; : P(X) — [0,00], ¢ = 1,2, are outer measures. Prove that
0 = max (61, 0,) is an outer measure.

2. Suppose a,b € R and a # b. Set § = max(d,, ;). Prove that

{a}, {b} ¢ M(6).

1.5. Existence of Linear Measure

The purpose of this section is to show the existence of linear measure on R
using the Carathéodory Theorem and a minimum of topology.

First let us recall the definition of infimum and supremum of a non-
empty subset of the extended real line. Suppose A is a non-empty subset
of [—00,00] = RU{—00,00}. We define —oco < z and z < oo for all = €
[—00,00]. An element b € [—o0, 0] is called a majorant of A if x < b for all
x € A and a minorant if x > b for all z € A. The Supremum Axiom states
that A possesses a least majorant, which is denoted by sup A. From this
follows that if A is non-empty, then A possesses a greatest minorant, which
is denoted by inf A. (Actually, the Supremum Axiom is a theorem in courses
where time is spent on the definition of real numbers.)

Theorem 1.5.1. (The Heine-Borel Theorem; weak form) Let [a,b] be
a closed bounded interval and (U;)icr a collection of open sets such that

UierU; 2 [a, b] .

Then
Uie Ui 2 [a, b]

for some finite subset J of I.
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PROOF. Let A be the set of all « € [a, b] such that
UiesU; 2 [a, ]

for some finite subset J of I. Clearly, a € A since a € U; for some 7. Let
¢ = sup A. There exists an ig such that ¢ € U,,. Let ¢ € ag, bo[ C U,,, where

109
ag < bg. Furthermore, by the very definition of least upper bound, there
exists a finite set J such that

UiesUi 2 [a, (ap +¢)/2] .

Hence
Uiesutio} Uk 2 la, (¢ +bo)/2]

and it follows that ¢ € A and ¢ = b. The lemma is proved.

A subset K of R is called compact if for every family of open subsets U;,
1 € I, with U;e;U; O K we have U;c;U; O K for some finite subset J of I.
The Heine-Borel Theorem shows that a closed bounded interval is compact.
If z,yeRand E, F CR, let

d(z,y) =l z -y |
be the distance between x and vy, let

d(z, E) = inf d(z,u)

uekl

be the distance from x to E, and let

d(E,F)= inf d(u,v)

ueEveF

be the distance between E and F' (here the infimum of the emty set equals
00). Note that for any u € E,

d(z,u) < d(z,y) + d(y,u)

and, hence
d(z, E) < d(z,y) + d(y,u)
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and
d(z,E) <d(z,y) +d(y, E).

By interchanging the roles of x and y and assuming that £ # ¢, we get

Note that if /' C R is closed and x ¢ F| then d(z, F') > 0.
An outer measure 6 : P(R) — [0, 00] is called a metric outer measure if

O(AU B) = 0(A) + 6(B)

for all A, B € P(R) such that d(A, B) > 0.

Theorem 1.5.2. If 6 : P(R)—[0,00] is a metric outer measure, then

R C M(0).

PROOF. Let F' € P(R) be closed. It is enough to show that F' € M(0). To
this end we choose F C X with §(E) < oo and prove that
O(E) > 0(ENF)+0(ENF).

Let n > 1 be an integer and define
1
A, = {:EEEHFC; d(z,F) > —}.
n

Note that A,, C A, 1 and
ENF°=Uy A,
Moreover, since f is a metric outer measure
O(E)>0(ENF)UA, =0(ENF)+6(A,)

and, hence, proving
O(ENF°) = lim 0(A,)

n—oo

we are done.
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Let B, = A,+1 NAS. Tt is readily seen that

1
d(B A)y> ——
( n+17 7’1) — n(n+ 1)
since if © € B, and
1
d < —
(7,9) n(n+1)
then 1 1 1
dly, F) <d d(z, F = -,
Now

0(Azk41) > 0(Bay, U Agg—1) = 0(Bay,) + 0(Azp—1)
> ... > XF 0(By)

and in a similar way

0(Asr) > S5, 0(Byi1).
But §(A,,) < 0(F) < oo and we conclude that

We now use that
EnNFc=A,U(Ux, B;)

to obtain
O(ENF°) <O(A,) +X2,.0(B;).

Now, since (E N F¢) > 0(A,),

O(E N F°) = lim 0(A,)

n—oo

and the theorem is proved.

PROOF OF THEOREM 1.1.1 IN ONE DIMENSION. Suppose § > 0. If
A C R, define

05(A) = inf £, 1(I,)

the infimum being taken over all open intervals [}, with {(I) < 0 such that

AC U2 L.
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Obviously, 05(¢) = 0 and 05(A) < 05(B) if A C B. Suppose (A4,)52, is a
denumerable collection of subsets of R and let € > 0. For each n there exist

open intervals Iy, k € N, such that [([},) < 0,

and
S l(Ikn) < 0s5(Ay) +e27".
Then
A —def UzozlAn - UZ?TL:IIIC’VZ
and
EEf’n:ll(Ikn) < XX 05(A,) + .
Thus

05(A) < X72,05(An) + €

and, since € > 0 is arbitrary,
05(A) < X2 ,0s5(A,).

It follows that 85 is an outer measure.
If I is an open interval it is simple to see that

To prove the reverse inequality, choose a closed bounded interval J C I. Now,
if

where each [}, is an open interval of I([}) < 0, it follows from the Heine-Borel
Theorem that

for some n. Hence
UJT) < B U(Ik) < 232,11
and it follows that
I(J) < 0s(I)

and, accordingly from this,
I(I) < 65(1).
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Thus, if [ is an open interval, then

Note that 05, > 05, if 0 < §; < 5. We define

0o(A) = lim 05(A) if A C R.

6—0

It obvious that  is an outer measure such that 6g(1) =I([), if I is an open
interval.

To complete the proof we show that 6, is a metric outer measure. To this
end let A, B C R and d(A, B) > 0. Suppose 0 < § < d(A, B) and

where each [, is an open interval with I(I;) < 6. Let

a={k IyNA# ¢}

and
=1k, I,NB# ¢}.
Then aN g = ¢,
A C Ukealk
and
B C Ugeply,

and it follows that
Y2 1(Ik) > Egeal(li) + Xrepl(1y)

> 05(A) + 05(B).

Thus
05(AU B) > 05(A) + 05(B)

and by letting 6 — 0 we have
0o(AU B) > 0o(A) + 0o(B)

and
0o(AU B) = 0y(A) + 0o(B).
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Finally by applying the Carathéodory Theorem and Theorem 1.5.2 it
follows that the restriction of 6y to R equals v;.

We end this section with some additional results of great interest.

Theorem 1.5.3. For any 0 > 0, 05 = 0y. Moreover, if ACR
Oo(A) = inf X322, U(1)
the infimum being taken over all open intervals I, k € N, such that

U, I D A

PROOF. It follows from the definition of 6y that 65 < 6,. To prove the
reverse inequality let A C R and choose open intervals Iy, k € N, such that
U I 2 A. Then

0o(A) < 0o(UpZy 1) < X32,00(1x)

= X2 U(1g)-

Hence
0o(A) <inf 372, 1(I)

the infimum being taken over all open intervals I, k € IN,, such that
U2 I O A. Thus 6y(A) < 0s5(A), which completes the proof of Theorem
1.5.3.

Theorem 1.5.4. If ACR,

0o(A) = Ulglfx 0o(U).

U open
Moreover, if A € M(0y),
0o(A) = sup 0o(K).
KCA

K closed bounded
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PROOF. If A C U, 6y(A) < 0o(U). Hence

B(A) < nf 6o(U).
U open
Next let € > 0 be fixed and choose open intervals I, & € N, , such that
U, Iy 2 A and
S50 0(01) < Oo(A) + =

(here observe that it may happen that 6y(A) = oo). Then the set U =g4.¢
Uz, I is open and

Thus
inf  0o(U) < 0(A)

UDA
U open

and we have proved that

0o(A) = [nf 0o (U).
U open

If K CA, 0y(K)<0y(A) and, accordingly from this,

sup Oo(K) < 0y(A).
KCA
K closed bounded

To prove the reverse inequality we first assume that A € M(6y) is bounded.
Let € > 0 be fixed and suppose J is a closed bounded interval containing A.
Then we know from the first part of Theorem 1.5.4 already proved that there
exists an open set U O J ~. A such that

00<U) < 00(J AN A) + .
But then
QO(J) §90(J\U)+00(U) <00(J\U)+90(J\A)+€

and it follows that
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Since J ~ U 1is a closed bounded set contained in A we conclude that

(A< sup  Oy(K).
KCA
K closed bounded
If Ae M(0y) let A, = AN[—n,n], n € N . Then given ¢ > 0 and n €
N, let K,, be a closed bounded subset of A,, such that 0y(K,,) > 09(A,) —e.
Clearly, there is no loss of generality to assume that K1 C Ky, C K3 C ...
and by letting n tend to plus infinity we get

Hence
00(14) = sup ‘90<K)
KCA
K compact

and Theorem 1.5.4 is completely proved.

Theorem 1.5.5. Lebesgue measure my equals the restriction of 6y to M(6,).

PROOF. Recall that linear measure v; equals the restriction of #, to R and
my = 1. First suppose ' € R~ and choose A, B € R suchthat AC EC B
and BNA € Z,,. But then §y(E~A) =0and £ = AU(ENA) € M(6y) since
the Carathéodory Theorem gives us a complete measure. Hence m;(FE) =
v1(A) = 0o(E).

Conversely suppose E € M (). We will prove that £ € R~ and m;(F) =
0o(E). First assume that E is bounded. Then for each positive integer n there
exist open U, D E and closed bounded K, C E such that

Oo(Un) < 0o(E)+27"
and
Oo(Ky) > 0g(E) —27".
The definitions yield A = U°K,,, B = N°U,, € R and

0o(E) = 0p(A) = 0p(B) = v1(A) = v1(B) = my(F).
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It follows that £ € R~ and 6y(E) = my(E).

In the general case set £, = E N [—n,n], n € N,. Then from the above
E, € R~ and 0y(E,) = mi(E,) for each n and Theorem 1.5.5 follows by
letting n go to infinity.

The Carathéodory Theorem can be used to show the existence of volume
measure on R™ but we do not go into this here since its existence follows by
several other means below. By passing, let us note that the Carathéodory
Theorem is very efficient to prove the existence of so called Haussdorff mea-
sures (see e.g. [F]), which are of great interest in Geometric Measure Theory.

Exercises

1. Prove that a subset K of R is compact if and only if K is closed and
bounded.

2. Suppose A € R~ and m(A) < co. Set f(x) = m(AN]—o0,z]), x € R.
Prove that f is continuous.

3. Suppose A € Z,, and B = {23,z € A} . Prove that B € Z,,.

4. Let A be the set of all real numbers x such that
1
|z — P <=
q q
for infinitely many pairs of positive integers p and g. Prove that A € Z,,,.

5. Let I4, ..., I,, be open subintervals of R such that
QN[0,1] C Up_, .

Prove that X7_,m(I}) > 1.
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6. If £ € R~ and m(F) > 0, for every a € ]0, 1] there is an interval I such
that m(EN 1) > am(Il). (Hint: m(E) = inf 32° ;m()), where the infimum
is taken over all intervals such that U;° I, D E.)

7. If E € R~ and m(E) > 0, then the set E—FE = {x — y; z,y € E} contains
an open non-empty interval centred at 0.(Hint: Take an interval I with
m(ENI) > 3m(I). Set e = im(I). If | z |< e, then (ENI)N(z+(ENI)) # ¢.)

8. Let p be the restriction of the positive measure 220:15&% to R. Prove that

Juf, w(U) > pu(A)
U open

it A={0}.

1.6. Positive Measures Induced by Increasing Right Continuous
Functions

Suppose F': R — [0, 00] is a right continuous increasing function such that

lim F(x) = 0.
Set
L = lim F(z).

We will prove that there exists a unique positive measure p : R — [0, L] such
that
ﬂ(]—OO,.’ED = F(iL‘), r e R.

This measure will often be denoted by i p.
The special case L = 0 is trivial so let us assume L > 0 and introduce

H(y)=inf{z e R;F(z) >y}, 0<y< L.

The definition implies that the function H increases.
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Suppose a is a fixed real number. We claim that
{y €]0,L[; H(y) <a}=]0,F(a)]N]0, L.

To prove this first suppose that y € |0, L[ and H(y) < a. Then to each
positive integer n, there is an z,, € [H(y), H(y) + 27"[ such that F(z,) > .
Then z,, — H(y) as n — oo and we obtain that F'(H(y)) > y since F is right
continuous. Thus, remembering that F' increases, F'(a) > y. On the other
hand, if 0 <y < L and 0 < y < F(a), then, by the very definition of H(y),
H(y) < a.

We now define

p = H(vijo,z[)

and get
pu(]—o0,z]) = F(z), € R.

The uniqueness follows at once from Theorem 1.2.3. Note that the measure
4 is a probability measure if L = 1.

Example 1.1.1. If
Oifx <0

F@*:{1ﬁxzo

then p is the Dirac measure at the point 0 restricted to R.

Example 1.1.2. If

r 2 dt
F(zx) = e 2
oo 2T

(a Riemann integral)

then pp is called the standard Gaussian measure on R.

Exercises

1. Suppose F': R — R is a right continuous increasing function. Prove that
there is a unique positive measure p on R such that

w(la,z]) = F(z) — F(a), if a,2 € R and a < z.
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2. Suppose F' : R — R is an increasing function. Prove that the set of
all discontinuity points of F' is at most denumerable. (Hint: Assume first
that F' is bounded and prove that the set of all points x € R such that
F(z+4) — F(z—) > ¢ is finite for every € > 0.)

3. Suppose p is a o-finite positive measure on R. Prove that the set of all
x € R such that p({z}) > 0 is at most denumerable.

4. Suppose p is a o-finite positive measure on R,,. Prove that there is an at
most denumerable set of hyperplanes of the type

z,=c (k=1,..,n, ceR)

with positive p-measure.

5. Construct an increasing function f : R — R such that the set of discon-
tinuity points of f equals Q.
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CHAPTER 2
INTEGRATION

Introduction

In this chapter Lebesgue integration in abstract positive measure spaces is
introduced. A series of famous theorems and lemmas will be proved.

2.1. Integration of Functions with Values in [0, o]

Recall that [0, 00] = [0,00[ U {oco}. A subinterval of [0, 0] is defined in the
natural way. We denote by R the o-algebra generated by all subintervals
of [0,00]. The class of all intervals of the type |o, 0], 0 < a < 00, (or of
the type [a, 00], 0 < o < 00) generates the o-algebra R~ and we get the
following

Theorem 2.1.1. Let (X, M) be a measurable space and suppose f : X —
[0, 0] .

(a) The function f is (M, Roo)-measurable if f~'(]a,00]) € M for
every 0 < a < 00.

(b) The function f is (M, Rg)-measurable if f~'([a,00]) € M for
every 0 < a < 0.

Note that theset {f > a} € M for all real aif f is (M, Ry, )-measurable.
If f,g : X — [0, 00] are (M, Ry )-measurable, then min(f, g), max(f, g),
and f + g are (M, R )-measurable, since, for each o € [0, oo],

min(f,g) > a< (f > aand g > «)

max(f,g) > a < (f > aor g > a)
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and

{f+g>at={J{f>a-qtn{g>q}).

q€Q
Given functions f, : X — [0,00], n = 1,2,..., f = sup,>; f, is defined
by the equation
flz) =sup{fu(z); n=1,2,...}.
Note that
ey 00]) = Upz £ (Jav, 00))
for every real & > 0 and, accordingly from this, the function sup,>; f, is

(M, Ry )-measurable if each f, is (M, R )-measurable. Moreover, f =
inf,,>1 f, is given by

flz) =inf {f.(z); n=1,2,...}.

Since
F7H(0,af) = Uiz, £1([0,a)

for every real v > 0 we conclude that the function f = inf,>; f,, is (M, R 00)-
measurable if each f, is (M, Ry )-measurable.
Below we write

fu 1 S

if f,,n=1,2,..., and f are functions from X into [0, co] such that f, < f,11
for each n and f,(z) — f(z) for each z € X as n — oc.

An (M, Ry )-measurable function ¢ : X — [0,00] is called a simple
measurable function if ¢(X) is a finite subset of [0, 0o . If it is neccessary to
be more precise, we say that ¢ is a simple M-measurable function.

Theorem 2.1.2. Let f: X — [0,00] be (M, R )-measurable. There exist
simple measurable functions ¢,, n € Ny, on X such that ¢, T f .

PROOF. Given n € N, set

1—1 1
2n 7 2n

Emzf‘l({ {), i€ N,
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and
(o0}

1 —1
i=1

It is obvious that p, < f and that p, < p, ;. Now set ¢, = min(n, p,)) and
we are done.

Let (X, M, 1) be a positive measure space and ¢ : X — [0, 00[ a simple
measurable function. If g, ..., a,, are the distinct values of the simple function
o, and if E; = ¢ '({a;}),i=1,...,n, then

90 - E?ZIQZXEZ
Furthermore, if A € M we define
v(A) = / pdp = S qip(B; N A) = S au™ (A).
A

Note that this formula still holds if (£;)} is a measurable partition of X and
¢ = «a; on F; for each i = 1,...,n. Clearly, v is a positive measure since each
term in the right side is a positive measure as a function of A. Note that

/ozgod,u-oz/gpduifOSa<oo
A A

and
/ pdp = ap(A)
A

if a € [0,00[ and ¢ is a simple measurable function such that ¢ = a on A.
If v is another simple measurable function and ¢ < 1),

/A pdp < /A Ydp.

To see this, let 3y,..., 3, be the distinct values of ¢ and F; = ¢_1({6j}),
J=1,...,p. Now, putting B;; = F; N I},

/ASOdM = v(Ui(AN By))

AﬁB,-j AﬂB,-]-
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<3, /A By = /A b
NB;j;

In a similar way one proves that

/A<90+¢)dMZ/A<PdM+/A¢dM-

From the above it follows that

/ OX adp = / Vi1 X pnadp
A A

= E?lai/ XE,ﬂAd:u = E?:ﬂiﬂ(Ei NnA)
A

/ ©Xadp = / edp.
A A

If f: X —[0,00] isan (M, R )-measurable function and A € M, we
define

and

/ fdp = sup {/ wdp; 0 < ¢ < f, ¢ simple measurable}
A A

= sup {/ wdp; 0 < < f, ¢ simple measurable and ¢ = 0 on AC} .
A

The left member in this equation is called the Lebesgue integral of f over A
with respect to the measure ;. Sometimes we also speek of the p-integral of f
over A. The two definitions of the p-integral of a simple measurable function
¢ : X — [0,00[ over A agree.

From now on in this section, an (M, R « )-measurable function f : X —
[0, 0] is simply called measurable.

The following properties are immediate consequences of the definitions.
The functions and sets occurring in the equations are assumed to be mea-
surable.

(a)If f,g>0and f < gon A, then [, fdu < [, gdp.
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b) [, fdp = [ xafdp.

(c) If f>0and « € [0,00], then [, afdu=a [, fdp.
d) [, fdp=0if f =0 and p(A) = co.

e) [, fdu=0if f =00 and p(A) = 0.

If f: X — [0,00] is measurable and 0 < a < 0o, then f > ax -1

ax{fZQ}and
/fdMZ/OéX{f>a}dN=a/ X{fza}dp.
X X X

This proves the so called Markov Inequality

1
_@)Sa/deﬂ

where we write u(f > «) instead of the more precise expression pu({f > a}).

a,00]) —

Example 2.1.1. Suppose f: X — [0, 00| is measurable and

/deﬂ< 00.

{f =00} =f"({o0}) € Z,.

To prove this we use the Markov Inequality and have

We claim that

u(f =o00) <p(f>a) < /fdu
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for each av € |0, 00[. Thus u(f = o0) = 0.

Example 2.1.2. Suppose f: X — [0, 00| is measurable and

| fin=o

{f >0} = £7(0,00)) € Z,.
To see this, note that

We claim that

_ o 1/ 1
F100,00) = Uz o)
Furthermore, for every fixed n € N, the Markov Inequality yields
1
u(f>—)§n/ fdu =0
n X

and we get {f > 0} € Z, since a countable union of null sets is a null set.

We now come to one of the most important results in the theory.

Theorem 2.1.3. (Monotone Convergence Theorem) Let f, : X —
[0,00] , n = 1,2,3,...., be a sequence of measurable functions and suppose
that f, T f,thatis0 < f1 < fo < ... and

fn(z) — f(x) as n — oo, for every x € X.

Then f is measurable and

/fnduﬁ/fduasnaoo.
X X

PROOF. The function f is measurable since f = sup,,>; fn-
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The inequalities f,, < fo1 < f yield [y fodp < [ fasidp < [y fdp and
we conclude that there exists an « € [0, 0o such that

/fnd,u—>aasn—>oo
X

and

aS/deu.

To prove the reverse inequality, let ¢ be any simple measurable function
such that 0 < ¢ < f, let 0 < # < 1 be a constant, and define, for fixed
n € Ny,

A, ={z € X; fu(x) > 0p()}.
If o, ..., are the distinct values of ¢,

A, =U_ ({z e X; falz) > 0o} N{p =ar})

and it follows that A,, is measurable. Clearly, A; C Ay C ... . Moreover, if
f(x) =0, then z € Ay and if f(z) > 0, then fp(z) < f(x) and x € A, for
all sufficiently large n. Thus U2, A, = X. Now

oz [ fuduz0 [ edy
An An

ozZH/cpdu
X

since the map A — [, ¢dp is a positive measure on M. By letting 6 T 1,

ozZ/sodM
X

o > /dep.

and we get

and, hence

The theorem follows.

Theorem 2.1.4. (a) Let f,g: X — [0,00] be measurable functions. Then

/X(f+g)du=/)(fdu+/xgdu-
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(b) (Beppo Levi’s Theorem) If f, : X — [0,00] , k = 1,2,... are mea-

surable,
T
X X

PROOF. (a) Let (p,,)>2, and (1,,)52, be sequences of simple and measurable
functions such that 0 < ¢, T f and 0 <, T g. We proved above that

/X(sonwn)dﬂ:/xsond#+/x¢ndu

and, by letting n — oo, Part (a) follows from the Monotone Convergence
Theorem.

(b) Part (a) and induction imply that

/ S fedp = S0 / fedu
X X

and the result follows from monotone convergence.

Theorem 2.1.5. Suppose w : X — [0,00] is a measurable function and

define
v(A) = / wdp, Ae M.
A

Then v is a positive measure and

/Afdu:/Afwdu, AeM

for every measurable function f: X — [0, 00].

PROOF. Clearly, v(¢) = 0. Suppose (E)2; is a disjoint denumerable col-
lection of members of M and set £ = U2, E. Then

WU Ee) = [

wdp = / Xpwdp = / XX, wdp
E X X
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where, by the Beppo Levi Theorem, the right member equals

22"—1/ X g, wdp = 22‘11/ wdp = X2 v (Ey).
X Ey

This proves that v is a positive measure.
Let A € M. To prove the last part in Theorem 2.1.5 we introduce the
class C of all measurable functions f : X — [0, co| such that

/A fdv = /A Fwdy.

The indicator function of a measurable set belongs to C and from this we
conclude that every simple measurable function belongs to C. Furthermore, if
fn€eC,neN,and f, T f, the Monotone Convergence Theorem proves that
f € C. Thus in view of Theorem 2.1.2 the class C contains every measurable
function f : X — [0, 00]. This completes the proof of Theorem 2.1.5.

The measure v in Theorem 2.1.5 is written
vV =wi

or
dv = wdp.

Let (a,)$%; be a sequence in [—o0, oo] . First put 8, = inf {ag, agi1, agre, ...}
and v = sup {3, By, B3, .-} = lim,,_, (,,. We call 7 the lower limit of ()2,
and write

~v = lim inf av,.

n—oo

Note that

v = lim o,
n—oo

if the limit exists. Now put 8, = sup {ag, i1, Qgro, ...} and v = inf {B4, B, B3, ..} =
lim,, o 3,,- We call v the upper limit of («,)?° , and write

v = lim sup av,.
Note that

v = lim o,
n—oo
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if the limit exists.
Given measurable functions f, : X — [0,00], n = 1,2, ..., the function
liminf, .. f, is measurable. In particular, if

fl@) = lim f,(2)

exists for every x € X, then f is measurable.

Theorem 2.1.6. (Fatou’s Lemma) If f,: X — [0,00], n=1,2,..., are
measurable

/ liminf f,dp < liminf/ fndpt.
X nmee JX

n—o0

PROOF. Introduce

9 = L

The definition gives that g T liminf,,_, ., f, and, moreover,

/gkdué/fndu, n>k
X X

L%WSELﬁM-

The Fatou Lemma now follows by monotone convergence.

and

Below we often write

/thwdu@ﬂ

| rau

Example 2.1.3. Suppose ¢ € R and f : (R;R7) — ([0,00],Ro.0) is
measurable. We claim that

‘Afu+awmmw<4memm»

instead of
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First if f = x4, where A € R,

/R f(@+ a)dm(z) = /R Ya(2)dm(z) = m(A — a) =

m(A):/Rf(x)dm(m).

Next it is clear that the relation we want to prove is true for simple mea-
surable functions and finally, we use the Monotone Convergence Theorem to
deduce the general case.

Example 2.1.3, Suppose ¥{°a,, is a positive convergent series and let E be
the set of all € [0,1] such that

for infinitely many n € N,. We claim that E is a Lebesgue null set.
To prove this claim for fixed n € N, let E, be the set of all z € [0, 1]

such that a
min |z — P |< .
pEN+ n n

Then if B(z,r) =]z —r,x +r[, z € [0,1], r > 0, we have

and

Hence

and by the Beppo Levi theorem

1 o0
/ ZxEndm < 00.
0 1
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Accordingly from this the set

F = {x €[0,1]; ZxEn(x) < oo}

is of Lebesgue measure 1. Since E C [0, 1] \ F' we have m(E) = 0.

Exercises

1. Suppose f, : X — [0,00], n = 1,2, ..., are measurable and
Eolap(fa > 1) < oo

Prove that
{limsupfn > 1} €Z,.

n—o0

2. Set f, = nzx[o i€ N, . Prove that

/ liminf f,dm =0 < oo = lim inf/ fndm
R R

n—oo n—oo

(the inequality in the Fatou Lemma may be strict).

3. Suppose f: (R;R™) — (][0,00],Ro,0) is measurable and set
9(x) = X2, f(z + k), = € R.

Show that

gdm < oo if and only if {f > 0} € Z,,.
R

4. Let (X, M,u) be a positive measure space and f : X — [0,00] an
(M, R )-measurable function such that

J(X)CN
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and

/deu< 00.

For every t > 0, set

F(t) = pu(f > t) and G(t) = u(f > 1),

Prove that
[ fin =32 P ) = 532,60
X

2.2. Integration of Functions with Arbitrary Sign

As usual suppose (X, M, 1) is a positive measure space. In this section when
we speak of a measurable function f : X — R it is understood that f is an
(M, R)-measurable function, if not otherwise stated. If f,g : X — R are
measurable, the sum f + ¢ is measurable since

{f+g9>a}=J{f>a-agyn{g>q})

€Q

for each real a. Besides the function —f and the difference f — g are mea-
surable. It follows that a function f : X — R is measurable if and only if

the functions f* = max(0, f) and f~ = max(0, —f) are measurable since
f=r—r.
We write f € £'(u) if f: X — R is measurable and
/ | fldp<oo
X

and in this case we define

/X fu = /X frdp - /X 1 dn
[ w1 [ 151 d

Note that
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since | f |= f* + f~. Moreover, if E € M we define

[ gau= [ rran= [ rau
/Efduz/XXEfdu-

/fd,uinfu(E) = 0.
E

and it follows that
Note that

Sometimes we write

éﬂmmw

| rau

If f,g € L' (1), setting h = f + g,

Jotntans [t [ Jgldn<oo
X X X

and it follows that h + g € £'(u). Moreover,

instead of

h—h=f"—f"+g"—g"

and the equation
R+ f +g =fT+g +h

/h*du—l—/fdu+/gdu:/f+du+/g+du+/ h™dju.
X X X X X X
Thus
/hd,u:/fdu—l—/gd,u.
X X X
/afdu:a/ fdu
X X

gives

Moreover,



29

for each real a.. The case o > 0 follows from (c) in Section 2.1. The case
«a = —1 is also simple since (—f)* = f~ and (—f)” = f*.

Theorem 2.2.1. (Lebesgue’s Dominated Convergence Theorem)
Suppose f,: X — R, n=1,2,..., are measurable and

f(@) = Tim fu(2)

exists for every x € X. Moreover, suppose there exists a function g € L' (u)
such that
| fu(2) |< g(z), all z € X and n € N,

Then f € L' (u),
im [ | fu— f | du=0
n—oo b'e

and

lim [ fudy = / Fdy

Proof. Since | f |< g, the function f is real-valued and measurable since
fT and f~ are measurable. Note here that

fE(r) = lim f¥(z),allz € X.

n—od

We now apply the Fatous Lemma to the functions 2g— | f, — f |,n =
1,2,..., and have

/ 2g9dp < liminf/ (29— | fu— f Ddp
X n—ee Jx

=/2gdu—limsup/ | fu— f | dp.
X X

n—oo

But [ 2gdy is finite and we get

n—oo

lim [ | fu—f|du=0.
X

Since

[ tuda [ gt [ G pdul< [ 1750 da
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the last part in Theorem 2.2.1 follows from the first part. The theorem is
proved.

Example 2.2.1. Suppose [ : Ja,b[x X — R is a function such that f(t,) €

LY (1) for each t € ]a, b[ and, moreover, assume % exists and
of
| E(t,x) |< g(z) for all (¢,z) € Ja,b] x X

where g € £'(u). Set

F(t) = /Xf(t,x)du(x) it € a,b.

We claim that F' is differentiable and

P = [ SHta)duta).

To see this let ¢, € ]a, b] be fixed and choose a sequence (t,)° in ]a,b] \
{t.} which converges to t,. Define

f(tnvx) — f(t*vr)

hn(z) = if r € X.
t, —t,
Here each h,, is measurable and
0
lim h,(z) = 8_{(t*’$) for all z € X.

Furthermore, for each fixed n and x there is a 7, , € |t,,, t.[ such that h,(z) =

g—{(me, x) and we conclude that | h,(z) |< g(z) for every z € X. Since
F(tn) B F(t*)
tn - t*

= [ mat@dna

the claim above now follows from the Lebesgue Dominated Convergence The-
orem.

Suppose S(x) is a statement, which depends on = € X. We will say that
S(x) holds almost (or p-almost) everywhere if there exists an N € Z, such
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that S(z) holds at every point of X \ N. In this case we write ”S holds a.e.
7 or 7S holds a.e. [u]”. Sometimes we prefer to write ”S(z) holds a.e.”
or "S(z) holds a.e. [u]”. If the underlying measure space is a probability
space, we often say ”almost surely” instead of almost everywhere. The term
”almost surely” is abbreviated a.s.

Suppose f : X — R, is an (M, R)-measurable functions and g : X — R.
If f =g ae. [p] there exists an N € Z, such that f(z) = g(x) for every
r € X\ N. We claim that ¢ is (M~, R)-measurable. To see this let & € R
and use that

{g>at=[{f>a}n(X\N)]U[{g>a}nN].
Now if we define
A={f>a}nN(X\N)

the set A € M and
AC{g>a} CAUN.

Accordingly from this {g > a} € M~ and g is (M~, R)-measurable since «
is an arbitrary real number.

Next suppose f, : X — R, n € N, is a sequence of (M, R)-measurable
functions and f : X — R a function. Recall if

lim f,(x) = f(z), allz € X

then f is (M, R)-measurable since
{f>a}=Upen, Musk {fu >a+17"}, alla e R.

If we only assume that

lim f(z) = f(z), ae. [u]

n—o0

then f need not be (M, R)-measurable but f is (M~,R)-measurable. To
see this suppose N € Z,, and

lim f,(x) = f(x), all z € X \ N.

Then
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and it follows that the function xy\y/f is (M, R)-measurable. Since f =
xXx\wvf a.e. [p] it follows that f is (M, R)-measurable. The next example
shows that f need not be (M, R)-measurable.

Example 2.2.2. Let X ={0,1,2}, M = {¢,{0},{1,2}, X}, and u(A) =
x4(0), A € M. Set f, = xq12y, » € Ny, and f(x) = 2, z € X. Then each
fn is (M, R)-measurable and

lim f(z) = f(z) a.e. [u]

since
{rexi lm f.0) = 72)} = 0.1)

and N = {1,2} is a p-null set. The function f is not (M, R)-measurable.

Suppose f,g € L}(i). The functions f and g are equal almost everywhere
with respect to p if and only if {f # g} € Z,. This is easily seen to be an
equivalence relation and the set of all equivalence classes is denoted by L!(1).
Moreover, if f = g a.e. [p], then

/ fdp = / gdp

X X

/fduz/ fdu+/ fduz/ fduz/ gdj
X {f=9} {f#g} {f=g} {f=g}

and, in a similar way,
Joote= ],
{f= g}

Below we consider the elements of L' (1) members of £*(11) and two members
of L'(11) are identified if they are equal a.e. [u]. From this convention it is
straight-forward to define f + g and af for all f,g € L'(u) and a € R.
Moreover, we get

since

du= [ fd dy if I
/X(f+g)u /Xfwr/xgulf,ge (1)
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and

/afdu:a/ fduif f € L'(u) and o € R.

Next we give two theorems where exceptional null sets enter. The first
one is a mild variant of Theorem 2.2.1 and needs no proof.

Theorem 2.2.2.  Suppose (X, M, ) is a positive complete measure space
and let f, : X — R, n € N, be measurable functions such that

sup | fu(7) |[< g(2) ae. [u]

neNL

where g € L*(u). Moreover, suppose f: X — R is a function and

f(z) = lim f,(z) a.e. [y].

Then, f € L' (p),
lim |fn_f|d,u:0
n—oo X

and

lim fnd,u / fdu.
X

n—oo

Theorem 2.2.3. Suppose (X, M, 1) is a positive measure space.

() If f: (X, M7) — (]0,00],Ro.c0) is measurable there exists a measur-
able function g : (X M) — ([0,00], Roo0) sSuch that f =g a.e. [u].

(b) If f: (X, M) — (R, R) is measurable there exists a measurable
function g : (X, ) (R,R) such that f = g a.e. [u].

PROOF. Since f = f™— f~ it is enough to prove Part (a). There exist simple
M~ -measurable functions ¢,, , n € N, such that 0 < ¢,, T f. For each fixed
n suUppose Qyy, ..., A, , are the distinct values of ¢, and choose for each fixed
i=1,..k,aset Ay C o ({ain}) such that A;, € M and o, (in) \ Ain
€ Z;. Set

wn = Eﬁila’inXAm'
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Clearly v, (z) 1 f(z) if v € E =45 N2, (U Ay) and pu(X \ E) = 0. We
) =

now define g(z) = f(z), if x € E, and g(x) = 0 if z € X \ E. The theorem
is proved.

Exercises

1. Suppose f and g are real-valued measurable functions. Prove that f? and
fg are measurable functions.

2. Suppose f € L'(u). Prove that

lim | fldu=0.

I f1za

(Here [, means [>,))

3. Suppose f € L'(u). Prove that to each € > 0 there exists a § > 0 such

that
/If\du<€
E

whenever pu(E) < 9.

4. Let (f,)s2; be a sequence of (M, R)-measurable functions. Prove that
the set of all € R such that the sequence (f,(x))>2, converges to a real
limit belongs to M.

5. Let (X, M, R) be a positive measure space such that p(A) =0 or co for
every A € M. Show that f € L*(p) if and only if f(z) =0 a.e. [y].

6. Let (X, M,u) be a positive measure space and suppose f and g are
non-negative measurable functions such that

/fdu:/gdu, all A e M.
A A
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(a) Prove that f = g a.e. [u] if p is o-finite.
(b) Prove that the conclusion in Part (a) may fail if 4 is not o-finite.

7. Let (X, M, 1) be a finite positive measure space and suppose the functions
fn: X — R, n=1,2 ... are measurable. Show that there is a sequence
()22, of positive real numbers such that

lim o, f, =0 ae. [y].

n—oo

8. Let (X, M, ) be a positive measure space and let f,, : X - R,n=1,2 ..,
be a sequence in L'(x) which converges to f a.e. [u] as n — oco. Suppose
f € L' (u) and

n—oo

i [ ldu= [ 1 Fd
X X

Show that
lim/ | fo— f|du=0.
n—oo X

9. Let (X, M,u) be a finite positive measure space and suppose f € L'(u)
is a bounded function such that

/X Fdp = /X Fdy = /X o

Prove that f = x4 for an appropriate A € M.

10. Let (X, M,pu) be a finite positive measure space and f : X — R a
measurable function. Prove that f € L'(u) if and only if

(] f 1= k) < oo

11. Suppose f € L'(m). Prove that the series ¥%° _ f(z + k) converges for
m-almost all z.
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12. a) Suppose f : R —[0,00[ is Lebesgue measurable and [, fdm < oo.
Prove that
lim am(f > «) =0.

a—00

b) Find a Lebesgue measurable function f : R — [0, 00[ such that f ¢
LY(m), m(f > 0) < oo, and

lim am(f > «) =0.

a—00

13. (a) Suppose M is an o-algebra of subsets of X and p a positive measure

on M with p(X) < co. Let Ay, ..., A, € M. Show that

XA1UASU...UA, — 11— (1 - XAl) Tt (1 - XAn)

and conclude that

MATUA UL UA) = Y p(A)— Y (A, NAy)

1<i<n 1<i1<ia<n

+ Y (A N AL NAL) — e (D) (A NN A).

1<11<12<13<n

(b) Let X be the set of all permutations (bijections) z : {1,2,....,n} —
{1,2,...,n} and let p = %cx. A random variable £ : 2 — X has the uniform
distribution in X or, stated otherwise, the image measure P equals p. Find
the probability that £ has a fixed point, that is find

P&(i) =i for some i € {1,2,...,n}].

(Hint: Set A; = {z € X; z(i) =i}, =1,...,n, and note that the probability
in question equals p(A; U A2 U ... UA,).)

14. Let (X, M, u) be a positive measure space and f : X — R an (M,R)-
measurable function. Moreover, for each t > 1, let

alt) = Y e < f < .

n=—oo
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Show that
i t) = fldu.
tHH1n+ alt) /)7 | f 1 du

15. Let (X, M, u) be a positive measure space and f,: X — R, n € N, a
sequence of measurable functions such that

limsupn?u(| f,, |>n"?) < .

n—oo

Prove that the series >~ | f,(z) converges for p-almost all = € X.

16. Let (X, M, u) be a positive measure space and f:X — R a measurable
function. Furthermore, suppose there are strictly positive constants B and
C such that

a2
/ e“fdu < BeTC if a € R.
X

Prove that ,
u(| f 1> t) <2Be 3 if t > 0.

2.3 Comparison of Riemann and Lebesgue Integrals

In this section we will show that the Lebesgue integral is a natural general-
ization of the Riemann integral. For short, the discussion is restricted to a
closed and bounded interval.

Let [a, b] be a closed and bounded interval and suppose f : [a,b] — R is
a bounded function. For any partition

Ata=xg<r1<..<T,=0b

of [a, b] define
Saf =% sup f)(zi —zi1)

]xi—lymi}

and
saf =X ( inf )z — zia).

|z 1,24
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The function f is Riemann integrable if

inf SAf =supsaf
A A

and the Riemann integral f; f(z)dz is, by definition, equal to this common
value.

Below an ((R7)[as, R)-measurable function is simply called Lebesgue
measurable. Furthermore, we write m instead of m(q).

Theorem 2.3.1. A bounded function f : [a,b] — R is Riemann integrable
if and only if the set of discontinuity points of f is a Lebesque null set.
Moreover, if the set of discontinuity points of f is a Lebesgue null set, then
f is Lebesque measurable and

b
/a F(a)da = /[ gam.

PROOF. A partition A’ : @ = 2 < 2} < ... < 2/, = b is a refinement of a
partition A : a = zp < 21 < ... < x,, = b if each x, is equal to some z; and in
this case we write A < A’. The definitions give Saf > Sa/f and saf < sarf
if A < A’. We define, mesh(A) = max;<;<,(z; — T;-1).

First suppose f is Riemann integrable. For each partition A let

Ga = f(a>X{a} + E?:1( sup f)X}wi_hwi}

Joi—1,2)
and
agn = f(a)X{a} + 2ZL:1<] inf ]f)X]a:,_ha:,]
Ti—1,%4
and note that
GAdm = SAf

[a,]

/ gadm = saf.
[a,b]

and
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Suppose Ay, k= 1,2, ..., is a sequence of partitions such that Ay < Ayq,

b
Sanf | / f(z)da

and )
saf 1 / f(z)dz

as k — 00. Let G = limy_,oo Ga, and g = lim;_ ga,. Then G and g are
(Ria), R)-measurable, g < f < G, and by dominated convergence

b
/ de:/ gdm:/ f(x)dx.
[a,b] [a,b] a

/ (G = g)dm =0

[a,b]

But then

so that G = ¢ a.e. [m] and therefore G = f a.e. [m]. In particular, f is

Lebesgue measurable and
b
/ f(z)de = / fdm.
a [a,b]

N =A{z; g(z) < f(z) or f(z) < G(2)}.
We proved above that m(N) = 0. Let M be the union of all those points which
belong to some partition Ay. Clearly, m(M) = 0 since M is denumerable.
We claim that f is continuous off N U M. If f is not continuous at a point

c ¢ N UM, there is an ¢ > 0 and a sequence (¢,)32; converging to ¢ such
that

Set

| flcn) — fle) |> € all n.

Since ¢ ¢ M, c is an interior point to exactly one interval of each partition
Ay and we get

GAk (C) - gAk (C) 2 5
and in the limit
G(c) —g(c) > e

But then ¢ € N which is a contradiction.



70

Conversely, suppose the set of discontinuity points of f is a Lebesgue null
set and let (Ag)72, is an arbitrary sequence of partitions of [a, b] such that
Ag < Agyq and mesh(Ag) — 0 as k — oo. By assumption,

lim Ga, (x) = lim ga, (x) = f(2)

k—o0

at each point x of continuity of f. Therefore f is Lebesgue measurable and
dominated convergence yields

lim Ga,dm = fdm
k=00 Jia.) [a,b]

and
lim ga,dm = fdm.
k=00 J1a.4) [a,b]

Thus f is Riemann integrable and

/a ’ F(z)dr = /[ ) fdm.

In the following we sometimes write

/Af(x)d:c (AeR™)

instead of
/ fdm (AeR).
A

In a similar way we often prefer to write

/Af(a:)dx (AR

instead of

/Afdmn (AeR).

Furthermore, fab fdm means f[a b fdm. Here, however, a warning is moti-
vated. It is simple to find a real-valued function f on [0, co[, which is bounded
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on each bounded subinterval of [0, 00[, such that the generalized Riemann

integral
/ f(z)dz
0

b
lim /0 f(z)dz

b—oo

is convergent, that is

exists and the limit is a real number, while the Riemann integral

| 1@

is divergent (take e.g. f(z) = ®2%). In this case the function f does not
belong to £! with respect to Lebesgue measure on [0, co[ since

b
/ |f|dm:1im/|f(x)|dx:oo.
[0,00[ b—oo J

Example 2.3.1. To compute

n(]— )
fm [ w)"

n—oo Jg \/E dz

suppose n € N, and use the inequality 1+t < €', t € R, to get

T
1— )" <e*ifx>0.
X (@)1= 2" e if w2

From this

o) =y xp @2 < S
n\T) =de o\ l)——F—— > —F—=, T =
de[O,] \/E \/E

and, in addition,

—T

Tim fu(2) = f/i

Here % € L*(my on [0, oo[) since % > 0 and

e o 2
dxz?/ e dr = /T.
|,
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Moreover f,, > 0 for every n € N, and by using dominated convergence we
get

lim ———=—dx = lim fo(z)dx =
n—oo Jq \/E n—oo Jq

o0 . o e—x
/0 nll_{go fo(x)dz :/o \/de = /7.

Exercises

1. Let f, : [0,1] — [0,1], n € N, be a sequence of Riemann integrable
functions such that

lim f,(x) exists = f(z) all x € [0,1].

n—oo

Show by giving an example that f need not be Riemann integrable.

2. Suppose f,(z) =n? | x| e » € R, n € N,. Compute lim,_ f, and
lim,, oo [ fndm.

3. Compute the following limits and justify the calculations:

(a)

* sin(e”)

lim dz.
n—oo Jo 1+ na?

(b)

n

lim [ (1+ z)_” cos xdx.
n—oo 0 n

n

lim (1+ E)”e_%dx.

n—oo 0 n

o0

T T
i —)" —(1+ —=)")dx.
lim (l—i-n) exp(—( —|—n) Ydx

n—oo 0

. *  sin(%)
lim n/ — R .
n—oo  Jo x(14 2?)
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" 1
lim (1-— TynZ 0 cos xdx
n—oo [o n° n+x
(8) ~
lim (1+ E)"2e*m”daz:.
n—oo Jq n
() ) )
1
lim ﬂdw

n—oo [q (1—|—,§(;2)n '

lim v/n

1
n—00 1

(1 —t*)"(1++/n | sint |)dt.

4. Let (7,)22, be an enumeration of Q and define
fla) = 252,27 p(x — 70)

where p(z) = 272 if 0 < 2 < 1 and ¢(z) = 0 if 2 < 0 or 2 > 1. Show that

a)
/_Z flz)dz = 2.

b) .
/ fA(z)dx = 00 if a < .

f<ooas. [m].

sup f(z) = +ooifa <b.

a<z<b

5. Let n € Ny and define f,(z) = e*(1 — %)”, x € R. Compute

V2n
lim Jo(z)de.
n—oo J_ jon
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6. Suppose p € N, and define f,(x) = nP2P~1(1 — )", 0 < z < 1, for every
n € N,. Show that
1
lim [ fo(z)de=(p—1)L
n—oo 0

7. Suppose f:]0,1] =R is a continuous function. Find

lim TL/ f —(nmin(z,1—x) dCC
n—00

2.4. Expectation

Suppose (2, F, P) is a probability space and £ : (Q,F) — (5,S) a random
variable. Recall that the probability law p of £ is given by the image measure

P:. By definition,
/XBdﬂz/xB(S)dP
S Q

for every B € S, and, hence

/quodﬂz/ﬂso({)dp

for each simple S-measurable function ¢ on S (we sometimes write f o g =
f(g)). By monotone convergence, we get

[ tn= [ scrap

for every measurable f : S — [0,00]. Thus if f : S — R is measurable,
f e LY (u) if and only if f(¢) € L*(P) and in this case

/S fu = /Q f()ap

In the special case when ¢ is real-valued and & € L'(P),

/ vdp(x / ¢dPp.

The integral in the right-hand side is called the expectation of ¢ and is
denoted by E [£].
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CHAPTER 3

Further Construction Methods of Measures

Introduction

In the first section of this chapter we collect some basic results on metric
spaces, which every mathematician must know about. Section 3.2 gives a
version of the Riesz Representation Theorem, which leads to another and
perhaps simpler approach to Lebesgue measure than the Carathéodory The-
orem. A reader can skip Section 3.2 without losing the continuity in this
paper. The chapter also treats so called product measures and Stieltjes in-
tegrals.

3.1. Metric Spaces

The construction of our most important measures requires topological con-
cepts. For our purpose it will be enough to restrict ourselves to so called
metric spaces.

A metric d on a set X is a mapping d : X x X — [0, oo[ such that

(a) d(z,y) =0if and only if z =y

(b) d(x,y) = d(y,x) (symmetry)
(c) d(z,y) < d(x,z)+ d(z,y) (triangle inequality).

Here recall, if Ay, ..., A,, are sets,
Ay x o x Ay ={(x1, .., z,); mp € A foralli =1, ...,n}

A set X equipped with a metric d is called a metric space. Sometimes we
write X = (X, d) to emphasize the metric d. If E is a subset of the metric
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space (X,d), the function djgxg(z,y) = d(z,y), if z,y € E, is a metric on
E. Thus (E,d|gxg) is a metric space.
The function ¢(t) = min(1,t), ¢ > 0, satisfies the inequality

p(s +1) < pls) + o(t).

Therefore, if d is a metric on X, min(1,d) is a metric on X. The metric
min(1,d) is a bounded metric.

The set R equipped with the metric d;(z,y) =| 2 — y | is a metric space.
More generally, R" equipped with the metric

dn($7y) = dn((xla "'7xn)7 <y17 7yn)) = 121]??” ’ T — Yk |
is a metric space. If not otherwise stated, it will always be assumed that R"
is equipped with this metric.
Let C'[0,T] denote the vector space of all real-valued continuous functions
on the interval [0,7], where T" > 0. Then

doo(,y) = max | z(t) —y(t) |
is a metric on C'[0,77].
If (Xg,ex), k=1,...,n, are metric spaces,

d(l’,y) = 1<,?’<Xn6k(xkayk)7 T = (1’1, axn) Y = (yla -"7yn)

is a metric on X; X ... X X,,. The metric d is called the product metric on
X X ... xX,.

If X = (X,d) is a metric space and z € X and r > 0, the open ball with
centre at x and radius r is the set B(z,r) = {y € X;d(y,z) <r} . f ECX
and F is contained in an appropriate open ball in X it is said to be bounded.
The diameter of E is, by definition,

diam E = sup d(z,y)
zyek

and it follows that F is bounded if and only if diam E < co. A subset of X
which is a union of open balls in X is called open. In particular, an open

ball is an open set. The empty set is open since the union of an empty family
of sets is empty. An arbitrary union of open sets is open. The class of all
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open subsets of X is called the topology of X. The metrics d and min(1, d)
determine the same topology. A subset E of X is said to be closed if its
complement E° relative to X is open. An intersection of closed subsets of
X is closed. If £ C X, E° denotes the largest open set contained in £ and
E~ (or E) the smallest closed set containing E. E° is the interior of £ and
E~ its closure. The o-algebra generated by the open sets in X is called the
Borel g-algebra in X and is denoted by B(X). A positive measure on B(X)
is called a positive Borel measure.
A sequence (z,)%°; in X converges to z € X if
lim d(z,,z) = 0.

n—o0

If, in addition, the sequence (x,,)32 ; converges to y € X, the inequalities
0 < d(z,y) < d(xn, x) +d(zn,y)

imply that y = x and the limit point z is unique.
If £ C X and z € X, the following properties are equivalent:

(i) z € E™.
(ii) B(x,r)NE # ¢, all r > 0.
(iii) There is a sequence (x,,)2° ; in E which converges to x.

If B(z,r) N E = ¢, then B(x,r)" is a closed set containing F but not x.
Thus x ¢ E~. This proves that (i)=-(ii). Conversely, if z ¢ E~, since E° is
open there exists an open ball B(y, s) such that 2 € B(y,s) C E¢ C E°. Now
choose r = s — d(z,y) > 0 so that B(z,r) C B(y, s). Then B(xz,r) N E = ¢.
This proves (ii)=-(i).

If (ii) holds choose for each n € N, a point z,, € E with d(z,,z) < +
and (iii) follows. If there exists an r > 0 such that B(z,r) N E = ¢, then
(iii) cannot hold. Thus (iii)=-(ii).

If £ C X, theset E~ \E” is called the boundary of E and is denoted by
OF.

A set A C X is said to be dense in X if A~ = X. The metric space X is
called separable if there is an at most denumerable dense subset of X. For
example, Q" is a dense subset of R". The space R" is separable.
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Theorem 3.1.1. B(R") =R,.

PROOF. The o-algebra R, is generated by the open n-cells in R"™ and an
open n-cell is an open subset of R". Hence R,, C B(R"). Let U be an open
subset in R™ and note that an open ball in R" = (R",d,,) is an open n-cell.
If x € U there exist an a €Q™ N U and a rational number r» > 0 such that
xz € B(a,r) C U. Thus U is an at most denumerable union of open n-cells
and it follows that U € R,,. Thus B(R") C R,, and the theorem is proved.

Let X = (X,d) and Y = (Y,e) be two metric spaces. A mapping f :
X =Y (or f:(X,d) — (Y,e) to emphasize the underlying metrics) is said
to be continuous at the point a € X if for every ¢ > 0 there exists a § > 0
such that
x € B(a,0) = f(x) € B(f(a),e).

Equivalently this means that for any sequence (x,,)%°; in X which converges
to a in X, the sequence (f(z,))5, converges to f(a) in Y. If f is continuous
at each point of X, the mapping f is called continuous. Stated otherwise
this means that

f7Y(V) is open if V is open

or
f71(F) is closed if F is closed.

The mapping f is said to be Borel measurable if
f1(B) € B(X)if Be B(Y)

or, what amounts to the same thing,
(V) € B(X)if V is open.

A Borel measurable function is sometimes called a Borel function. A
continuous function is a Borel function.

Example 3.1.1. Let f : (R,d;)— (R,d;) be a continuous strictly increasing
function and set p(z,y) =| f(z) — f(y) |, ,y € R. Then p is a metric on R.
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Define j(x) = z, x € R. The mapping j : (R,d;)— (R,p) is continuous. We
claim that the map j : (R,p) — (R,d;) is continuous. To see this, let a € R
and suppose the sequence (z,,)%°; converges to a in the metric space (R,p),
that is | f(z,) — f(a) | = 0 as n — oo. Let ¢ > 0. Then

flzn) — fla) > fla+¢€) — f(a) >0ifx, >a+e¢
and

fla) = f(z,) > fla) — fla—e) >0ifz, <a—e.

Thus z,, € Ja —¢,a+ ¢[ if n is sufficiently large. This proves that he map
j: (R,p) — (R,dy) is continuous.

The metrics d; and p determine the same topology and Borel subsets of
R.

A mapping [ : (X,d) — (Y,e) is said to be uniformly continuous if for
each € > 0 there exists a 6 > 0 such that e(f(x), f(y)) < e as soon as
d(z,y) < 6.

If reXand F, FCX,let

d(z, E) = inf d(z,u)

uekl

be the distance from z to E and let

d(E,F)= inf d(u,v)

ueEveF

be the distance between £ and F. Note that d(z, F) = 0 if and only if x € E.
Ifx,ye X andu € FE,

d(z,u) < d(z,y) + d(y,u)

and, hence

d(z, E) < d(z,y) + d(y,u)

and
d(z,E) <d(x,y) +d(y, E).

Next suppose E # ¢. Then by interchanging the roles of = and y, we get

| d(z, E) — d(y, E) |< d(z,y)
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and conclude that the distance function d(z, E), € X, is continuous. In
fact, it is uniformly continuous. If z € X and r > 0, the so called closed ball
B(z,r) = {y € X; d(y,z) <r} is a closed set since the map y — d(y,z),
y € X, is continuous.

If F C X is closed and € > 0, the continuous function
1
Higa = max(O, 1- _d('a F))
’ €

fulfils 0 < I3, < 1 and I, = 1 on F. Furthermore, ITj_(a) > 0 if and only
ifa € F. =4y {v € X; d(z,F) <e}. Thus

X
Xp < HF,a < Xp.-

Let X = (X,d) be a metric space. A sequence (z,)3; in X is called
a Cauchy sequence if to each € > 0 there exists a positive integer p such
that d(x,,x,) < e for all n,m > p. If a Cauchy sequence (z,,)$> ; contains a
convergent subsequence (z,, )52, it must be convergent. To prove this claim,
suppose the subsequence (x,, )72, converges to a point z € X. Then

d(zm, z) < d(Tm, Ty, ) + d(zp,, )

can be made arbitrarily small for all sufficiently large m by choosing £ suffi-
ciently large. Thus (z,)52, converges to x.

A subset E of X is said to be complete if every Cauchy sequence in £
converges to a point in E. If £ C X is closed and X is complete it is clear
that E is complete. Conversely, if X is a metric space and a subset E of X
is complete, then FE' is closed.

It is important to know that R is complete equipped with its standard
metric. To see this let (z,)°, be a Cauchy sequence. There exists a positive
integer such that | x,, — z,, |< 1 if n,m > p. Therefore

| T || T —2p | + | 2y [S 14| 2 |

for all n > p. We have proved that the sequence (z,,)%, is bounded (the
reader can check that every Cauchy sequence in a metric space has this
property). Now define

a = sup {z € R; there are only finitely many n with x, < z}.

The definition implies that there exists a subsequence (z,, )52, which con-
verges to a (since for any r > 0, x,, € B(a,r) for infinitely many n). The
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original sequence is therefore convergent and we conclude that R is complete
(equipped with its standard metric d;). It is simple to prove that the product
of n complete spaces is complete and we conclude that R"™ is complete.

Let E C X. A family (V;);e; of subsets of X is said to be a cover of E
if Uie/V; 2 E and E is said to be covered by the V/s. The cover (V;);er is
said to be an open cover if each member V; is open. The set E is said to be
totally bounded if, for every ¢ > 0, E can be covered by finitely many open
balls of radius €. A subset of a totally bounded set is totally bounded.

The following definition is especially important.

Definition 3.1.1. A subset E of a metric space X is said to be compact if
to every open cover (V;);c; of E, there is a finite subcover of £, which means
there is a finite subset J of I such that (V;);c; is a cover of E.

If K is closed, K C E, and E is compact, then K is compact. To see this,
let (V;)ier be an open cover of K. This cover, augmented by the set X \ K

is an open cover of F and has a finite subcover since E is compact. Noting
that K N (X \ K) = ¢, the assertion follows.

Theorem 3.1.2. The following conditions are equivalent:
(a) E is complete and totally bounded.
(b) Every sequence in E contains a subsequence which converges to a
point of E.
(c) E is compact.

PROOF. (a)=-(b). Suppose (x,)>, is a sequence in E. The set E can be
covered by finitely many open balls of radius 27! and at least one of them
must contain z,, for infinitely many n € N, . Suppose x, € B(a;,27) if
n € N; C Ny =45 N, where N; is infinite. Next E N B(ay,27!) can be
covered by finitely many balls of radius 272 and at least one of them must
contain x,, for infinitely many n € N;. Suppose x, € B(ay,27!) if n € Ny,
where Ny C N; is infinite. By induction, we get open balls B(a;,277) and
infinite sets N; C N;_; such that z,, € B(a;,277) for all n € N; and j > 1.
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Let n; < ng < ..., where ny, € Ny, k = 1,2, ... . The sequence (z,,)52, is a
Cauchy sequence, and since F is complete it converges to a point of F .

(b)=-(a). If E is not complete there is a Cauchy sequence in F with no
limit in E. Therefore no subsequence can converge in E, which contradicts
(b). On the other hand if E is not totally bounded, there is an ¢ > 0 such
that £ cannot be covered by finitely many balls of radius €. Let 1 € F
be arbitrary. Having chosen a1, ...,7, 1, pick x, € E\ U} B(x;,¢), and
so on. The sequence (z,)%°; cannot contain any convergent subsequence as
d(xp, Tm) > € if n # m, which contradicts (b).

{(a) and (b)} =-(c). Let (V;)ier be an open cover of E. Since E is totally
bounded it is enough to show that there is an ¢ > 0 such that any open
ball of radius € which intersects F is contained in some V;. Suppose on the
contrary that for every n € N, there is an open ball B, of radius < 27"
which intersects E and is contained in no V;. Choose z,, € B, N E and
assume without loss of generality that (z,)%; converges to some point z in
E by eventually going to a subsequence. Suppose x € V;, and choose r > 0
such that B(z,r) C V;,. But then B, C B(x,r) C V,, for large n, which
contradicts the assumption on B,,.

(c)=(b). If (x,)32, is a sequence in F with no convergent subsequence in
E, then for every z € E there is an open ball B(z,r,) which contains z,, for
only finitely many n. Then (B(z,r,)).cr is an open cover of E without a

finite subcover.

Corollary 3.1.1. A subset of R is compact if and only if it is closed and
bounded.

PROOF. Suppose K is compact. If x, € K and z, ¢ B(0,n) for every
n € Ny, the sequence (z,)%°; cannot contain a convergent subsequence.
Thus K is bounded. Since K is complete it is closed.
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Conversely, suppose K is closed and bounded. Since R" is complete and
K is closed, K is complete. We next prove that a bounded set is totally
bounded. It is enough to prove that any n-cell in R" is a union of finitely
many n-cells I7 X ... x I, where each interval I, ..., [, has a prescribed positive
length. This is clear and the theorem is proved.

Corollary 3.1.2. Suppose f: X — R is continuous and X compact.
(a) There exists an a € X such that maxy f = f(a) and a b€ X
such that miny f = f(b).

(b) The function f is uniformly continuous.

PROOF. (a) Foreacha € X, let V, ={z € X : f(z) <1+ f(a)}. The open
cover (V,)q.ex of X has a finite subcover and it follows that f is bounded. Let
(2,)22, be a sequence in X such that f(z,) — supg f as n — oo. Since X is
compact there is a subsequence (x,, )72, which converges to a point a € X.
Thus, by the continuity of f, f(x,,) — f(a) as k — oo.

The existence of a minimum is proved in a similar way.

(b) If f is not uniformly continuous there exist ¢ > 0 and sequences
(zn)pzy and (yn)p2; such that | f(2,) — f(yn) |> € and | @, — y, [< 277
for every n > 1. Since X is compact there exists a subsequence (z,, )2, of
()52, which converges to a point a € X. Clearly the sequence (yn, )3,
converges to a and therefore

‘ f(xnk> - f(ynk) ’§| f(xnk) - f(a) ‘ + ’ f(a) - f(ynk) ’_> 0

as k — oo since f is continuous. But | f(z,,) — f(yn,) |> € and we have got
a contradiction. The corollary is proved.

Example 3.1.2. Suppose X = ]0,1] and define p,(z,y) = di(z,y) and
po(z,y) =| %—i |, z,y € X. As in Example 3.1.1 we conclude that the metrics
p; and p, determine the same topology of subsets of X. The space (X, p,)
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totally bounded but not complete. However, the space (X, p,) is not totally
bounded but it is complete. To see this, let (x,,)22 ;be a Cauchy sequence in
(X, py). As a Cauchy sequence it must be bounded and therefore there exists
an ¢ € |0,1] such that z, € [e,1] for all n. But then, by Corollary 3.1.1,
()22, contains a convergent subsequence in (X, p;) and, accordingly from
this, the same property holds in (X, p,). The space (X, p,) is not compact,
since (X, p;) is not compact, and we conclude from Theorem 3.1.2 that the
space (X, py) cannot be totally bounded.

Example 3.1.3. Set R=RU {—00, 00} and

~

d(x,y) =| arctanz — arctany |

ifx,y € R. Here
arctan oo = g and arctan —oo = —g.

Example 3.1.1 shows that the standard metric d; and the metric cZ|RxR
determine the same topology.

We next prove that the metric space R is compact. To this end, consider
a sequence (z,)2°, in R. If there exists a real number M such that | z,, |[< M
for infinitely many n, the sequence (z,,)$° ; contains a convergent subsequence
since the interval [— M, M] is compact. In the opposite case, for each positive
real number M, either x, > M for infinitely many n or z, < —M for
infinitely many n. Suppose z,, > M for infinitely many n for every M €
N_. Then d(z,, ,c0) =| arctan z,, — % |— 0 as k — oo for an appropriate
subsequence ()52

The space R= (f{,cz) is called a two-point compactification of R.

It is an immediate consequence of Theorem 3.1.2 that the product of
finitely many compact metric spaces is compact. Thus R” equipped with
the product metric is compact.

We will finish this section with several useful approximation theorems.

Theorem 3.1.3. Suppose X is a metric space and p positive Borel measure
in X. Moreover, suppose there is a sequence (U,)s,of open subsets of X
such that

X =U2,U0,
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and
w(U,) < oo, all n € N..

Then for each A € B(X) and € > 0, there are a closed set F' C A and an
open set VO A such that
p(V\F)<e.

In particular, for every A € B(X),

p(A) = nf u(V)
V open

and

p(A) = sup p(F)
FCA
F' closed

If X =Rand p(A) =%°,61(A) , A€ R, then u({0}) =0 and pu(V) =
oo for every open set containing {0} . The hypothesis that the sets U,,, n €
N, are open (and not merely Borel sets) is very important in Theorem 3.1.3.

PROOF. First suppose that p is a finite positive measure.

Let A be the class of all Borel sets A in X such that for every ¢ > 0
there exist a closed F' C A and an open V' O A such that p(V\ F) <e. If F
is a closed subset of X and V,, = {x; d(z, F) < %} , then V, is open and, by
Theorem 1.1.2 (f), u(V,,) | w(F) as n — oo. Thus F' € A and we conclude
that A contains all closed subsets of X.

Now suppose A € A. We will prove that A¢ € A. To this end, we choose
e >0 and a closed set F' C A and an open set V' O A such that u(V\ F) < .
Then V¢ C A° C F*° and, moreover, u(F°\ V°) < ¢ since

V\F=F\Ve

If we note that V¢ is closed and F¢ open it follows that A¢ € A.

Next let (A;)$2; be a denumerable collection of members of A. Choose
e > 0. By definition, for each i € N there exist a closed F; C A; and an
open V; D A; such that u(V; \ F;) < 27%. Set
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Then
p(V A (U1 F)) < (U2, (Vi \ 7))
<XV \ F) < e.
But
VA(UEF) = Mz AV (UL B}

and since p is a finite positive measure
u(V\ (UL F)) = lim u(V\ (U F).
Accordingly, from these equations
p(VA (UL F)) <e

if n is large enough. Since a union of open sets is open and a finite union of
closed sets is closed, we conclude that U°; A; € A. This proves that A is a
o-algebra. Since A contains each closed subset of X, A = B(X).

We now prove the general case. Suppose A € B(X). Since uU» is a finite
positive measure the previous theorem gives us an open set V,, O ANU, such
that u¥(V,,\ (ANU,)) < e27". By eventually replacing V,, by V;,NU,, we can
assume that V,, C U,. But then u(V,,\ (ANU,)) = uU(V, \(ANU,)) < 27"

Set V' = U |V, and note that V' is open. Moreover,

VAAC UL (Va\ (ANUL))

and we get
p(V\NA) <E2 0V \ (ANT,)) <e.

By applying the result already proved to the complement A we conclude
there exists an open set W O A¢ such that

PANWE) = (W A%) <e.

Thus if F' =4 W€ it follows that ¥ C A C V and p(V \ F) < 2e. The
theorem is proved.

If X is a metric space C'(X) denotes the vector space of all real-valued
continuous functions f : X — R. If f € C(X), the closure of the set of
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all  where f(z) # 0 is called the support of f and is denoted by suppf.
The vector space of all all real-valued continuous functions f : X — R with
compact support is denoted by C.(X).

Corollary 3.1.3. Suppose p and v are positive Borel measures in R™ such
that
u(K) < oo and v(K) < o0

for every compact subset K of R™. If

Rnf(ﬁ)du(flf) = Rnf(fv)dV(x% all f € C(R")

then p=wv.

PROOF. Let F' be closed. Clearly p(B(0,i)) < oo and v(B(0,7)) < oo for
every positive integer i. Hence, by Theorem 3.1.3 it is enough to show that
u(F) = v(F). Now fix a positive integer i and set K = B(0,i) N F. It is
enough to show that u(K) = v(K). But

| @duto) = [T, @)

for each positive integer j and letting 7 — oo we are done.

A metric space X is called a standard space if it is separable and com-
plete. Standard spaces have a series of very nice properties related to measure
theory; an example is furnished by the following

Theorem 3.1.4. (Ulam’s Theorem) Let X be a standard space and
suppose |1 s a finite positive Borel measure on X. Then to each A € B(X)
and € > 0 there exist a compact K C A and an open V. O A such that
w(V\K) <e.
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PROOF. Let ¢ > 0. We first prove that there is a compact subset K of X

such that u(K) > pu(X)—e. To this end, let A be a dense denumerable subset

of X and let (a;)2, be an enumeration of A. Now for each positive integer

J, U2 B(a;,277¢) = X, and therefore there is a positive integer n; such that
w(U7 B(ag, 277¢)) > p(X) — 27¢.

Set ) .
Fy = U2, B(a;,2 )

and

The set L is totally bounded. Since X is complete and L closed, L is complete.
Therefore, the set L is compact and, moreover

p(K) = p(X) = p(LF) = p(X) — p(U52, FY)

> u(X) = T2, () = p(X) — 532, (u(X) — ()
> pu(X) - X227 = p(X) —e.

Depending on Theorem 3.1.3 to each A € B(X) there exists a closed
F C A and an open V' 2O A such that u(V \ F)) < . But

VN(FNL)y=(V\F)U(F\L)
and we get
p(VA(FNL) <p(V\F)+p(X\K) < 2.

Since the set F'N L is compact Theorem 3.1.4 is proved.

Two Borel sets in R" are said to be almost disjoint if their intersection
has volume measure zero.

Theorem 3.1.5. FEwvery open set U in R" is the union of an at most denu-
merable collection of mutually almost disjoint cubes.
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Before the proof observe that a cube in R" is the same as a closed ball
in R" equipped with the metric d,,.

PROOF. For each, k € N, let Q;be the class of all cubes of side length 2%
whose vertices have coordinates of the form i27%, i € Z. Let F} be the union
of those cubes in Q; which are contained in U. Inductively, for k > 1, let
I}, be the union of those cubes in Q;, which are contained in U and whose
interiors are disjoint from Uf;llF] Since d(z,R"\ U) > 0 for every z € U it
follows that U = U372, F}.

Exercises

1. Suppose f: (X, M) — (RY,Ry) and g : (X, M) — (R",R,) are measur-
able. Set h(z) = (f(x),g(r)) € R¥*" if z € X. Prove that h : (X, M) —
(R4 R4y, is measurable.

2. Suppose f: (X,M) — (R,R) and g : (X, M) — (R, R) are measurable.
Prove that fg is (M, R)-measurable.

3. The function f : R — R is a Borel function. Set g(z,y) = f(z), (z,y) €
R2?. Prove that ¢ : R? — R is a Borel function.

4. Suppose f : [0,1] — R is a continuous function and ¢ : [0,1] —[0,1] a
Borel function. Compute the limit

1

lim f(g(x)")dx.

n—oo 0

5. Suppose X and Y are metric spaces and f : X — Y a continuous mapping.
Show that f(FE) is compact if E' is a compact subset of X.
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6. Suppose X and Y are metric spaces and f : X — Y a continuous bijection.
Show that the inverse mapping f~! is continuous if X is compact.

7. Construct an open bounded subset V' of R such that m(9V) > 0.

8. The function f : [0,1] —R has a continuous derivative. Prove that the
set f(K) € 2, if K = ()" ({0}).

9. Let P denote the class of all Borel probability measures on [0,1] and L
the class of all functions f : [0,1] — [—1, 1] such that

[ f(2) = @) I<lz =y, 2,y €[0,1].

For any u,v € P, define

p(p,v) = sup | fdp — fdv].
feL [0,1] [0,1]

(a) Show that (P, p) is a metric space. (b) Compute p(u,v) if u is linear

measure on [0,1] and v = 57716, where n € N, (linear measure on [0, 1]
is Lebesgue measure on [0, 1] restricted to the Borel sets in [0, 1]).

10. Suppose p is a finite positive Borel measure on R™. (a) Let (V;);er be a
family of open subsets of R and V = U,;¢;V;. Prove that

(b) Let (F});es be a family of closed subsets of R™ and F' = N;c;F;. Prove
that
p(F)= inf p(F, N...NE,).

01,0k €1
LEN
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H

3.2. Linear Functionals and Measures

Let X be a metric space. A mapping T : C.(X) — R is said to be a linear
functional on C.(X) if

T(f+g)=Tf+Tg, all f,g € Ce(X)

and

T(af)=aTf, ala € R, f € C.(X).

If in addition T'f > 0 for all f > 0, T is called a positive linear functional
on C.(X). In this case Tf < Tgif f<gsinceg—f>0and Tg—Tf =
T(g— f) > 0. Note that C.(X) = C(X) if X is compact.

The main result in this section is the following

Theorem 3.2.1. (The Riesz Representation Theorem) Suppose X is
a compact metric space and let T be a positive linear functional on C(X).
Then there exists a unique finite positive Borel measure p in X with the
following properties:

(a)
7f = [ fau, 1 ec),

(b) For every E € B(X)

p(E) = sup p(K).
KCE
K compact

(c) For every E € B(X)

p(E) = inf p(V).
V open
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The property (c) is a consequence of (b), since for each £ € B(X) and
e > 0 there is a compact K C X \ E such that

WX\ E) < pu(K) +e.

But then
X\ K) <pu(E)+e

and X \ K is open and contains E. In a similar way, (b) follows from (c)
since X is compact.

The proof of the Riesz Representation Theorem depends on properties of
continuous functions of independent interest. Suppose K C X is compact
and V C X is open. If f: X — [0,1] is a continuous function such that

f =Xy and suppf €V

we write
f=<Vv
and if
Xk < f < xy and suppf CV
we write

K< f=<V

Theorem 3.2.2. Let K be compact subset X.
(a) Suppose K C V where V is open. There exists a function f on X
such that
K< f<V

(b) Suppose X is compact and K C V1 U...UV,,, where K is compact and
Vi,..., V. are open. There exist functions hq, ..., h, on X such that

hiKV;, izl,...,n

and
hi+..+h,=1o0n K.
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PROOF. (a) Suppose ¢ = 3 ming d(-, V¢). By Corollary 3.1.2, ¢ > 0. The
continuous function f = Hf(’e satisfies xrr < f < xg_, that is K < f < K..

Part (a) follows if we note that the closure (K.)~ of K. is contained in V.

(b) For each z € K there exists an r, > 0 such that B(z,r,) C V; for some
i. Let U, = B(z,ir,). It is important to note that (U,)~ C V; and (U,)~
is compact since X is compact. There exist points x4, ..., z,, € K such that
UL, Uy, 2 K. If 1 <@ <n, let F; denote the union of those (Us,;)~ which are
contained in V;. By Part (a), there exist continuous functions f; such that
F, < fi <V;,i=1,...,n. Define

hi = h
hy = (1= fi)fe

ho = (1= f1)..(1 = fas1) fa-

Clearly, h; < V;, i =1, ...,n. Moreover, by induction, we get

hid ot hy=1—(1— f)(l— o)1= fo).

Since U}, F; O K we are done.

The uniqueness in Theorem 3.2.1 is simple to prove. Suppose p; and
iy are two measures for which the theorem holds. Fix € > 0 and compact
K C X and choose an open set V' so that (V) < puy(K)+e. K < f <V,

ul(K)z/Xdeulﬁ/dem:Tf

:/ fdpy < / Xvdpg = pa(V) < po(K) + &
X X

Thus p,(K) < py(K). If we interchange the roles of the two measures, the
opposite inequality is obtained, and the uniqueness of p follows.

To prove the existence of the measure p in Theorem 3.2.1, define for every
open V in X,

p(V) =supTf.
F=V
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Here p(¢) = 0 since the supremum over the empty set, by convention, equals
0. Note also that u(X) = T'1. Moreover, (V) < u(V2) if V; and V5 are open
and V; C V,. Now set

u(E) = V‘}ng p(V)if B e B(X).
open

Clearly, p(Ey) < u(Ey), if By C Ey and Ey Ey € B(X). We therefore say
that p is increasing.

Lemma 3.2.1. (a) If V4,...,V,, are open,
(Ui, Vi) < B u(Va).
(b) If By, Bs, ... € B(X),

(U2, E;) < 532, ().

(¢) If Ky, ..., K, are compact and pairwise disjoint,
p(Uisy Ki) = B p(KG).

PROOF. (a) It is enough to prove (a) for n = 2. To this end first choose
g < V1UV;y and then h; < V;, @ = 1,2, such that hy + he = 1 on supp ¢g. Then
g =hig + hag

and it follows that

Tg = T(h1g) + T(hag) < (Vi) + p(Va),

Thus
p(ViuVa) < u(Va) + p(Va).
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(b) Choose € > 0 and for each i € N, choose an open V; D E; such p(V;) <
w(E;) +27%. Set V = U, V; and choose f < V. Since suppf is compact,
f<ViU..UV, for some n. Thus, by Part (a),

Tf<p(ViU..UVy) < S (Vi) < B2 u(E) + ¢

and we get
p(V) < B pu(E;)

since ¢ > 0 is arbitrary. But U2, E; C V' and it follows that

(U E;) < 532 ().

(c) It is enough to treat the special case n = 2. Choose ¢ > 0. Set p =

d(K1,K;) and Vi = (K4),/2 and Vi = (K3),/2. There is an open set U 2

K, UK, such that u(U) < p(K;UK»)+¢€ and there are functions f; < UNV;

such that T'f; > u(U NV;) — e for i = 1,2. Now, using that u increases
(K1) + p(K2) < p(UN VL) + p(UN V)

S Tfl + Tf2 + 28 = T(fl + f2) + 28.
Since f1 + fo < U,

n(K1) + p(Ks) < p(U) + 26 < p(Ky U K) + 3¢
and, by letting ¢ — 0,
p(Ky) + p(K2) < p(Ki U K»).

The reverse inequality follows from Part (b). The lemma is proved.

Next we introduce the class

M= EeB(X); p(E)= sup u(K)
KKQE t
compac
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Since p is increasing M contains every compact set. Recall that a closed
set in X is compact, since X is compact. Especially, note that ¢ and X € M.

COMPLETION OF THE PROOF OF THEOREM 3.2.1:

CLAIM 1. M contains every open set.

PROOF OF CLAIM 1. Let V' be open and suppose o < p(V'). There exists
an f < Vsuchthat o <Tf. If Uisopenand U O K =4 ¢suppf, then f < U,
and hence T'f < p(U). But then T'f < p(K). Thus a < pu(K) and Claim 1
follows since K is compact and K C V.

CLAIM 2. Let (E;)2, be a disjoint denumerable collection of members of
M and put E = U2, E;. Then

W(E) = 52, ()

and F € M.

PROOF OF CLAIM 2. Choose € > 0 and for each i € N, choose a compact
K; C E; such that u(K;) > p(E;) —27%. Set H, = K; U ... U K,,. Then, by
Lemma 3.2.1 (c),

w(E) > p(Hy) = i p(KG) > Sy pu(E;) — €

and we get

W(E) > £, u(E).
Thus, by Lemma 3.2.1 (b), u(F) = £°,u(E;). To prove that E € M, let €
be as in the very first part of the proof and choose n such that

p(E) < XL p(Es) + €.
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Then
pw(E) < p(H,) + 2¢

and this shows that £ € M.

CLAIM 3. Suppose E € M and € > 0. Then there exist a compact K and
an open V such that K C ECV and u(V \ K) <e.

PROOF OF CLAIM 3. The definitions show that there exist a compact K
and an open V such that

u(V) = 5 < u(E) < p(K) + 5.

The set V' \ K is open and V \ K € M by Claim 1. Thus Claim 2 implies
that
pE) +p(V A K) = p(V) < p(K) +¢

and we get u(V \ K) < e.

CLAIM 4. If A € M, then X \ A € M.

PROOF OF CLAIM 4. Choose ¢ > 0. Furthermore, choose compact K C A
and open V' D A such that u(V \ K) < e. Then

X\VAC(VNK)U(X\V).
Now, by Lemma 3.2.1 (b),
w(X\A) <e+pu(X\V).

Since X \ V is a compact subset of X \ A, we conclude that X \ A € M.

Claims 1, 2 and 4 prove that M is a o-algebra which contains all Borel
sets. Thus M = B(X).
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We finally prove (a). It is enough to show that

Tf < /deu

for each f € C(X). For once this is known

~Tf = T(~f) < /X —fdp < - /X fdu

and (a) follows.
Choose € > 0. Set f(X) = [a,b] and choose yy < y; < ... < y, such that
Y1 =a, Yo—1 = b, and y; — y;_1 < . The sets

Ei=f"Yyi—n,ul), i=1,..,n

constitute a disjoint collection of Borel sets with the union X. Now, for each 1,
pick an open set V; 2 E; such that u(V;) < p(E;)+£ and V; C f~(]—o00, 1)
By Theorem 3.2.2 there are functions h; < V;, i = 1,...,n, such that X! ;h; =
1 on suppf and h;f < y;h; for all i. From this we get

Tf=%_Thif) < S yiThi <X y:u(Vi)
19
< Z?:1yiﬂ(Ei) + E?:ﬂ/iﬁ
< Ny (yi — e)u(Ey) +ep(X) + (b +e)e

< Z?l/ fdu+eu(X)+ (b+¢e)e
E;

= /X fdp+ep(X) + (b+e)e.

Since ¢ > 0 is arbitrary, we get

Tf < /X fdp.

This proves Theorem 3.2.1.

It is now simple to show the existence of volume measure in R". For
pedagogical reasons we first discuss the so called volume measure in the unit
cube @ = [0,1]" in R™.
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The Riemann integral

Lf@ﬂ%

is a positive linear functional as a function of f € C(Q). Moreover, T1 = 1
and the Riesz Representation Theorem gives us a Borel probability measure

w in @ such that
[ rards= [ su
Q Q

Suppose A C @ is a closed n-cell and i € N . Then
vol(4) < / M9, (a)de < vol(Ay 1)
o &

and

I«

aa-i(®) = xa(z) as i — oo

for every x €R". Thus
p(A) = vol(A).

The measure p is called the volume measure in the unit cube. In the special
case n = 2 it is called the area measure in the unit square and if n = 1 it is
called the linear measure in the unit interval.

PROOF OF THEOREM 1.1.1. Let R=RU {—00, 00} be the two-point com-
pactification of R introduced in Example 3.1.3 and let R"™ denote the product
of n copies of the metric space R. Clearly,

B(R") = {A NR™ Ae B(Rn)} .

Moreover, let w : R" — 0, 00| be a continuous map such that

/nw(x)dm 1

Tf= . f(@)w(z)dz, fe CRM).

Now we define
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Note that 71 = 1. The function T is a positive linear functional on C'(R™)
and the Riesz Representation Theorem gives us a Borel probability measure
1 on R™ such that

(v)w(z)dr = fdu, feC@RMY).

R’IL Rn

As above we get

for each compact n-cell in R". Thus

p(R™) = lim w(z)dr =1

oo Sl

and we conclude that p is concentrated on R™. Set py,(A) = pu(A), A €
B(R™), and

1
dm, = —du,.

w

Then, if f € C.(R"),
fayw)ds = [ fdug
Rn Rn
and by replacing f by f/w,
f(z)dz = fdm,,.
R" R"

From this m,,(A) =vol(A) for every compact n-cell A and it follows that m,,
is the volume measure on R". Theorem 1.1.1 is proved.

(k)

3.3 g-Adic Expansions of Numbers in the Unit Interval

To begin with in this section we will discuss so called g-adic expansions of
real numbers and give some interesting consequences. As an example of an
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application, we construct a one-to-one real-valued Borel map f defined on
a proper interval such that the range of f is a Lebesgue null set. Another
example exhibits an increasing continuous function GG on the unit interval
with the range equal to the unit interval such that the derivative of G' is
equal to zero almost everywhere with respect to Lebesgue measure. In the
next section we will give more applications of g-adic expansions in connection
with infinite product measures.

To simplify notation let (Q2, P, F) = ([0, 1[, B([0, 1[), v1)0,17). Furthermore,
let ¢ > 2 be an integer and define a function h : R —{0,1,2,...,g — 1} of
period one such that

k kE+1
h(z) = k, —§x<L, k=0,..,qg—1.
q q

Furthermore, set for each n € N,
£, (w)=hlg"'w), 0<w< 1.

Then ]
P, =k] = 5, k=0,..q—1.

Moreover, if ki, ....,k, € {0,1,2,...,¢ — 1}, it becomes obvious on drawing a
figure that

P& =k, &y = k] = S0P [& =k, oo €y = K1, €, = 1]
where each term in the sum in the right-hand side has the same value. Thus
Pl&y =k, &y =kna] =qP [& =k, &y = ko1, & = ki

and
P [51 =ky,..&oy =kno1,€, = kn} =P [51 =ky,.., &g = kn_l] P¢, =k,].
By repetition,

P [51 =k, .., 1 =kn1,§, = kn} =1 P[¢, =K.
From this we get

P |:§1 € A17 "'fnfl € A’nfl?gn € An] = H?:lp [61 € Al]
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for all Ay,..., A, €{0,1,2,...,q—1}.
Note that each w € [0, 1] has a so called g-adic expansion

fz(w)

i

_ yo0
w =22,

If necessary, we write £, = 5,(1‘1) to indicate ¢ explicitly.

Let ko € {0,1,2,...,q — 1} be fixed and consider the event A that a num-
ber in [0, 1[ does not have ko in its g-adic expansion. The probability of A
equals

PIA]=P[¢ # ko, 1=1,2,...] = lim P, # ko, i =1,2,...,1]

n—oo

-1
= lim I, P& # ko] = lim (1) = 0.
n—oo n—00 q
In particular, if

D, — {w cl0,1]; ¥ £1, i= 1n}

then, D =N, D, is a P-zero set.
Set o
[e’s) 257, w
flw) =%, 32-( )
We claim that f is one-to-one. If 0 < w,w’ < 1 and w # W' let n be the
least i such that 51(2)@1) # 552)@/ ); we may assume that £ (w) = 0 and
£@(w') = 1. Then

, 0<w< 1.

20 (w) 260w | 2
) > L, R = N o
fw) =X, 3i i=1 30 + 3n
i1 260(0) g A o 267(W)
= Z31‘:11 3i + Zi:n+1§ > X2 30 = f(w).

Thus f is one-to-one. We next prove that f(£2) = D. To this end choose
y e D.If §§3) (y) =2 for all i € N, then y = 1 which is a contradiction. If
k > 1 is fixed and 5,(63) (y) = 0 and §§3) (y) = 2,4 >k + 1, then it is readily
seen that £ S’) (y) = 1 which is a contradiction. Now define

1¢(3)
W= 25012&2_1'(3/)
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and we have f(w) =y.

Let C,, = D, n € N;. The set C' = N2 ,C,, is called the Cantor set.
The Cantor set is a compact Lebesgue zero set. The construction of the
Cantor set may alternatively be described as follows. First Cy = [0, 1]. Then
trisect Cy and remove the middle interval ] %, % [ to obtain Cy = Cp \ } %, % [ =
[O, %} U [%, 1} . At the second stage subdivide each of the closed intervals
of (' into thirds and remove from each one the middle open thirds. Then
Cy=C1\ (|3, 2[U]1L,2]). What is left from C,,_; is C,, defined above. The

set [0, 1]\ O,? i: the union of 2" —1 intervals numbered I}, k =1,...,2" — 1,
where the interval I} is situated to the left of the interval I}* if k < (.

Suppose n is fixed and let G, : [0,1] — [0, 1] be the unique monotone in-
creasing continuous function, which satisfies G,,(0) = 0,G,,(1) = 1,G,(z) =
k27" for x € I} and which is affine on each interval of C,, It is clear that
Gpn = Gy on each interval I, k = 1,...,2" — 1. Moreover, | G,, — Gp41 |<
271 and thus

n

Let G(z) = lim, 0o Gn(x), 0 < z < 1. The continuous and increasing func-
tion G is constant on each removed interval and it follows that G’ = 0 a.e.
with respect to linear measure in the unit interval. The function G is called
the Cantor function or Cantor-Lebesgue function.

Next we introduce the following convention, which is standard in Lebesgue
integration. Let (X, M, i) be a positive measure space and suppose A € M
and p(A°) = 0. If two functions g, h € £ (1) agree on A,

/gdu:/ hd .
X X

If a function f : A — R is the restriction to A of a function g € £L'(u) we

define
/ fdp = / gdp.
X X

Now suppose F' : R — R is a right continuous increasing function and
let 1 be the unique positive Borel such that

w(la,z]) = F(z) — F(a) ifa,z € R and a < z.
If h € L'(p) and F € R, the so called Stieltjes integral

/E h(z)dF ()
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is by definition equal to

/ hd .
E

Ifa,b e R, a <b, and F' is continuous at the points a and b, we define

/a ’ h(z)dF(z) = /1 hdp

where [ is any interval with boundary points a and b.
The reader should note that the integral

/R h(z)dF (z)

in general is different from the integral

/R h(z) ' (2)da.

For example, if G is the Cantor function and G is extended so that G(x) = 0
for negative x and G(z) = 1 for = larger than 1, clearly

/R h(@)G (x)dz = 0

since G'(x) = 0 a.e. [m]. On the other hand, if we choose h = xq 1,

/ h(z)dG(x) = 1.
R

3.4. Product Measures

Suppose (X, M) and (Y,N) are two measurable spaces. If A € M and
B e N, the set A x B is called a measurable rectangle in X x Y. The product
o-algebra M QN is, by definition, the o-algebra generated by all measurable
rectangles in X x Y. If we introduce the projections

Wx(l',y) =, (x,y) €EX XY

and
’/TY(-%,Q) =Y, (:an) € X X Y7
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the product c-algebra M ® N is the least o-algebra S of subsets of X x Y,
which makes the maps 7x : (X xY,8) — (X, M) and 7y : (X xY,S) —
(Y, N) measurable, that is M @ N = o (7 (M)Ury (N))..

Suppose £ generates M, where X € £, and F generates N, where Y € F.
We claim that the class

EXRF={ExXF;E€fand F € F}
generates the o-algebra M @ N. First it is clear that
c(ERF)CMRN.
Moreover, the class
{EEM;ExY €c(ERF)}=MN{ECX; 7 (E) €d(ERF) }

is a o-algebra, which contains £ and therefore equals M. Thus A x Y €
o(EXF) for all A € M and, in a similar way, X x B € o(E X F) for all
B € N and we conclude that A x B=(AxY)N (X x B) € 0(E X F) for
all A€ M and all B € M. This proves that

MRON Co(EXRF)
and it follows that
c(ERF)=MeN.

Thus
c(EXF)=0()@c(F)if X e and Y € F.

Since the o-algebra R, is generated by all open n-cells in R”, we conclude
that
Riin =Rr @ Ry,

Given ¥ C X x Y, define
E,={y; (z,y) e E} ifre X

and
EY ={z; (z,y) e E} ifyeY.

Iff:XxY — Zisafunctionand xr € X,y €Y, let

f(y) = fz,y), fyeY
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and
f(x) = fx,y), if v € X.

Theorem 3.4.1 (a) If E € M N, then E, € N and EY € M for every
reXandyey.

) If f: (X XY, M@N)— (Z,0) is measurable, then f, is (N,O)-
measurable for each © € X and fY is (M, O)-measurable for each y €Y.

Proof. (a) Choose y € Y and define o : X — X xY by ¢(x) = (z,y). Then
M=0(p" (MRN)) = ¢ (¢(MRN)) = ¢ (M N)

and it follows that EY € M. In a similar way E, € N for every v € X.
(b) For any set V € O,

(fHV))e = (£)7H(V)

and
(V)Y = () H(V).

Part (b) now follows from (a).

Below an (M, Ry~ )-measurable or (M, R)-measurable function is simply
called M-measurable.

Theorem 3.4.2. Suppose (X, M,u) and (Y,N,v) are positive o-finite
measurable spaces and suppose E € M@ N . If

f(x) = v(E,) and g(y) = n(EY)

for every x € X and y € Y, then f is M-measurable, g is N -measurable,

and
/fdu:/gdz/.
X Yy

Proof. We first assume that (X, M,u) and (Y, N,v) are finite positive
measure spaces.
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Let D be the class of all sets E € M ® N for which the conclusion of
the theorem holds. It is clear that the class G of all measurable rectangles
in X xY is a subset of D and G is a w-system. Furthermore, the Beppo
Levi Theorem shows that D is a o-additive class. Therefore, using Theorem
1.22, M@ N = o(G) C D and it follows that D = M @ N.

In the general case, choose a denumerable disjoint collection (Xj)52 ;of

members of M and a denumerable disjoint collection (Y,)52 ;of members of
N such that

U Xy =Xand UZX Y, =Y.

Set
e = Xx, s b =1,2, ...

and
Un = Xy,V,n=12,...

Then, by the Beppo Levi Theorem, the function

flz) = /Y Yol Xe (T, y) Xy, (y)dv(y)

=S [ el o) = S (B

is M-measurable. Again, by the Beppo Levi Theorem,

/deuzﬁi‘k/xfduk

and
[ tan === [ B = St [ vl Edgto)

X

In a similar way, the function g is N -measurable and

[ atv =i [ i) = St [ B0,

Since the theorem is true for finite positive measure spaces, the general case
follows.
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Definition 3.4.1. If (X, M, ) and (Y, N,v) are positive o-finite measur-
able spaces and £ € M ® N, define

(e oB) = [ (EBa)duta) = [ n(E")in(y)

The function g x v is called the product of the measures y and v.

Note that Beppo Levi’s Theorem ensures that p X v is a positive measure.

Before the next theorem we recall the following convention. Let (X, M, )
be a positive measure space and suppose A € M and pu(A°) = 0. If two
functions g, h € L'(u) agree on A,

/gdu:/ hdy.
X X

If a function f : A — R is the restriction to A of a function g € £'(u) we

define
/ fdp = / gdp.
X X

Theorem 3.4.3. Let (X, M,pu) and (Y,N,v) be positive o-finite measur-
able spaces.

(a) (Tonelli’s Theorem) If h: X x Y — [0,00] is (M ® N')-measurable
and

f(w)zf/h(%y)dV(y) and g(y)z/ h(z,y)du(z)

X
for every x € X and y € Y, then f is M-measurable, g is N-measurable,

and
/fdu:/ hd(,uxv):/gdl/
X XxY Y

(b) (Fubini’s Theorem)
(i) If h: X XY — R is (M ® N)-measurable and

[ 1 hta | dvto)auta) < o
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then h € L*(u x v). Moreover,
[ reavtnine) = [ wduxn) = [ ([ nepintant)

(i) If h € L'((u x v)™), then h, € L*'(v) for p-almost all x and

| s = [ ([ nepit)in)

(ii1) If h € L'((u x v)7), then hY € L'(u) for v-almost all y and

/M hd(p xv) = /Y< /X h(z, y)du(x))dv(y)

PROOF. (a) The special case when h is a non-negative (M ® N )-measurable
simple function follows from Theorem 3.4.2. Remembering that any non-
negative measurable function is the pointwise limit of an increasing sequence
of simple measurable functions, the Lebesgue Monotone Convergence Theo-
rem implies the Tonelli Theorem.

(b) PART (i) : By Part (a)

o> [ ([ W @aivaut) = [ i)

XxY

:/Y(/X bt (z,y)dp(z))dv(y)
and

so> [ ([ h @it = [ wdgo)

XxY
- [([ 1 autanavty)
y Jx
In particular, h = h* — h™ € L'(u x v). Let

A={zeX; (W), (h ). € L (v)}.
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Then A€ is a p-null set and we get

[ @i = [ wagoo)

" [ b pirtinine) = [ wageo)
o [ b pirtidne) = [ natuxv)
and, hence,

] mevtinine) = [ nagex),

The other case can be treated in a similar way. The theorem is proved.

PART (ii) : We first use Theorem 2.2.3 and write h = ¢ + 1) where ¢ €
LY(p x v), ¢ is (M ® N)"-measurable and 1) = 0 a.e. [u X v/]. Set

A={zeX; (¢ )u (¢ )e € L'(v)} .
Furthermore, suppose E 2 {(z,y); ¢¥(z,y) #0}, FE € M®N and
(k x v)(E) = 0.
Then, by Tonelli’s Theorem
0= / v(E,)du(x).
X

Let B = {z € X; v(E,) # 0} and note that B € M. Moreover u(B) = 0
and if x ¢ B, then ¢, = 0 a.e. [v] that is h, = ¢, a.e. [v]. Now, by Part (7)

/XXY hd(p x v)~ = /XXY ed(p x v) = /A(/Y o(z, y)dv(y))dp(z)

-/ N [ ctwpatan) = [ mBC( | Heivt)dnte)
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— [ (] negpavi)anta).

Part (i4i) is proved in the same manner as Part (ii). This concludes the
proof of the theorem.

If (X;,M,;), i = 1,...,n, are measurable spaces, the product o-algebra
M; ® ... ® M, is, by definition, the o-algebra generated by all sets of the
form

A x ... x A,

where A; € M;, i =1,...,n. Now assume (X;, M;, i1,), i = 1, ..., n, are o-finite
positive measure spaces. By induction, we define v; = p; and vy = vi_1 X i,
k =1,2,...,n. The measure, v, is called the product of the measures y, ..., tt,,
and is denoted by p; X ... X pu,,. It is readily seen that

Ry=Ri1® ... 2 Ry (n factors)

and
Uy =1 X ... X 01 (n factors).

Moreover,
R, 2 (Ry)" =4ef R{ ®...@ Ry (n factors).

If A e P(R)\R;, by the Tonelli Theorem, the set A x {0,...,0} (n —1
zeros) is an m,,-null set, which, in view of Theorem 3.4.1, cannot belong to
the o-algebra (Ry)". Thus the Axiom of Choice implies that

R, # (Ry)"
Clearly, the completion of the measure m; X ... x my (n factors) equals

My
Sometimes we prefer to write

/ flzq, ..y xy)dxy.. dxy,
A1X...xAp

instead of

/A  Fwdm(a)
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or

L

Moreover, the integral

/ f(a:l,...,a:n)dxl...dxn
An Aq

is the same as
/ f(zq, .y xy)dey...dxy,.
A1 X... XAy

Definition 3.4.2. (a) The measure

2

2 dx
A= [eT = Ac
’71( ) Ae \/%

is called the standard Gauss measure in R.

R

(b) The measure
Y = V1 X .. X ;1 (n factors)

is called the standard Gauss measure in R". Thus, if

|z |=1/22+ .. +22, 2= (21,...,2,) €ER"

2?2 dx

Y(A)= [ e 2 ——, AER,.
A 2m

we have

(c¢) A Borel measure i in R is said to be a centred Gaussian measure if
p = f(v,) for some linear map f: R — R.

(d) A real-valued random variable ¢ is said to be a centred Gaussian
random variable if its probability law is a centred Gaussian measure in R.
Stated otherwise, ¢ is a real-valued centred Gaussian random variable if either

L(&) = do (abbreviated £ € N(0,0))
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or there exists a o > 0 such that

£<§) =, (abbreviated £ € N(0,0)).

(e) A family (&,)ier of real-valued random variables is said to be a centred
real-valued Gaussian process if for all ¢1,....t, € T, aq, ..., a, € R and every
n € N, the sum

5 = ZZ:lakgtk

is a centred Gaussian random variable.

Example 3.4.1 Suppose | z | = /22 + ... + 22 if = (21,...,2,,) € R". We

claim that .

z; + a?
li 1+ —
koo Rng( M

() = Vel

To prove this claim we first use that e > 1 + ¢ for every real ¢t and have for
each fixed i € {1,...,n},

’I‘Z-‘r’l‘l
Moreover, if £ € N, then
T; —i—:c 1 1 1
1 4k — -
T Sl g k- ) >0

and we conclude that

Thus, for any £ € N,
LTt + x? b el
0 < fu(x) =dey H b < He T =ger g()

where g € £L(v,,) since

- xrm? dx
g(x)dy, (z) = / e 7 ~ = {Tonelli’s Theorem} =
/ n n H \/ 2

™
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sl

n

zifz? i
/ s L1
R

5

=1

Moreover,

lim fi(z) = g(z)

k—o00

and by dominated convergence we get

n

lim [ JJ1+

k—oo R

2
T; + x;

) ) = / g(@)dy, () = V2 e,

Exercises

1. Let (X, M, ) and (Y, N,v) be two o-finite positive measure spaces. Let
f € LYp) and g € L'(v) and define h(z,y) = f(z)g(y), (z,y) € X x Y.
Prove that h € L'(u X v) and

/XXY hd(y x ) —/de,u/ygdy.

2. Let (X, M, ) be a o-finite positive measure space and f : X — [0,00] a
measurable function. Prove that

/deuz (1 x m)({(a,9); 0 <y < fa), x € X)),

3. Let (X, M, pu) be a o-finite positive measure space and f : X — R a
measurable function. Prove that (1 x m)({(z, f(x)); v € X }) =0.

4. Let E € Ry and E C [0,1] x [0, 1]. Suppose m(E,) < 3 for m-almost all
z € [0,1]. Show that

m({y € [0,1];m(EY) = 1}) <

N =



5. Let ¢ be the counting measure on R restricted to R and
D ={(x,x); € R}.

Define for every A € (RXR)U{D},

() = [ ([ xal)in(2)icty

and

v(4) = /R ( /R a2 y)de(y))dos ().

(a) Prove that p and v agree on R X R.
(b) Prove that u(D) # v(D).

6. Let / =10,1] and

22— g2
h(xay) = m: ($7y) el xlI.
Prove that
T
([ neppagar =7,
rJr
([ neoyy = -7
1 Jr 4
and

/ | h(z,y) | dedy = oo.
IxI

7. Fort >0 and 2 € R let

1 22
g(t,x) = \/ﬁe 2
and p
ht,z) = a—ft’.

Given a > 0, prove that

115
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and

/aoo(/‘: h(t,z)dz)dt = 0

| h(t,z) | dtdx = .

and conclude that

la,00[xR
(Hint: First prove that
/ g(t,z)dxr =1
and
dg 1% )
ot 20x?

8. Given f € L'(m), let

z+1
o(z) = %/_1 F(t)dt, 7 € R.

Prove that

/R!g(x)ldars/Ru(x)mx.

9. Let I = [0,1] and suppose f : [ — R is a Lebesgue measurable function
such that

/I @) = £ | dedy < oo,

Prove that

14 do < .

10. Suppose A € R~ and f € L*(m). Set

o) = /Rd(y,A)f(y)dy’ _—

|z —y |2

Prove that

IRECIEEES
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11. Suppose that the functions f,g : R — [0, 00| are Lebesgue measurable
and introduce p = fm and v = gm. Prove that the measures p and v are
o-finite and

(uxv)(E) = [Ef(x)g(y)da:dy itEFEeR QR

12. Suppose p is a finite positive Borel measure on R” and f: R" — R a
Borel measurable function. Set g(z,y) = f(z) — f(y), =,y € R™. Prove that
f e LY(p) if and only if g € L' (1 X ).

13. A random variable £ is non-negative and possesses the distribution func-
tion F(x) = P [ < z]. Prove thatE [¢] = [77(1 — F(z))da.

14. Let (X, d) be a metric space and suppose Y € B(X). Then Y equipped
with the metric d|y .y is a metric space. Prove that

B(Y)={ANY; AeB(X)}.

15. The continuous bijection f : (X,d) — (Y,e) has a continuous inverse.
Prove that f(A) € B(Y) if A € B(X)

16. A real-valued function f(x,y),z,y € R, is a Borel function of z for every
fixed y and a continuous function of y for every fixed x. Prove that f is a
Borel function. Is the same conclusion true if we only assume that f(z,y) is
a real-valued Borel function in each variable separately?

17. Suppose a > 0 and

00 a®
Ko = e " Z m(sn

n=0 "
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where d,(A) = x4(n) if n € N={0,1,2,...} and A C N. Prove that

(Ko X 115)8™" = gy

for all a,b > 0, if s(z,y) =x+vy, x,y € N.

18. Suppose

2

£0t) :/ 2 gz, t>0.
0

x2 +t2
Compute
lim f(t) and / (1)t
0

t—0-+

Finally, prove that f is differentiable.

19. Suppose
0 In(1
ft) :/ e_twwdm, t>0.
0

1+2x

a) Show that [° f(t)dt < co.
b) Show that f is infinitely many times differentiable.

20. Suppose f is Lebesgue integrabel on ]0,1[. (a) Show that the function
g(x) = fml t~1f(t)dt, 0 < z < 1, is continuous. (b) Prove that fol g(x)dx =

fol f(z)dz.

3.5 Change of Variables in Volume Integrals

If T is a non-singular n by n matrix with real entries, we claim that

1

T n) = 737 . 1Yn
(on) = TqeeT "
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(here T' is viewed as a linear map of R™ into R™). Remembering Corollary
3.1.3 this means that the following linear change of variables formula holds,
viz.

1
To)de = ——
S T0der = e

The case n = 1 is obvious. Moreover, by Fubini’s Theorem the linear change
of variables formula is true for arbitrary n in the following cases:

(a) Tx = (Tx(1); ---, Tr(n)), Where 7 is a permutation of the numbers 1, ..., n.

(b) Tx = (axq, 23, ..., T,,), Where « is a non-zero real number.

(c) Tx = (w1 + 22, T2, ..., Tp).

Recall from linear algebra that every non-singular n by n matrix 7" can be
row-reduced to the identity matrix, that is 7" can by written as the product
of finitely many transformations of the types in (a),(b), and (c). This proves
the above linear change of variables formula.

Our main objective in this section is to prove a more general change
of variable formula. To this end let 2 and I" be open subsets of R™ and
G : Q — I' a C! diffeomorphism, that is G = (gi,...,9,) is a bijective

continuously differentiable map such that the matrix G'(z) = (gg; (%))1<ij<n

(x)dz all f e C.(R™).

is non-singular for each z € . The inverse function theorem implies that
G1:T — QisaC! diffeomorphism [DI].

Theorem 3.5.1. If f is a non-negative Borel function in €2, then

/Ff@)dff = /Qf(G@)) | det G'(x) | dz.

The proof of Theorem 3.5.1 is based on several lemmas.
Throughout, R" is equipped with the metric

Let K be a compact convex subset of 2. Then if z,y € K and 1 <17 < n,

oia) = aits) = [ oty + tlo = )

! n agz
= | Yoy (y +t(z —y))(zr — yr)dt
0 Ty
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and we get
where
M (G, K) = max ¥j_, max | %(2) |
’ N 1<i<n k=1 2€K axk '

Thus if B(a;7) is a closed ball contained in K,

G(B(a;r)) € B(G(a); M(G, K)r).

Lemma 3.5.1. Let (Qr)2, be a sequence of closed balls contained in € such
that

Qi1 € Qk

and
diam @ — 0 as k — oc.

Then, there is a unique point a belonging to each Q) and

n(G
lim sup onlG () <|detG'(a) | .

n—00 Un(Qk)
PROOF. The existence of a point a belonging to each ;. is an immediate
consequence of Theorem 3.1.2. The uniqueness is also obvious since the
diameter of Q) converges to 0 as k — oo. Set T = G'(a) and F = T7'G.

Then, if Qr = B(xy;71),

un(G(Qr)) = va(T(TT'G(Q1))) =| det T | v, (T~ G(B(xy;74)))
<| det T | v, (B(T'G(wy); M(T'G; Qp)ry,) =| det T | M(T'G; Q)" vn( Q).
Since

lim M(T'G; Q) =1

k—o00

the lemma follows at once.

Lemma 3.5.2. Let () be a closed ball contained in €2. Then

on(G(Q)) < /Q | det G'(z) | da.
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PROOF. Suppose there is a closed ball () contained in §2 such that
on(G(Q)) > / | det G (x) | da.
Q

This will lead us to a contradiction as follows.
Choose € > 0 such that

v (G(Q)) > (1 +6)/Q | det G'(z) | dx.

Let Q = U?" By, where By, ..., Byn are mutually almost disjoint closed balls
with the same volume. If

on(G(By)) < (l—l—s)/ |det G'(z) | do, k=1,..,2"

By,
we get
ua(G(Q)) < TiZyva(G(By))
<2 (1 +z—:)/B | det G'(z) | de = (1 +5)/Q | det G'(z) | dx

which is a contradiction. Thus

va(G(Bg)) > (1 +€)/ | det G'(z) | dx

By

for some k. By induction we obtain a sequence (Q)%2; of closed balls con-
tained in (2 such that

Qrt1 € Qr,
diam @ — 0 as k — oo

and

on(G(QW) > (1 “)/Q | det G (x) | da.

But applying Lemma 3.5.1 we get a contradiction.
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PROOF OF THEOREM 3.5.1. Let U C €2 be open and write U = U2, Q);
where the Q)}s are almost disjoint cubes as in Theorem 3.1.5. Then

un(G(U)) < XZ,0n(G(Q1)) < BZ, o | det G'(z) | dax

—/ | det G'(z) | dz.
U

Using Theorem 3.1.3 we now have that

on(G(E)) < [E | det G/(z) | da

for each Borel set £ C ). But then

/f da:</f ) | det G (x) | dz

for each simple Borel measurable function f > 0 and, accordingly from this
and monotone convergence, the same inequality holds for each non-negative
Borel function f. But the same line of reasoning applies to G replaced by

G~! and f replaced by f(G) | det G’ |, so that

/f ) | det G'(z) | dx < /f )| det G'(G7(z)) || det(G™Y () | dx

_ /Ff(x)dx

Example 3.5.1. If f: R? — [0,00] is (R2, Ro.00)-measurable and 0 < £ <
R < oo, the substitution

This proves the theorem.

G(r,0) = (rcos@,rsinb)

yields

R pr2rm
/ f(z1,x9)dx1dxs = lim / / f(rcos@,rsin@)rdfdr
e<y/2?+zI<R §—0F 5
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R 27
= / / f(rcos,rsin@)rdfdr
5 0

and by letting ¢ — 0 and R — oo, we have

00 2m
f(xy, z0)dxrday = / / f(rcosf,rsinf)rdidr.
o Jo

R2

The purpose of the example is to show an analogue formula for volume
measure in R".

Let S" ' = {z € R";|  |= 1} be the unit sphere in R". We will define a
so called surface area Borel measure o,,_; on S™ ! such that

f(x)dx = /00 frw)r" o, (w)dr
R" 0 Jsn-

for any (R, Ro.c)-measurable function f : R" — [0, 00]. To this end define
G :R™\ {0} —]0,00[ x S"! by setting G(z) = (r,w), where

r=|x]| and w= .
| @ |

Note that G™! :]0,00[ x S"1 — R"™\ {0} is given by the equation
G Hr,w) = rw.

Moreover,

G ]0,a] x E) = aG1(]0,1] x E) ifa>0and E C S™ .
If E € B(S™ ') we therefore have that

v, (G71(]0,a] x E)) = a"v,(G71(]0,1] x E)).
We now define
on_1(E) = nv,(G71(]0,1] x E)) if E € B(S™™)

and

p(A) = /Arn_ldr if A € B(]0,0[).
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Below, by abuse of language, we write v, g {0y = v,. Then, if 0 < a <
b<ooand E € B(S"1),

G(va)(]0,a] x E) = p(]0, a])o,—1(E)
and
G(vn)(Ja, 0] x E) = p(Ja,b])on-1(E).

Thus, by Theorem 1.2.3,
G(vn) = p X 0p_1

and the claim above is immediate.
To check the normalization constant in the definition of ¢,_1, first note
that

R R"
u(lz |< R) = / / r"do(w)dr = —0,_1(S™)
0 Jsn-t n
and we get
d
ﬁvnﬂ r|<R)=R"1 o, 1(S"").
Exercises

1. Extend Theorem 3.5.1 to Lebesgue measurable functions.

2. The function f : R — [0, oo[ is Lebesgue measurable and [ fdm = 1.
Determine all non-zero real numbers « such that fR hdm < oo, where

h(z) =32 f(a"x +n), = € R.

3. Suppose
H(A) :/ Lz el dr, A € BRY),
A

where | z | = /22 4+ ...+ 22 if z = (21,...,2,) € R". Compute the
limit

lim p™" Inp({z € R"; |z [= p}).

p—00
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4. Compute the n-dimensional Lebesgue integral

/ In(1— | 2 |)da
|z|<1

where | z | denotes the Euclidean norm of the vector x € R". (Hint:
O'(Sn_l) — 27"/2 )

T(n/2)"

5. Suppose f € L'(msy). Show that lim, .. f(nx) = 0 for my-almost all
r € R%

1
3.6. Independence in Probability

Suppose (€2, F, P) is a probability space. The random variables &, : (2, P) —
(Sk,Sk), k=1, ...,n are said to be independent if

P, ,..e) = ¥p=1 P, -

A family (&;)ies of random variables is said to be independent if §; , ..., &;
are independent for any 1iy,...i, € [  with i # 4; if & # [. A family of
events (A;)ier is said to be independent if (x 4. )ics is a family of independent
random variables. Finally a family (A;);c; of sub-c-algebras of F is said to
be independent if, for any A; € A;, i € I, the family (A;);c; is a family of
independent events.

Example 3.6.1. Let ¢ > 2 be an integer. A real number w € [0, 1] has a
g-adic expansion

é&](f)

W= X5 2
k=1 qk

The construction of the Cantor set shows that ( ,(f)),;";l is a sequence of

independent random variables based on the probability space

([0, 1[, vy, B([0, 1]))-
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Example 3.6.2. Let (X, M, 1) be a positive measure space and let 4; € M,
1 € N, be such that
N2 p(A;) < oo

The first Borel-Cantelli Lemma asserts that p-almost all x € X lie in A;
for at most finitely many ¢. This result is an immediate consequence of the
Beppo Levi Theorem since

/ Y XA, dp = 2331/ Xa,dp < 00
X X

implies that
YZiXa, <00 ae. [u].

Suppose (2, F, P) is a probability space and let (A;)$°; be independent
events such that

The second Borel-Cantelli Lemma asserts that almost surely A; happens for
infinitely many .
To prove this, we use the inequality

1+zx<e", z€R

to obtain
Pk AT = 47 P A7
= Hfi,?(l — P[A]) < Hfi]?e*P[Ai} — o SETPA]

By letting n — o0,
PINZ A =0

or

But then
PN, U2, Al =1

and the second Borel-Cantelli Lemma is proved.
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Theorem 3.6.1. Suppose &4, ...,&,, are independent random variables and
£, € N0,1), k=1,...n. If aq,...,a, € R, then

Yo, € N(0,57_ a3)

PROOF. The case aq, ..., a,, = 0 is trivial so assume «; # 0 for some k. We
have for each open interval A,

Pm;%@emzf dy (1) s (1)

r_japTpEA

1 1.2 2
/ e 2@t Ae) gy da,,.
ZZ=1akwk6A V 27T

Set 0 = \/a?+ ...+ a2 and let y = Gz be an orthogonal transformation
such that

Y1 = E(Oéll’l + ...+ Oén.fb’n).

Then, since det G =1,

6_%(y%+...+y%)dy1...dyn

Pm&%gemzf !

oY1 cA 27T

1 1,2
= efiyldyl
LylEA \% 27T

where we used Fubini’s theorem in the last step. The theorem is proved.

Finally, in this section, we prove a basic result about the existence of
infinite product measures. Let p;, & € N, be Borel probability measures
in R. The space RN+ is, by definition, the set of all sequences z = (x,)%2,
of real numbers. For each k € N, set my(x) = x;. The o-algebra RN+
is the least o-algebra S of subsets of RN+ which makes all the projections
mr o (RN+,8) — (R,R), k € N, measurable. Below, (71, ...,7,) denotes
the mapping of RN+ into R" defined by the equation

(71 ooy ) () = (m1(2), ooy T ().
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Theorem 3.6.1. There is a unique probability measure jn on RN+ such that

lu(ﬂ'l ..... Tn) =g X Xy,

for every n € N .

The measure p in Theorem 3.6.1 is called the product of the measures
iy, k € N, and is often denoted by

X1 M-
PROOF OF THEOREM 3.6.1. Let (2, P, F) = ([0, 1], vy, B([0, 1) and
set @
o Sk (W
nw) =32, wea

We already know that P, = P. Now suppose (k;)°; is a strictly increasing
sequence of positive integers and introduce

o (@)

77/ — Z,?il kz21 , w 6 Q
Note that for each fixed positive integer n, the R™-valued maps ( 52), - 6;2))
and (5221), e ,(33) are P-equimeasurable. Thus, if f : {2 — R is continuous,
' . 5(2) w
[ sonar = i [ sz S hap)
(2) (w)
= lim [ (27,2 _"0)dP(w) = / f(n')ar
n—oo [o 2Z Q

and it follows that P, = P, = P.
By induction, we define for each k € N, an infinite subset N of the set
N, \ UF!'N; such that the set N \U"_| N; contains infinitely many elements

and define @
) (w
Ny = Efl%f)

where (n;,)$2; is an enumeration of Nj. The map

V(W) = (ne(w))iZy
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is a measurable map of (2, F) into (RN+, RN+) and
P\p = Xzozl)\i

where \; = P for each i € N,.
For each i € N, there exists a measurable map ¢, of (2, F) into (R, R)
such that P, = p; (see Section 1.6). The map

[(z) = (i)

is a measurable map of (RN+, RN+) into itself and we get u = (Py)r. This
completes the proof of Theorem 3.6.1.

[k
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CHAPTER 4
MODES OF CONVERGENCE

Introduction

In this chapter we will treat a variety of different sorts of convergence notions
in measure theory. So called L?-convergence is of particular importance.

4.1. Convergence in Measure, in L'(;), and in L?(p)

Let (X, M, i) be a positive measure space and denote by F(X) the class of
measurable functions [ : (X, M) — (R,R). For any f € F(X), set

| £ lh= /X | () | dplz)

| £ lla= \/ /X F2(@)dpz).

The Cauchy-Schwarz inequality states that

and

/XIfglduSHf||z||g||ziff,g€f(X>-

To prove this, without loss of generality, it can be assumed that
0<|| flla2<oo and 0 <|| g ||l2< o0.

We now use the inequality

0f < 5(0*+ ), a.f €R
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to obtain

f1 Tgl L f g’
d = dp =1
.AHfMHMb“S/2Wf%+H9M)M

and the Cauchy-Schwarz inequality is immediate.
If not otherwise stated, in this section p is a number equal to 1 or 2. If it
is important to emphasize the underlying measure || f ||, is written || f ||, -
We now define

Lo(n) ={f € F(X); [ [ llp< o0}

The special case p = 1 has been introduced earlier. We claim that the
following so called triangle inequality holds, viz.

If+gll<Ifllp+ gl if f,g9 € L)

The case p = 1, follows by u-integration of the relation

[ f+gl<lfl+1g].

To prove the case p = 2, we use the Cauchy-Schwarz inequality and have

If+g =l f 1+ 1glll3

=Hf||§+2/X!fg!du+ g2

<IAUZ+2 0 F M2l gl + g llz= (I £ ll2+ 11 g [12)®

and the triangle inequality is immediate.

Suppose f, g € LP(n). The functions f and g are equal almost everywhere
with respect to p if {f # g} € Z,. This is easily seen to be an equivalence
relation and the set of all equivalence classes is denoted by LP(u). Below
we consider the elements of LP(u) as members of £P(y) and two members
of LP(u) are identified if they are equal a.e. [u]. From this convention it is
straight-forward to define f + g and af for all f,g € LP() and o € R and
the function d®)(f, g) =| f — g ||, is a metric on LP(u). Convergence in the
metric space LP(u) = (LP(u),d®)) is called convergence in LP(u1). A sequence
(fe)72, in F(X) converges in measure to a function f € F(X) if

klimﬂ(|fk—f|>5):(]alls>0.
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If the sequence (f;)52; in F(X) converges in measure to a function f
€ F(X) as well as to a function g € F(X), then f = g a.e. [u] since

Ur-glac{lr-fl>s uf{ir-9>35}

and
Wl f=gl>e) <ull f=fil> )+l fi=g > 3)

for every € > 0 and positive integer k. A sequence (fx)7>; in F(X) is said
to be Cauchy in measure if for every € > 0,

pll fi = fu [> €) = 0 as k,n — oo,

By the Markov inequality, a Cauchy sequence in L”(y) is Cauchy in measure.

Example 4.1.1. (a) If f; = \/EX[O%], k € N, then

1
| fr llzm=1and || fi |lLm= 7
Thus fi — 0 in L1<m) as k — oo but f - 0in Lz(m) as k — oo,
(b) L'(m) € L*(m) since
1
X1.oo((¥) 7= € L?(m) \ L' (m)

|z |
and L*(m) € L*(m) since

X]O,l] (I‘) \/m

Theorem 4.1.1. Suppose p =1 or 2.
(a) Convergence in LP(u) implies convergence in measure.
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(b) If w(X) < oo, then L*(u) C L'(u) and convergence in L*(p) implies
convergence in L'(j1).

Proof. (a) Suppose the sequence (f,)>2; converges to f in LP(u) and let
¢ > 0. Then, by the Markov inequality,

W= f 1205 [ 1h=fPdu= S0 f=F I

and (a) follows at once.

(b) The Cauchy-Schwarz inequality gives for any f € F(X),

([ 1512 < [ P [ 1w

I <1 F e v/i(X)

or
and Part (b) is immediate.

Theorem 4.1.2. Suppose f, € F(X), n € N,.

(a) If (fn)22, is Cauchy in measure, there is a measurable function f :
X — R such that f, — f in measure as n — oo and a strictly increasing
sequence of positive integers (n;)52, such that f,, — f a.e. [u] as j — oc.

(b) If w is a finite positive measure and f, — f € F(X) a.e. [u] as
n — oo, then f, — f in measure.

(c) (Egoroff’s Theorem) If u is a finite positive measure and f, —
f e F(X) a.e [u] as n — oo, then for every € > 0 there exists E € M such
that p(E) < € and

sup | fe(z) — f(z) |— 0 as n — oo.
k>n
rek*

PROOF. (a) For each positive integer j, there is a positive integer n; such
that | |
pl| fo— fil>27) <27, all k1 > n;.
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There is no loss of generality to assume that n; < ny < ... . Set

E] = {| f’flj - fTL]‘+1 |> 2_j}

and

frxeFandi>j>k

| fnz(x) _f'flj('r) |S Z | fnl+1<x) - fnl<x) |

j<i<i

and we conclude that (f,,(z))32, is a Cauchy sequence for every z € Fy. Let
G = U2 F¢ and note that for every fixed positive integer £,

plG) < p(F) < 30270 =27k,
=k

Thus G is a p-null set. We now define f(r) = lim; . f5,(z) if € G and
flz)=0ifz ¢ G.

We next prove that the sequence (f,)%°; converges to f in measure. If
x € Fy and j > k we get

| f(@) = fo,(z) |< 279F

Thus, if j > k A
p(| f = foy 1> 27770 < p(Fy) < 274

Since
i fo = £ 1> &) S il fu = Foy 1> 5) + il fo, = £ 1> 5)

if € > 0, Part (a) follows at once.
(b) For each € > 0,

il fo f 1> 2) = /X Vel fu— 7 Dip
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and Part (c) follows from the Lebesgue Dominated Convergence Theorem.

(c) Set for fixed k,n € N,

1
We have
and since p is a finite measure

w(Exn) — 0 as n — oo.

Given ¢ > 0 pick nj, € N, such that p(Ey,, ) < €27%. Then, if E = U° By,
u(E) < e. Moreover, if x ¢ E and j > ny

e

| fi(x) = flz) |<

The theorem is proved.

Corollary 4.1.1. The spaces L'() and L*(11) are complete.

PROOF. Suppose p =1 or 2 and let (f,,)32; be a Cauchy sequence in LP ().
We know from the previous theorem that there exists a subsequence (fy, );";1
which converges pointwise to a function f € F(X) a.e. [u]. Thus, by Fatou’s
Lemma,

/If—fkl”duéliminf/ [ fos = i P du
X J—oo Jx

and it follows that f — f; € LP(u) and, hence f = (f — fi) + fx € LP(u).
Moreover, we have that || f — fi ||,— 0 as k — oo. This concludes the proof
of the theorem.

Corollary 4.1.2. Suppose &, € N(0,0%), n € N, and &, — & in L*(P) as
n — oo. Then & is a centred Gaussian random variable.



136

PROOF. We have that || &, [2=\/E [§5] = 0, and || &, [2=]| € l2=ues 0

as n — oo.
Suppose f is a bounded continuous function on R. Then, by dominated
convergence,

E[f(,)] = /R F(0n)d () — /R f(o)dm (2)

as n — oo. Moreover, there exists a subsequence (&, )72, which converges
to £ a.s. Hence, by dominated convergence

E[f(&,,)] = E[f(8)]

as k — oo and it follows that
BIAEN = | Honin).

By using Corollary 3.1.3 the theorem follows at once.

Theorem 4.1.3. Suppose X is a standard space and i a positive o-finite
Borel measure on X. Then the spaces L'(u) and L*(u) are separable.

PROOF. Let (Ej)2,; be a denumerable collection of Borel sets with finite
p-measures and such that Fy C Fy,y and U2 Fy = X. Set ), = xp, p and
first suppose that the set Dy is at most denumerable and dense in LP ()
for every k € N,. Without loss of generality it can be assumed that each
member of Dj vanishes off F;. By monotone convergence

/ fdpu = lim / fduy, f > 0 measurable,
X k—oo Jx

and it follows that the set U2, Dy, is at most denumerable and dense in LP(11).

From now on we can assume that p is a finite positive measure. Let A
be an at most denumerable dense subset of X and and suppose the subset
{rn; m € N4, } of ]0,00[ is dense in |0, 00[. Furthermore, denote by U the
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class of all open sets which are finite unions of open balls of the type B(a,r,),
a€ A,neN,. IfUisany open subset of X

U=U[V:VCUandV elU]
and, hence, by the Ulam Theorem
p(U) =sup{p(V); Veldand V C U}.

Let K be the class of all functions which are finite sums of functions of
the type kX, where k is a positive rational number and U € U. It follows
that I is at most denumerable.

Suppose ¢ > 0 and that f € LP(u) is non-negative. There exists a
sequence of simple measurable functions (¢;)°; such that

0<¢; T fae [y

Since | f — ¢, |P< fP, the Lebesgue Dominated Convergence Theorem shows

that || f — ¢, [[p< § for an appropriate k. Let a1,...,q; be the distinct

positive values of ¢, and set
Cc=1 + 22:104]6.

Now for each fixed j € {1,...,l1} we use Theorem 3.1.3 to get an open
U; 2 ¢, ' ({a;}) such that || XU; = X~ (o} |,< 4= and from the above we
get a V; € U such that V; C U; and || xp, — xv; [[,< 75 Thus

€
| Xv; 7 Xept({ay}) Ip< 20

and
I f =iy, b<e

Now it is simple to find a ¢ € K such that || f — ¢ [[,< €. From this we
deduce that the set

K—-K={g9—h; ghe€K}

is at most denumerable and dense in LP(u).
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The set of all real-valued and infinitely many times differentiable functions
defined on R" is denoted by C(*)(R") and

CI(R") = {fe C)(R™); suppf compact } .

Recall that the support suppf of a real-valued continuous function f defined
on R" is the closure of the set of all x where f(z) # 0. If

fla) = [THe( + e =2}, « = (21,..2,) €R”

where p(t) = exp(—t~1), if t > 0, and p(t) = 0, if t <0, then f € C*(R") .
The proof of the previous theorem also gives Part (a) of the following

Theorem 4.1.4. Suppose p is a positive Borel measure in R"™ such that
pu(K) < oo for every compact subset K of R™. The following sets are dense
in L'Y(p), and L*(p) :

(a) the linear span of the functions

X7, I open bounded n-cell in R",

(b) CL(R™).

PROOF. a) The proof is almost the same as the proof of Theorem 4.1.3.
First the Ej:s can be chosen to be open balls with their centres at the origin
since each bounded set in R" has finite y-measure. Moreover, as in the proof
of Theorem 4.1.3 we can assume that p is a finite measure. Now let A be an
at most denumerable dense subset of R™ and for each a € A let

R(a)={r>0;, p{z e X; |z —ar|=7}) >0 forsome k=1,...,n}.

Then U,c4R(a) is at most denumerable and there is a subset {r,; n € N}
of |0, 00[ \ UseaR(a) which is dense in |0, co[. Finally, let & denote the class
of all open sets which are finite unions of open balls of the type B(a,r,),
a € A, n € N, and proceed as in the proof of Theorem 4.1.3. The result
follows by observing that the characteristic function of any member of U
equals a finite sum of characteristic functions of open bounded n-cells a.e.

(1] -
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Part (b) in Theorem 4.1.4 follows from Part (a) and the following

Lemma 4.1.1. Suppose K C U C R", where K is compact and U is open.
Then there exists a function f € C™ (R"™) such that

K< f=<U

that is
X < f < xp and suppf C U.

PROOF. Suppose p € C(R") is non-negative, supp p C B(0,1), and

/ pdm, = 1.

Moreover, let € > 0 be fixed. For any g € L'(v,) we define

fo = [ gl o - gy

Since
ak1+~u+knp

l€e LY (vy,), all ky, ...k, €N

AR S rT

the Lebesgue Dominated Convergent Theorem shows that f. € C*°(R").
Here f. € C°(R") if g vanishes off a bounded subset of R". In fact,

supp f: C (supp g)-.

Now choose a positive number e < 1d(K, U*) and define g = x4 . Since

f@)= [ gt cppiy

we also have that f.(z) =1 if 2 € K. The lemma is proved.
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Example 4.1.2. Suppose f € L'(m,) and let g : R™ — R be a bounded
Lebesgue measurable function. Set

h(z) = . fx —y)g(y)dy, v € R".

We claim that A is continuous.
To see this first note that

ha+ Aa) ~ hla) = [ (f(o+ Do =) = fa - y)glu)dy
and

[ b )~ h(a) [< K [ S+ D —y) = fle =) | dy

=K Rn\f(Aery)—f(y)!dy

if | g(z) |< K for every x € R". Now first choose € > 0 and then ¢ € C.(R")
such that
If—¢li<e

Using the triangle inequality, we get

| Wz + Az) = h(z) [S K| f=¢ 1 +/ | p(Az +y) = »(y) | dy)

n

SK(2€+/ | o(Az +y) — o(y) | dy)

n

where the right hand side is smaller than 3Ke¢ if | Az | is sufficiently small.
This proves that A is continuous.

Example 4.1.3. Suppose A € R, and m,(A) > 0. We claim that the set

A-—A={z—uz;0ec A}

contains a neighbourhood of the origin.
To show this there is no loss of generality to assume that m,(A) < oco.
Set
flz)=m,(AN(A+2z)), x € R"
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Note that
f@)z/}Xwaﬁy—wMy

and Example 4.1.2 proves that f is continuous. Since f(0) > 0 there exists a
d > 0 such that f(z) > 01if | z |< §. In particular, AN(A+zx) # ¢ if | z |< 9,
which proves that

B(0,6) C A— A.

The following three examples are based on the Axiom of Choice.

Example 4.1.4. Let NL be the non-Lebesgue measurable set constructed
in Section 1.3. Furthermore, assume A C R is Lebesgue measurable and
A C NL. We claim that m(A) = 0. If not, there exists a 6 > 0 such that
B(0,0)) CA-—ACNL—-NL.If0<r < ¢ andr € Q, there exist a,b € NL
such that

a=>b+r.

But then a # b and at the same time a and b belong to the same equivalence
class, which is a contradiction. Accordingly from this, m(A) = 0.

Example 4.1.5. Suppose A C [—%, %} is Lebesgue measurable and m(A) >

0. We claim there exists a non-Lebesgue measurable subset of A. To see this
note that
A=UZ,((m+NL)NA)

where (7;)$2, is an enumeration of the rational numbers in the interval [—1, 1] .
If each set (r; + NL) N A, is Lebesgue measurable

m(A) =X2,m((r; + NL)N A)

and we conclude that m((r; + NL) N A) > 0 for an appropriate i. But then
m(NLN(A—r;))>0and NLN(A—r;) C NL, which contradicts Example
4.1.4. Hence (r; + NL) N A is non-Lebesgue measurable for an appropriate i.
If A is a Lebesgue measurable subset of the real line of positive Lebesgue
measure, we conclude that A contains a non-Lebesgue measurable subset.
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Example 4.1.6. Set I = [0,1]. We claim there exist a continuous function
f: I — I and a Lebesgue measurable set L C I such that f~!(L) is not
Lebesgue measurable.

First recall from Section 3.3 the construction of the Cantor set C' and the
Cantor function G. First Cy = [0, 1]. Then trisect Cy and remove the middle
interval ]%,%[ to obtain C; = Cj \ }%,%[ = [0, %] U [%, 1} . At the second
stage subdivide each of the closed intervals of C'; into thirds and remove
from each one the middle open thirds. Then Co = Cy \ (J§,2[U |, 3[). We
repeat the process and what is left from C,,_; is C),. The set [0, 1]\ C,, is the
union of 2" —1 intervals numbered I}, k =1, ...,2" — 1, where the interval [}
is situated to the left of the interval I}* if £ < [. The Cantor set C' = N2, C,,.

Suppose n is fixed and let G,, : [0,1] — [0, 1] be the unique the monotone
increasing continuous function, which satisfies G,,(0) = 0, G,,(1) = 1, G, (x) =
k27" for x € I}! and which is linear on each interval of C), It is clear that
G, = Gp41 on each interval I}!, kK = 1,...,2" — 1. The Cantor function is
defined by the limit G(x) = lim,,_,oc Gp(z), 0 < 2 < 1.

Now define

h(x) = %(m +G(x)), v el

where G is the Cantor function. Since h : I — [ is a strictly increasing and
continuous bijection, the inverse function f = h~! is a continuous bijection
from I onto I. Set

A=h(I\C)

and
B = h(C).

Recall from the definition of GG that GG is constant on each removed interval
I’ and that h takes each removed interval onto an interval of half its length.

Thus m(A) = 3 and m(B) =1 —m(A4) = 1.

By the previous example there exists a non-Lebesgue measurable subset
M of B. Put L = h™'(M). The set L is Lebesgue measurable since L C C'
and C' is a Lebesgue null set. However, the set M = f~1(L) is not Lebesgue
measurable.

Exercises
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1. Let (X, M,u) be a finite positive measure space and suppose @(t) =
min(t, 1), ¢ > 0. Prove that f,, — f in measure if and only if ¢(| f,—f]) — 0
in L'(u).

2. Let u = myjo). Find measurable functions f, : [0,1] — [0,1], n € N,
such that f,, — 0 in L?(u) as n — oo,

liminf f,(z) = 0 all x € [0, 1]

n—oo

and
limsup f,(x) =1 all x € [0,1].

n—o0

3. If f e F(X) set
I'f llo= inf {a € [0,00]; u(] f|> @) <aj.

Let
L) = {f € F(X); || £ llo< o0}
and identify functions in L°(x) which agree a.e. [u].

(a) Prove that d®© =| f — g ||o is a metric on L°(x) and that the corre-
sponding metric space is complete.

(b) Show that F(X) = L%(u) if u is a finite positive measure.

4. Suppose LP(X, M, 1) is separable, where p = 1 or 2. Show that L?(X, M~ i)
is separable.

5. Suppose g is a real-valued, Lebesgue measurable, and bounded function
of period one. Prove that

[e.e]

im [ f(x)g(na)de = / : F(a)dz /0 o)

n—~o0
—00
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for every f € L*(m).

6. Let h,(t) =2 +sinnt, 0 <t <1, and n € N,. Find real constants o and
[ such that

lim f dt—a/f

n—o0

Mo/ f) gy 6/01f<t)dt

for every real-valued Lebesgue 1ntegrable function f on [0,1].

and

7. If k= (k... k) € N7, set ep(x) = I}, sin by, @ = (21,...,7,) € R™,
and | k |= (37_,k?)z. Prove that

lim ferdm, =0

for every f € L*(m,,).

8. Suppose f € L'(m,), where m,, denotes Lebesgue measure on R™. Com-
pute the following limit and justify the calculations:

lim | flx+h)— f(x) | de.
[h|—oo JRn

9. The set A C R has positive Lebesgue measure and
A+Q={z+y; x€ Aand y € Q}
where Q stands for the set of all rational numbers. Show that the set

R\(4+Q)

is a Lebesgue null set. (Hint: The function f(z) = m(AA(A—1z)), x € R, is
continuous.)
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4.2 Orthogonality

Suppose (X, M, ) is a positive measure space. If f,g € L*(u), let

(f.9) =des / fadp
X
be the so called scalar product of f and g. The Cauchy-Schwarz inequality

| (g 1N 2l g 2
shows that the map f — (f, g) of L?(11) into R is continuous. Observe that

If+gll=If 1z +2(f.9)+ 1 9113

and from this we get the so called Parallelogram Law

If+gllz+1f—glz=20lF15+1gl2).

We will say that f and g are orthogonal (abbr. f L g) if (f, g) = 0. Note
that
If+gl3=lfl5+1lglif and only if f L g.
Since f L ¢ implies ¢ L f, the relation 1 is symmetric. Moreover, if
f L hand g L h then (af + Bg) L h for all a,3 €R. Thus h*t =4,

{f € L*(u); f L h} is a subspace of L?(u), which is closed since the map
f— {f,h), f € L*(p) is continuous. If M is a subspace of L?(p), the set

M* =4ef Openrh™

is a closed subspace of L?(u). The function f = 0 if and only if f L f.

If M is a subspace of L?(p) and f € L?(u1) there exists at most one point
g € M such that f — g € M*. To see this, let go,g1 € M be such that
f—ge € M+, k=0,1. Then g; — go = (f — go) — (f — g1) € M+ and hence
91— go L g1 — go that is go = g1.

Theorem 4.2.1. Let M be a closed subspace in L*(p) and suppose [ €
L*(p). Then there exists a unique point g € M such that

| f—gl2Z<IIf—nhl2 all he M.
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Moreover,
f—ge M.

The function g in Theorem 4.2.1 is called the projection of f on M and
is denoted by Proj,; f.

PROOF OF THEOREM 4.2.1. Set
—der AP (f, M) = inf — .
d def d (f7 ) glélM || f g ||2
and let (g,)°2; be a sequence in M such that
d=lm || /g o
Then, by the Parallelogram Law

I =ge)+(F=ga) Iz + 1| (F =g1) = (F=9a) 2= 201l f=gx I3+ | f=n 12)

that is
1
4 f = 5(ox+9n) 15+ 1 gn—gx l3=201 f—gx I3+ 11 f—9n |13)

and, since %(gk + gn) € M, we get

A%+ | g — g <200 F =g 13+ 1l f = gu [12)-

Here the right hand converges to 4d? as k and n go to infinity and we conclude
that (g,)2; is a Cauchy sequence. Since L?(u) is complete and M closed
there exists a ¢ € M such that g, — ¢g as n — 0o. Moreover,

d=[f—=gl2-

We claim that f — g € M*. To prove this choose h € M and o > 0
arbitrarily and use the inequality

I(f —g)+ahlz=] f—gl3

to obtain
| f=gl+2a(f —g,h) + | L ]3=] f—g I3
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and
2(f —g.h) + o || h[[3> 0.

By letting a — 0, (f — g, h) > 0 and replacing h by —h, (f — g, h) < 0. Thus
f — g € h* and it follows that f — g € M*.

The uniqueness in Theorem 4.2.1 follows from the remark just before the
formulation of Theorem 4.2.1. The theorem is proved.

A linear mapping 7 : L*(u) — R is called a linear functional on L*(u).
If h € L*(n), the map h — (f,h) of L?*(;) into R is a continuous linear
functional on L?(y). Tt is a very important fact that every continuous linear
functional on L?(y) is of this type.

Theorem 4.2.2. Suppose T is a continuous linear functional on L*(u).
Then there exists a unique w € L*(u) such that

Tf = (f,w) all f € L*(u).

PROOF. Uniqueness: If w,w’ € L?(u) and (f,w) = (f,w’) forall f € L*(u),
then (f,w —w') =0 for all f € L?(u). By choosing f = w —w' we get f L f
that is w = w'.

Existence: The set M =4, T '({0}) is closed since T is continuous and
M is a linear subspace of L?(u) since T is linear. If M = L*(u) we choose
w = 0. Otherwise, pick a g € L?(u) \ M. Without loss of generality it can be
assumed that T'g = 1 by eventually multiplying g by a scalar. The previous
theorem gives us a vector h € M such that u =45 g — h € M*. Note that
0 <|| u ||%: <U,g - h) = <U,g>

To conclude the proof, let fixed f € L?*(u) be fixed, and use that (T'f)g —
f € M to obtain

(T'f)g—fu) =0

(Tf){g,u) = (f,u).
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By setting
1
w = U
| w3
we are done.
W

4.3. The Haar Basis and Wiener Measure

In this section we will show the existence of Brownian motion with continu-
ous paths as a consequence of the existence of linear measure A in the unit
interval. The so called Wiener measure is the probability law on C'[0, 1] of
real-valued Brownian motion in the time interval [0,1]. The Brownian mo-
tion process is named after the British botanist Robert Brown (1773-1858).
It was suggested by Lous Bachelier in 1900 as a model of stock price fluctua-
tions and later by Albert Einstein in 1905 as a model of the physical phenom-
enon Brownian motion. The existence of the mathematical Brownian motion
process was first established by Norbert Wiener in the twenties. Wiener also
proved that the model can be chosen such that the path ¢t — W (¢),0 <t <1,
is continuous a.s. Today Brownian motion is a very important concept in
probability, financial mathematics, partial differential equations and in many
other fields in pure and applied mathematics.

Suppose n is a non-negative integer and set I, = {0,...,n}. A sequence
(€:)ier, in L?(u) is said to be orthonormal if e; L e; for all i # j, i,j € I,
and || ¢; ||=1 for each i € I,,. If (e;);cz, is orthonormal and f € L%(u),

f—Ziern, (f,ei)e; Lejalljel
and Theorem 4.2.1 shows that
| f—=Siern, (f,enei |2<|| [ — Bier,cie; |2 all real a, ..., a,.
Moreover
IS 15=0 f = Bien (fees Iz + | Sier, (fresdes |13

and we get
Sier,(fre)® < £ 13-
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We say that (e,)ner, is an orthonormal basis in L?(y) if it is orthonormal
and

f = Sier, (f,eide; all f e L (u).

A sequence (e;)3°, in L?(u) is said to be orthonormal if (e;)", is ortho-
normal for each non-negative integer n. In this case, for each f € L?(u),

220(fre)? <l f I3
and the series
Efio<f ) €i>€z‘
converges since the sequence

(Bio(fsei)ei)nso

of partial sums is a Cauchy sequence in L*(u). We say that (e;)3°, is an
orthonormal basis in L?(y) if it is orthonormal and

f=3520(f,ei)e; for all f e L (u).

lleOI em 4-3.1- A’H, o1 th()n(” ma/l SeqU(che (61);3 Zn Z 2(”) ZS SZ f
L (M) Zf =0 a b(l S O
(<f>ei> —OallZGN)if—O

Proof. Let f € L*(j) and set
g=1[—EZ(f €)e.
Then, for any j € N,
(9,€;) = {f — EZo(f  ei)eis ;)

= (f,ej) — TZo(f  ei)ei e5) = ([ €5) — (f,e5) = 0.
Thus g =0 or
f=3Z(f e

The theorem is proved.
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As an example of an application of Theorem 4.3.1 we next construct an
orthonormal basis of L?()\), where \ is linear measure in the unit interval.
Set

H(t) = xjo11() =x32(®), tER

A
Moreover, define hgo(t) =1, 0 <t < 1, and foreachn > land j = 1,..., 2",
hin(t) =2"7 H(2" 't —j+1),0<t<1.

Stated otherwise, we have for each n > 1 and j = 1,...,2"1

( n—1 : i1
—_ j—l J 2
2 2 y» gn—1 S t < on—19

Y

hin(t) = § 2% 23 <t <

[\

[ 0, elsewhere in [0,1].

It is simple to show that the sequence hoo hjn,j = 1,...,2"7 1 n > 1, is
orthonormal in L*(\). We will prove that the same sequence constitute an
orthonormal basis of L?()\). Therefore, suppose f € L?()) is orthogonal to
each of the functions ho hjn,j = 1,...,2""%, n > 1. Then for each n > 1 and
j=1,..,2"1!

1 )
I—3 J

on—1 on—1
/‘ fd\ = /j_l fdA
é;% yrﬁ
and, hence, _
/j_1 fd\ = 5 =0
on—1
since
1 1
0 0
Thus

k

/2_”_ fAA=0,1<j<k<2"!
J
on—1

and we conclude that

1 b
/ Ligp fdA\ = / fdd=0,0<a<b< 1.
0 a
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Accordingly from this, f = 0 and we are done.

The above basis (hi)52y = (hoo b1, P12, haz, M3, has, hag, has, ...) of L*(\)
is called the Haar basis.

Let 0 <t <1 and define for fixed £ € N

1 t
ag(t) = / Xjo.q (%) e (2)dx = / hydA
0 0
so that
X[O,t] = Ezo:[]ak(t)hk in L2(>\)
Then, if 0 < 5,2 <1,

1
min(s,t) = / X(o,5 () X[o. (¥)dx = (X721 ar(5) e, X[o,17)
0

= 25200k (8)(Prs X(o.49) = Lok (8)ar(t).
Note that
t = 324ai(t).
If (Gk)2, is a sequence of N (0, 1) distributed random variables based on
a probability space (€2, F, P) the series
Zzozoak(t)Gk

converges in L?(P) and defines a Gaussian random variable which we denote
by W (t). From the above it follows that (W (#))o<¢<1 is a real-valued centred
Gaussian stochastic process with the covariance

E [W(s)W (t)] = min(s,t).

Such a process is called a real-valued Brownian motion in the time interval
[0,1].
Recall that

(h/UO,h117 h127 h227 h13a h237 h337 h/437 ) - (hk)lz.;o
We define

o0
(aoo,an,a12aa22;a137a237a33,a43, ) = (ak)kzo

and
(GOO,Glb G127 G227 G137 G237 G337 G(437 ) = (Gk>iozo
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It is important to note that for fixed n,

t
ajn(t) = /0 X(o,4) (%) hjn(x)dx # 0 for at most one j.

Set
UO (t) = Qaqo (t) GOO

and
n—1
Un(t) = 22 1 ajn(t)Gjna n e N+'

=
We know that
W(t) = X2 Uy,(t) in L2(P)

for fixed t.
The space C'|0, 1] will from now on be equipped with the metric
d(z,y) =[l = =y [l

where || z ||oo= maxo<;<1 | z(t) | . Recall that every x € C'[0, 1] is uniformly
continuous. From this, remembering that R is separable, it follows that the
space C'|0, 1] is separable. Since R is complete it is also simple to show that
the metric space C'[0, 1] is complete. Finally, if 2, € C'[0,1], n €N, and

Yolo || T flee< 00

the series
o0

converges since the partial sums
Sp = 2p_oTk, k€N

forms a Cauchy sequence.
We now define

O={we; X2, || U, [[oo< 0} .

Here © € F since
| Un [loc= sup | Un(?) |
0<t<1
t€Q

for each n. Next we prove that Q2 \ O is a null set.
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To this end let n > 1 and note that

n

P o> 28] < P | i (e ol Gon ) > 27|

1<j<an—1
But
1
and, hence,
PO Lo 271) <217 | G 5 20%].

Since ) d

r>1= P[| Gy [> 2] < 2/ o2 W ey

x T\ 2T

we get

P [” Un Hoo> 2*%} < 2n€72n/2

and conclude that

1 _n
Uplloo>2"14
Zno [1Un]|oo>27 %]

From this and the Beppo Levi Theorem (or the first Borel-Cantelli Lemma)
P[O]=1.

The trajectory t — W(t,w), 0 <t < 1, is continuous for every w € ©.
Without loss of generality, from now on we can therefore assume that all
trajectories of Brownian motion are continuous (by eventually replacing €2
by ©).

Suppose

E

=Y P Usll>277] < 0.
n=0

0<t1<..<t, <1

and let I, ..., I, be open subintervals of the real line. The set
Sty ey tn; Iy, ooy 1) = {2 € C'0,1]; x(ty) € Iy, k=1,...,n}

is called an open n-cell in C'[0,1]. A set in C'[0,77] is called an open cell if
there exists an n € N, such that it is an open n-cell. The o-algebra generated
by all open cells in C'[0,1] is denoted by C. The construction above shows
that the map

W:Q— C[0,1]
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which maps w to the trajectory
t—Wtw), 0<t<1

is (F,C)-measurable. The image measure Py is called Wiener measure in
C'0,1].

The Wiener measure is a Borel measure on the metric space C'[0,1]. We
leave it as an excersice to prove that

¢ = B(C[0,1)).
m
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CHAPTER 5
DECOMPOSITION OF MEASURES

Introduction

In this section a version of the fundamental theorem of calculus for Lebesgue
integrals will be proved. Moreover, the concept of differentiating a measure
with respect to another measure will be developped. A very important result
in this chapter is the so called Radon-Nikodym Theorem.

5.1. Complex Measures

Let (X, M) be a measurable space. Recall that if A, C X, n € N,, and
A;NA; =¢if i # j, the sequence (A4, )en, is called a disjoint denumerable
collection. The collection is called a measurable partition of A if A =UX A,
and A, € M for every n € N,.

A complex function g on M is called a complex measure if

p(A) =357 u(An)

for every A € M and measurable partition (A,)22 ; of A. Note that p(¢) =0

if ;4 is a complex measure. A complex measure is said to be a real measure

if it is a real function. The reader should note that a positive measure need

not be a real measure since infinity is not a real number. If p is a complex

measure (i = [, + iy, , Where up, =Re p and p,, =Im p are real measures.
If (X, M, p) is a positive measure and f € L'(u) it follows that

/\(A):/Afdu, Ae M

is a real measure and we write d\ = fdpu.
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A function p : M — [—00, 0] is called a signed measure measure if

(a) p: M —]—00,00] or pu: M — [—o0,00]
(b) u(¢) =0

(c) for every A € M and measurable partition (A4,)3 ; of A,

p(A) = 5521 1(An)
where the latter sum converges absolutely if u(A) € R.

Here —00 — 00 = —o0 and —o0 + 2 = —o0 if x € R. The sum of a
positive measure and a real measure and the difference of a real measure and
a positive measure are examples of signed measures and it can be proved that
there are no other signed measures (see Folland [F]). Below we concentrate
on positive, real, and complex measures and will not say more about signed
measures here.

Suppose 4 is a complex measure on M and define for every A € M

[ 1| (A) = sup 232, [ p(An) |,

where the supremum is taken over all measurable partitions (A,)5, of A.
Note that | i | (¢) =0 and

| 1| (A) > w(B) | if A,Be€ Mand AD B.

The set function | p | is called the total variation of 1 or the total variation
measure of p. It turns out that | p | is a positive measure. In fact, as will
shortly be seen, | i | is a finite positive measure.

Theorem 5.1.1. The total variation | i1 | of a complex measure is a positive
measure.

PROOF. Let (A,), be a measurable partition of A.
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For each n, suppose a,, <| p | (A,) and let (Fk,)5>; be a measurable
partition of A, such that

an < 332 | 1(Ekn) | -
Since (Egn)35,=; is a partition of A it follows that
Se1tn < Xy | 1(Ern) [<[ 1| (A).
Thus

Yoty | (An) <[ | (A).

To prove the opposite inequality, let (Ej)?° ; be a measurable partition of
A. Then, since (A, N E}), is a measurable partition of Fy and (A, N EL),
a measurable partition of A,

Yo | u(Er) |= DDy | E;:O:lM(An N Ey) |

S B | p(An N E) [S 308 [ ] (An)
and we get
[ ] (A) <502 [ i (An).
Thus
|| (A) =552 [ | (An).

Since | | (¢) = 0, the theorem is proved.

Theorem 5.1.2. The total variation | | of a complex measure 11 is a finite
positive measure.

PROOF. Since
| 1 |<] pge |+ | pa |

there is no loss of generality to assume that p is a real measure.
Suppose | | (E) = oo for some E € M. We first prove that there exist
disjoint sets A, B € M such that

AUuB=F
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and
| w(A) [>Tand | p|(B) = oo.

To this end let ¢ = 2(1+ | u(E) |) and let (Ej)2, be a measurable partition
of E such that
ot | n(ER) [> e

for some sufficiently large n. There exists a subset N of {1,...,n} such that

c
| Srenp(Er) |> 3
Set A = UgenyEr and B = E'\ A. Then | u(A) |[> £ > 1 and

<
2

>| u(A) | = | W(E) |> 5= | u(B) |= 1

Since oo =| p | (E) =| p | (A)+ | p | (B) we have | pn | (A) = oo or
| w| (B) = o00. If | p| (B) < oo we interchange A and B and have
| u(A) [> Tand [ p | (B) = oo

Suppose | i | (X) = 00. Set Ey = X and choose disjoint sets Ay, By € M
such that
Ao U B() = EQ

and
| (Ag) [>T and | | (By) = oo.

Set E; = By and choose disjoint sets A, B; € M such that
Al U Bl == El

and
| (A1) [> 1 and | p| (Bi) = oo.

By induction, we find a measurable partition (A,)32, of the set A =4
Ux A, such that | u(A4,) |> 1 for every n. Now, since u is a complex

measure,
H(A) = B2 ou(A,).

But this series cannot converge, since the general term does not tend to zero

as n — oo. This contradiction shows that | i | is a finite positive measure.
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If 1 is a real measure we define
L 1
pr=gel+a)
and

po =] )

The measures u* and p~ are finite positive measures and are called the
positive and negative variations of p, respectively . The representation

po=pt—p

is called the Jordan decomposition of .

Exercises

1. Suppose (X, M, pu) is a positive measure space and d\ = fdu, where
f € L' (u). Prove that d | A |=]| f | du.

2. Suppose A, i, and v are real measures defined on the same o-algebra and
A < pand A < v. Prove that

A < min(u,v)

where .
min(p, v) = g +v—|p—vi).

3. Suppose p: M — C is a complex measure and f,g: X — R measurable
functions. Show that

| u(f € A)—pulge A) IS | (f#9)
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for every A € R.

5.2. The Lebesque Decomposition and the Radon-Nikodym Theo-
rem

Let p be a positive measure on M and A\ a positive or complex measure
on M. The measure A is said to be absolutely continuous with respect to u
(abbreviated A << pu) if A\(A) = 0 for every A € M for which u(A) = 0. If
we define

Zy={AeM; \(A) =0}
it follows that A << p if and only if
Z, C 2.

For example, v, << v, and v, << 7,.

The measure ) is said to be concentrated on E € M if A = AP | where
MNE(A) =45 M(E N A) for every A € M. This is equivalent to the hypoth-
esis that A € Z, if A € M and ANFE = ¢. Thus if £y, 5y € M, where
E, C FE5, and ) is concentrated on Ej, then \ is concentrated on F,. More-
over, if Fi, Fy € M and A is concentrated on both F; and FE,, then \ is
concentrated on E; N Ey. Two measures A\; and A\, are said to be mutually
singular (abbreviated A; L Ay) if there exist disjoint measurable sets F; and
FE5 such that \; is concentrated on E; and )\, is concentrated on Fj.

Theorem 5.2.1. Let u be a positive measure and X\, A1, and Ay complex
measures.

(i) If M1 << p and Ay << p, then (aqA; + ade) << p for all complex
numbers oy and ao.

(il) If M L p and Ny L pu, then (aqA1 + aghy) L p for all complex
numbers oy and ao.

(iii) If A << p and X L p, then A =0.

(iv) If A << p, then | A |<< p.

PROOF. The properties (i) and (ii) are simple to prove and are left as exer-
cises.
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To prove (iii) suppose E € M is a p-null set and A = \¥. If A € M, then
AMA) = AMANE)and AN E is a p-null set. Since A << p it follows that
ANE € Z, and, hence, A\(A) = A(AN E) = 0. This proves (iii)

To prove (iv) suppose A € M and pu(A) = 0. If (A,,)%°, is measurable
partition of A, then pu(A,) = 0 for every n. Since A << pu, A\(A,) =0 for
every n and we conclude that | A | (A) = 0. This proves (vi).

Theorem 5.2.2. Let i1 be a positive measure on M and A a complex measure
on M. Then the following conditions are equivalent:

(a) A << p.

(b) To every € > 0 there corresponds a 6 > 0 such that | A(E) |< € for
all E € M with u(E) < 6.

If \ is a positive measure, the implication (a) = (b) in Theorem 5.2.2 is,
in general, wrong. To see this take y = v; and A = v;. Then A\ << p and if
we choose A,, = [n,00[, n € N, then p(A,) — 0asn — oo but A(4,) = oo
for each n.

PROOF. (a)=(b). If (b) is wrong there exist an ¢ > 0 and sets E, € M,
n € N, such that | A\(E,) |> € and p(E,) < 27" Set

A, =Up Eyand A=N7" A,

Since A, 2 A,y1 2 A and p(A4,) < 27" it follows that u(A) = 0 and
using that | A | (A,) >| AM(E,) |, Theorem 1.1.2 (f) implies that

[ A1 (A) = lim [ A](4,) > €.

This contradicts that | A |<< p.

(b)=(a). If £ € M and u(F) = 0 then to each ¢ > 0, | A\(E) |< ¢, and we
conclude that A(F) = 0. The theorem is proved.
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Theorem 5.2.3. Let p be a o-finite positive measure and \ a real measure
on M.

(a) (The Lebesgue Decomposition of \) There exists a unique pair
of real measures \, and \s onM such that

A= Ao+ A5, Ao << p, and Ag L p.

If X\ is a finite positive measure, A, and \; are finite positive measures.
(b) (The Radon-Nikodym Theorem) There exits a unique g € L'(p)
such that
d\, = gdp.

If X is a finite positive measure, g > 0 a.e. [p].
The proof of Theorem 5.2.3 is based on the following

Lemma 5.2.1. Let (X, M, p) be a finite positive measure space and suppose
feL(n).
(a) If a € R and

/ fdp < au(E), all E € M
E

then [ < a a.e. [p].
(b) If b€ R and

[Efdu > bu(E), all E € M
then f > b a.e. [p].
PROOF. (a) Set g = f — a so that
/Egd;zSO, all E e M.

Now choose E = {g > 0} to obtain

Oz/gdu=/ngdu20
E X
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as xXpg > 0 a.e. [p]. But then Example 2.1.2 yields xpg = 0 a.e. [u] and we
get £ € Z,. Thus g <0 ae. [u|or f <aae. [u.

Part (b) follows in a similar way as Part (a) and the proof is omitted
here.

PROOF. Uniqueness: (a) Suppose A¥) and A% are real measures on M such
that
A= )\(k)—l—A )\ ) << p, and)\ L

for k =1,2. Then
AL @) — (@) @)

s

and

—

AW A <<y and A

Thus by applying Theorem 5.2.1, )\((11) — A
we conclude that )\gl) = /\L(f) .
(b) Suppose gr € L' (i), k = 1,2, and

RO

a

2 =0 and AV = \?_ From this

S

—~

s}

dAa = grdp = gadp.
Then hdp = 0 where h = g1 — g». But then

/ hdp =0
{h>0}

and it follows that h < 0 a.e. [u]. In a similar way we prove that h > 0 a.e.
[4]. Thus h =0 in L'(u), that is g3 = go in L'(u).

Existence: The beautiful proof that follows is due to von Neumann.
First suppose that p and A are finite positive measures and set v = A+ p.
Clearly, L*(\) D L'(v) D L?*(v). Moreover, if f : X — R is measurable

/|f\d)\</ |f\du<m\/y—

and from this we conclude that the map

f—>/deA



164

is a continuous linear functional on L?(v). Therefore, in view of Theorem
4.2.2, there exists a g € L?(v) such that

/ fdA :/ fgdv all f e L*(v).
X X

Suppose E € M and put f = xp to obtain
0<\E)= / gdv
E

and, since v > A,
0< / gdv < v(E).
E

But then Lemma 5.2.1 implies that 0 < g < 1 a.e. [v]. Therefore, without
loss of generality we can assume that 0 < g(z) < 1 for all x € X and, in
addition, as above

/de)\ = /ngdy all f € L*(v)

that is
/ f(l—g)dX = / fgdp all f € L*(v).
X X

Put A={0<g<1},S={g=1}, \s = A\, and )\, = \%. Note that
A =M+ )% The choice f = xg gives ;1(S) = 0 and hence A, L . Moreover,
the choice

f=0+. . +3g")xg
where £/ € M, gives

/E(l — g™ d\ = /E(1 + o g gdp.

By letting n — oo and using monotone convergence

MEN A) = / hju.

E

where
h=lim(1+..4¢")g.

n—oo
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Since h is non-negative and

AA) = /X hdp

it follows that h € L*(p). Moreover, the construction above shows that A =
Ao+ As.

In the next step we assume that p is a o-finite positive measure and A
a finite positive measure. Let (X,,)?°, be a measurable partition of X such
that u(X,) < oo for every n. Let n be fixed and apply Part (a) to the pair

15 and A*" to obtain finite positive measures (A*"), and (A*"), such that

A= (W) + (W), (W), << i, and (A7), L g

and
AN )y = hpdp™ (or (M) = hpp™™)

where 0 < h,, € L'(p*"). Without loss of generality we can assume that
h, = 0 off X,, and that ()\X")s is concentrated on A, C X,, where A, € Z,,.
In particular, (\*"), = h,u. Now

A= D+ 202, (),

where
h =3 hy

and
/ hdp < A\X) < oo.
X

Thus h € L*(i). Moreover, A\, =45 252, (A*"), is concentrated on U | A, €
Z,. Hence Ay L p.

Finally if A is a real measure we apply what we have already proved to
the positive and negative variations of A\ and we are done.

Example 5.2.1. Let A be Lebesgue measure in the unit interval and p the
counting measure in the unit interval restricted to the class of all Lebesgue
measurable subsets of the unit interval. Clearly, A\ << p. Suppose there is an
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h € L*(u) such that d\ = hdu. We can assume that A > 0 and the Markov
inequality implies that the set {h > €} is finite for every ¢ > 0. But then

Ah€]0,1]) = lim A(h>2") =0

n—oo

and it follows that 1 = A(h = 0) = |, (h=oy My = 0, which is a contradiction.

Corollary 5.2.1. Suppose p is a real measure. Then there exists
he Ll nl)
such that | h(z) |=1 for all x € X and

dp=hd | p|.

PROOF. Since | pu(A) |<| n | (A) for every A € M, the Radon-Nikodym
Theorem implies that dy = hd | u | for an appropriate h € L(] u |). But
then d | u|=| h|d| u| (see Exercise 1 in Chapter 5.1). Thus

IMI(E)Z/!hIdIMI, all E € M
E

and Lemma 5.2.1 yields h = 1 a.e. [| 1 |]. From this the theorem follows at
once.

Theorem 5.2.4. (Hahn’s Decomposition Theorem) Suppose 1 is a
real measure. There exists an A € M such that

pt=ptand pm = —pt.

PROOF. Let du = hd | p | where | h |= 1. Note that hdy = d | | . Set
A ={h=1}. Then

1 1
dut = S(d | p| +dp) = 5(h +1)dp = xadp
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and
du~ = dp" —dp = (x4 — 1)dp = —x4edp.

The theorem is proved.

If a real measure A is absolutely continuous with respect to a o-finite
positive measure u, the Radon-Nikodym Theorem says that d\ = fdu for an
approprite f € L*(u). We sometimes write

A

I=

and call f the Radon-Nikodym derivate of A with respect to p.

Exercises

1. Let u be a o-finite positive measure on (X, M) and (f,,)nen @ sequence of
measurable functions which converges in p-measure to a measurable function
f. Moreover, suppose v is a finite positive measure on (X, M) such that
v << u. Prove that f, — f in v-measure.

2. Suppose p and v,,n €N, are positive measures defined on the same
o-algebra and set § = ¥°° jv,,. Prove that

a) 0 L pifv, L u, alln e N.

b) 0 << pifv, << pu,allneN.

3. Suppose u is a real measure and g = A; — Ay, where \; and )\, are finite
positive measures. Prove that \; > p* and Ay > p™.

4. Let Ay and Ay be mutually singular complex measures on the same o-
algebra. Show that | Ay | L] Az | .
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5. Let (X, M, 1) be a o-finite positive measure space and suppose A and 7
are two probability measures defined on the o-algebra M such that A << p
and 7 << u. Prove that

1 d\ dr
sup | AM(A) — (A :—/ — — — | du.
sup [ M) = 7(4) = 5 [ 15 =5 du

6. Let (X, M) be a measurable space and suppose p,v:M —R and are real
measures. Prove that
(p+v)" <pt+uvt.

5.3. The Wiener Maximal Theorem and the Lebesgue Differentia-
tion Theorem

We say that a Lebesgue measurable function f in R" is locally Lebesgue in-
tegrable and belongs to the class L .(m,) if fx; € L'(m,) for each compact

loc

subset K of R". In a similar way f € L} (v,) if f is a Borel function such

that fxx € L'(v,) for each compact subset K of R™ If f € L}, .(m,), we
define the average A, f(x) of f on the open ball B(z,r) as

1
m&&mmyé@mﬂ”@'

It follows from dominated convergence that the map (z,r) — A, f(x) of
R” x ]0, 00 into R is continuous. The Hardy-Littlewood maximal function
f* is, by definition, f* = sup,.y A, | f | or, stated more explicitly,

Arf(x) =

RS S
[ @) = s B )

The function f*: (R™, B(R")) — (]0,00],Ro.) is measurable since

fr=sup A, | 1.

r>0
reQ

/‘ () | dy, = € R™.
B(z,r)
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Theorem 5.3.1. (Wiener’s Maximal Theorem) There exists a positive
constant C' = C,, < oo such that for all f € L*(m,),

mn(f*>a)§g||f||1ifa>0.

The proof of the Wiener Maximal Theorem is based on the following
remarkable result.

Lemma 5.3.1. Let C be a collection of open balls in R™ and set V = UpgeeB.
If ¢ <m,(V) there exist pairwise disjoint By, ..., By € C such that

YE m,(B;) > 3 "c.

PROOF. Let K C V be compact with m,,(K) > ¢, and suppose A4y, ..., A, € C
cover K. Let By be the largest of the Als (that is, B; has maximal radius),
let By be the largest of the A}s which are disjoint from Bj, let B3 be the
largest of the Als which are disjoint from B; U By, and so on until the process
stops after k steps. If B; = B(x;,r;) put Bf = B(x;,3r;). Then UF_ B D K
and

c < XF m,(B}) =3"SF m,(B)).

The lemma is proved.

PROOF OF THEOREM 5.3.1. Set
E,={f">a}.

For each = € E,, choose an r, > 0 such that A, | f | (z) > a. If ¢ < m,(E,),
by Lemma 5.3.1 there exist z1, ..., z;, € F, such that the balls B; = B(x;,r,,),
1 =1, ..., k, are mutually disjoint and

¥ mn(B;) > 3"

But then

3n 3"
¢ <3S ma(By) < s / ) Ly <o [ ) | dy.
a Bz Oé Rn
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The theorem is proved.

Theorem 5.3.2. If f € L} (m,),

loc

1
lim ———— dy = f(x) a.e. |m,].
/ Wy = 1) ae.

r=0 mp(B(z, 7))

PROOF. Clearly, there is no loss of generality to assume that f € L'(m,,).
Suppose g € C.(R™) =4 {f € C(R™); f(x) =01if | x| large enough}. Then

lir% A,g(z) = g(x) all z € R".

Since Arf_f:AT(f_g)_<f_g)+ATg_ga
lim [ A, f = fI<(f=9)+|f-gl.
Now, for fixed v > 0, o
m (I | Af — f > )

<ma((f =9 > 5) +mall f =9[> 3)

and the Wiener Maximal Theorem and the Markov Inequality give
mo (0 | Af = £ > a)

2C 2
S(;Jra) | f=gl-

Remembering that C.(R™) is dense in L!(m,,), the theorem follows at once.

If f € L, .(m,) we define the so called Lebesgue set Ly to be

loc

L= { i | RICHCITE o}.

Note that if ¢ is real and

EqZ{ﬂf; lim;/ If(y)—QIdy=|f(m)—QI}
B(z,r)

5 m, (B, 7))
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then m,(Useqlg) = 0. If x € Neq Ey,

— 1
s [ 1) = £ [ dy < 2] f@) - a)
r—0 mn(B(x, T)) B(z,r)
for all rational numbers ¢ and it follows that m,,(L$) = 0.

A family &, = (E,,).~o of Borel sets in R" is said to shrink nicely to a
point = in R™ if E,, C B(x,r) for each r and there is a positive constant «,
independent of r, such that m,(E,,) > am,(B(x,r)).

Theorem 5.3.3. (The Lebesgue Differentiation Theorem) Suppose
feL,.(m,) and x € Ly. Then

loc

. 1
}%m/}ﬂwﬂf@)—f(ﬂ?)\dy:o

and )
lim ———— fy)dy = f(z).

r—0 mn<Ex,r> Ey

PROOQF. The result follows from the inequality

—mn(zm)[ﬂ_|f(y)—f(x>!dysm/3( 1)) Ly

Theorem 5.3.4. Suppose X is a real or positive measure on R,, and suppose
A L, If X is a positive measure it is assumed that A\(K) < oo for every
compact subset of R™. Then

lim /\(Em)

r—0 Un(Ez,r) =Oae [U’n]

If E,, = B(xz,r) and X is the counting measure cqn restricted to R,, then
A L v, but the limit in Theorem 5.3.4 equals plus infinity for all x € R". The
hypothesis " A\(K') < oo for every compact subset of R"” in Theorem 5.3.4 is
not superflous.
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PROOF. Since | A(E) |[<| A | (E) if E' € R, there is no restriction to assume
that \ is a positive measure (cf. Theorem 3.1.4). Moreover, since

MNEz) < A B(x,r))

Un(Ex,T) - O/Un(B(I7 T))

it can be assumed that E,, = B(z,r). Note that the function A\(B(-,r))
is Borel measurable for fixed » > 0 and A(B(z,-)) left continuous for fixed
r € R"™

Suppose A € Z, and v, = (v,)4. Given § > 0, it is enough to prove that

F e Z, where
r—=0my(B(z,7))
To this end let € > 0 and use Theorem 3.1.3 to get an open U O A such that
AU) < e. For each = € F there is an open ball B, C U such that
A(Bz) > v, (By).

If V =UgerB, and ¢ < v,(V) we use Lemma 5.3.1 to obtain z, ..., z; such
that B,,, ..., By, are pairwise disjoint and

c<3"%F 0, (B,,) <3S NB,,)

<3 IA(U) < 370 e,

Thus v, (V) < 3"6 'e. Since V 2O F € R,, and ¢ > 0 is arbitrary, v, (F) = 0
and the theorem is proved.

Corollary 5.3.1. Suppose F' : R —R is an increasing function. Then F'(z)
exists for almost all x with respect to linear measure.

PROOF. Let D be the set of all points of discontinuity of F. Suppose —oo <
a<b<ooande>0.Ifa<z <..<uz, <b, where z1,...,x, € D and

F(xp+) — Flag—) > e, k=1,...n
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then
ne < Xp_ (F(at) — Fae—)) < F(b) — F(a).

Thus D N [a,b] is at most denumerable and it follows that D is at most
denumerable. Set H(z) = F(z+) — F(z), = € R, and let ()}, be an
enumeration of the members of the set {H > 0} . Moreover, for any a > 0,

> H(xy) < > (F(aj+) — Fz;—))
lzj|<a lzj|<a
< F(a) — F(—a) < oo.

Now, if we introduce
v(A) = Eéy:UH(mj)éxj(A), AeR

then v is a positive measure such that v(K) < oo for each compact subset
K of R. Furthermore, if h is a non-zero real number,

1 1
(H(z+h) — H(z) |< ﬁ(H(:c +h)+ H(z)) < 47 ]
and Theorem 5.3.4 implies that H'(z) = 0 a.e. [v1]. Therefore, without loss
of generality it may be assumed that F' is right continuous and, in addition,
there is no restriction to assume that F'(+o00) — F'(—00) < oc.
By Section 1.6 F' induces a finite positive Borel measure ;1 such that

| % v(B(z,2 | h|)

p(la,yl) = Fy) — F(z) if z <y.
Now consider the Lebesgue decomposition
dp = fdvy + dA

where f € L'(v1) and A L vy If z < g,

y
Fly) = F@) = [ 10t + Xz.)
and the previous two theorems imply that

L F(y) - Fl)
ylz y—x

= f(z) a.e. [vq]
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Ify<ua,
and we get

The theorem is proved.
Exercises

1. Suppose F : R — R is increasing and let f € L (v1) be such that
F'(z) = f(x) a.e. [v1]. Prove that

/yf(t)dtSF(y)—F(x) if —o0o <<y < o0.

5.4. Absolutely Continuous Functions and Functions of Bounded
Variation

Throughout this section a and b are reals with a < b and to simplify notation
we set Mgy = M. If f € L*(m,) we know from the previous section that
the function

(1f)(x) =dges /I Fb)dt, a <z <b

has the derivative f(z) a.e. [mgp], that is

% /ax ft)dt = f(x) a.e. [mgp).

Our next main task will be to describe the range of the linear map 1.
A function F' : [a,b] — R is said to be absolutely continuous if to every
e > 0 there exists a § > 0 such that

Y| by —a; |< 0 implies X', | FI(b;) — F(a;) |[< e
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whenever |ay, by[, ...,]an,, b,| are disjoint open subintervals of [a, b]. It is ob-
vious that an absolutely continuous function is continuous. It can be proved
that the Cantor function is not absolutely continuous.1.

Theorem 5.4.1. If f € L'(m,y,), then I f is absolutely continuous.

PROOQOF. There is no restriction to assume f > 0. Set
d\ = fdmgy.

By Theorem 5.2.2, to every ¢ > 0 there exists a 6 > 0 such that A\(A) < ¢
for each Lebesgue set A in [a, b] such that m,;(A) < . Now restricting A to
be a finite disjoint union of open intervals, the theorem follows.

Suppose —o00 < a < f < oo and F': |a, B[ — R. For every z € |a, 5] we
define
Tr(z) =sup T, | F(2;) — F(2i1) |

where the supremum is taken over all positive integers n and all choices
(x;), such that
a<rg<r<..<rT,=1x<p.

The function T : o, B] — [0, 00] is called the total variation of F. Note that
Tk is increasing. If T is a bounded function, F' is said to be of bounded varia-
tion. A bounded increasing function on R is of bounded variation. Therefore
the difference of two bounded increasing functions on R is of bounded vari-
ation. Interestingly enough, the converse is true. In the special case |a, f] =
R we write F' € BV if F'is of bounded variation.

Example 5.4.1. Let f:R— R be a Lebesgue integrable function and define

g(x) = / e W f(x —y)dy if z € R.

o0
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We claim that ¢ is a continuous function of bounded variation.
To prov this claim put h(z) = e 1l if 2 € R so that

o0

g@%=/h@—yﬁwwy

o)

We first prove that the function h is continuous. To this end suppose
(n)neN . is a sequence of real numbers which converges to a real number a.
Then

| han —y)f(y)) l€| f(y)) | if n€ Ny andy € R

and since f € £'(m) by dominated convergence,

lim g(a,) = /OO lim h(a, —y)f(y)dy =

n—oo n—oo
—00

/fhm—yﬁ@My:m@

and it follows that ¢ is continuous.

We next prove that the function A is of bounded variation. Recall that
the total variation function T} (z) of h at the point x is the supremum of all
sums of the type

Z | h(zi) — h(xi1) |

where
— 0 << <..<zxy, = <.

We claim that h is the difference of two bounded increasing functions. Setting

w(x) _ emin(O,x)

and observing that
h(z) = ¢(x) +¢(-z) -1

the claim above is obvious and
C =gef sup T}, < oo.

Moreover, if —oco < zg <27 < ... < 1, < 00,

Z | g(xi) — g(zi1) |=
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S0 [ ntw— sy - [ e -y

i=1 —00 —00

<> [ =)~ b= 0) || £ | dy

i=1 o0

=1

/OO <Z | (2 —y) — h(zim1 — y) |> | f(y) | dy

s/ﬁclﬂwhsz/mlﬂwhw<w-

o0 —00

Hence g is of bounded variation.

Theorem 5.4.2. Suppose F' € BV.
(a) The functions Tp + F and Tr — F are increasing and

1 1
F=5Tr+F) = 5(Tr - F).

In particular, F is differentiable almost everywhere with respect to linear
measure.
(b) If F is right continuous, then so is Tr.

PROOF. (a) Let x < y and € > 0. Choose zg < 1 < ... < x,, = x such that
Y | Fxi) = F(wio1) |2 Ti(x) —e.
Then
Tr(y) + F(y)
> X0 | Fx) = Foi) |+ | Fy) = F(z) [ +(F(y) — F(2)) + F(z)
> Tr(x) — e+ F(x)

and, since € > 0 is arbitrary, Tr(y) + F(y) > Tp(z) 4+ F(x). Hence Tr + F ' is
increasing. Finally, replacing F' by —F it follows that the function Tp — F
is increasing.
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(b) If ce R and = > ¢,
Ty(x) = Tp(c) +sup XL, | F(z) — F(zio1) |

where the supremum is taken over all positive integers n and all choices
(x;), such that
cC=rp< 1 <..<xy =2.

Suppose Tr(c+) > Tr(c) where ¢ € R. Then there is an ¢ > 0 such that
Tr(x) —Tg(c) > ¢

for all z > ¢. Now, since F' is right continuous at the point ¢, for fixed x > ¢
there exists a partition

C<T11 < ... < Typ, =7

such that
2?212 ‘ F({L’lz) — F(zli—l) ‘> E.

But
TF<£L‘11) — TF(C) > €

and we get a partition

C< T < ... < Top, = T11

such that
N2y | Flag) — F(raia) [> e

Summing up we have got a partition of the interval [xq;, x] with
2y | F(wa) = Fwgia) [ +52 | Fo) — Fay-1) [> 2¢

By repeating the process the total variation of F' becomes infinite, which is
a contradiction. The theorem is proved.

Theorem 5.4.3. Suppose F : [a,b] — R is absolutely continuous. Then
there exists a unique f € L'(myy) such that

F(x):F(a)+/xf(t)dt, a<x<hb.
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In particular, the range of the map I equals the set of all real-valued absolutely
continuous maps on |a,b] which vanish at the point a.

PROOF. Set F(x) = F(a) if x < a and F(z) = F(b) if x > b. There exists a
0 > 0 such that

X, | by —a; |< 6 implies X', | Fi(b;) — F(a;) |[< 1

whenever |ay,b1], ..., |an, by are disjoint subintervals of [a,b]. Let p be the
least positive integer such that a + pd > b. Then T < p and F' € BV. Let
F =G —H, where G = (Tp + F) and H = (T — F). There exist finite
positive Borel measures A\; and Ay such that

Aa(]z,y]) = Gly) — G(z), v <y
and

Au(Jz,y]) = H(y) — H(z), = <.
If we define A = \g — \py,

Mz, y]) = Fy) — F(x), » <y.

Clearly,
AMz,y)) = Fy) — F(z), <y
since F' is continuous.

Our next task will be to prove that A << v;. To this end, suppose A € R
and v (A) = 0. Now choose ¢ > 0 and let § > 0 be as in the definition of the
absolute continuity of F' on [a,b] . For each k € N, there exists an open set
Vi O A such that v;(V}) < § and limy_. A(Vi) = A(A). But each fixed V} is
a disjoint union of open intervals (]a;, b;[)22; and hence

Z:-Lzl | bz — a; |< )
for every n and, accordingly from this,
Sy | Fbi) — Flai) [< e

and
| A(VE) [ 22 | AMai bi]) [< e
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Thus | A(A) |< € and since € > 0 is arbitrary, A(A) = 0. From this A << v,
and the theorem follows at once.

Suppose (X, M, 1) is a positive measure space. From now on we write
f € L'(u) if there exist a g € £'(u) and an A € M such that A° € Z,, and
f(z) = g(x) for all z € A. Furthermore, we define

/deuz/xgdu

(cf the discussion in Section 2). Note that f(x) need not be defined for every
r e X.

Corollary 5.4.1. A function f : |a,b] — R 1is absolutely continuous if and
only if the following conditions are true:

(1) f'(x) exists for mgp-almost all x € [a, b]

(i1) f' € L (mas)

(1i1) f(x) = f(a) + fax f(t)dt, all x € [a,b].

Exercises

1. Suppose f :[0,1] — R satisfies f(0) = 0 and
~ 2%sin - if <
flz)==x sin — 1 0<z<1.

Prove that f is differentiable everywhere but f is not absolutely continuous.

2. Suppose « is a positive real number and f a function on [0, 1] such that
f(0) = 0 and f(z) = 2®sin2, 0 < 2 < 1. Prove that f is absolutely
continuous if and only if a > 1.
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3. Suppose f(z) = zcos(m/x) if 0 < z < 2 and f(z) = 0if x € R\ 0,2].
Prove that f is not of bounded variation on R.

4 A function f : [a,b] — R is a Lipschitz function, that is there exists a
positive real number C' such that

| flx) = fy) ISC |z —y]

for all x,y € [a,b]. Show that f is absolutely continuous and | f'(z) |< C
a.e. [Mayp) .

5. Suppose f : [a,b] — R is absolutely continuous. Prove that

Tg(a:):/x]f’(t)]dt, a<z<b

if ¢ is the restriction of f to the open interval ]a, b].

6. Suppose f and g are real-valued absolutely continuous functions on the
compact interval [a,b]. Show that the function h = max(f, g) is absolutely
continuous and h’' < max(f’, ¢') a.e. [map)-

7. Suppose (X, M, i) is a finite positive measure space and f € L'(u). Define

ngéjﬂ@—ﬂwmme“

Prove that ¢ is absolutely continuous and

o) =9(@)+ [ (u(f <)~ p(f 2 )ds HateR,

8. Let p and v be probability measures on (X, M) such that | p—v | (X) = 2.
Show that p L v.

HH
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5.5. Conditional Expectation
Let (Q,F,P) be a probability space and suppose ¢ € L'(P). Moreover,
suppose G C F is a o-algebra and set

wA)="P[A], Aeg

and

_/gdp, Aeg.
A

It is trivial that Z, = ZpNG C Z, and the Radon-Nikodym Theorem shows
there exists a unique n € L'(p) such that

A(A) :/ndu all Aeg
A

or, what amounts to the same thing,

/fdP:/ndPallAEQ.
A A

Note that 7 is (G, R)-measurable. The random variable 7 is called the con-
ditional expectation of ¢ given G and it is standard to write n = E'[€ | G].
A sequence of g-algebras (F,,)2, is called a filtration if

Fn C Frn ©F.

If (F,)22, is a filtration and (¢,,)32, is a sequence of real valued random
variables such that for each n,

(a) €
€, is (Fn, R)- measurable
|

(b)
(c) E[ Enit .’Fn]

e L'(P)

3

3

then (§,,F,)%, is called a martingale. There are very nice connections
between martingales and the theory of differentiation (see e.g Billingsley [B]
and Malliavin [M]).

(k)
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CHAPTER 6
COMPLEX INTEGRATION

Introduction

In this section, in order to illustrate the power of Lebesgue integration, we
collect a few results, which often appear with uncomplete proofs at the un-
dergraduate level.

6.1. Complex Integrand

So far we have only treated integration of functions with their values in R or
[0, 00] and it is the purpose of this section to discuss integration of complex
valued functions.

Suppose (X, M, p) is a positive measure. Let f,g € L'(1). We define

[ +igan= [ san+i [ oin

If @ and (3 are real numbers,

[ as i +igdn = [ ((@f = Bo)+itag+ 51)d

X

:/X(af—/é’g)du%—i/(ag—l-ﬁf)d#

X

:a/deu—ﬁ/nguHa/nguHﬁ/deu

G+ i) [ fau+i [ gdn)

— (a+if) /X (f +ig)dn.



184

We write f € L'(u; C) if Re f, Im f € L'(u) and have, for every f € L'(u; C)

and complex «,
/ ozfdu:oz/ fdu.
X b'e

Clearly, if f,g € L'(u; C), then

/}((erg)du:/deuﬂL/ngu-

Now suppose p is a complex measure on M. If

f € L'(1; C) = 4o, L (tpe; C©) N L (pig; C)

/X fp = /X Fdpig +1 /X Fin,

It follows for every f,g € L'(u; C) and o € C that

/Xafdu:a/xfdu.
/X(f+9)du=/deu+/ngu-

W

we define

and

6.2. The Fourier Transform

Below, if © = (x4, ...,x,) and y = (Y1, ..., yn) € R", we let

<ZE, y> = ZZZkayk-

and
|z [= v {,y).
If 1 is a complex measure on R,, (or R, ) the Fourier transform f of 4 is
defined by

i) = [ e du(a), y e R
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Note that
f1(0) = u(R").
The Fourier transform of a function f € L(m,; C) is defined by

~

f(y) = i(y) where dp = fdm,,.

Theorem 6.2.1. The canonical Gaussian measure vy, in R" has the Fourier

transform
ly|?
2

~

Ynly) =€

PROOF. Since
Vo =71 ® ... @7 (n factors)

it is enough to consider the special case n = 1. Set

~ —

1
9(y) =y = E /Re

Note that ¢g(0) = 1. Since

z2
2 cos zydx.

| cosz(y + h) — coszy
h

the Lebesgue Dominated Convergence Theorem yields

1 22
J(y) = T /R —xe” 7 sinxydz

(Exercise: Prove this by using Example 2.2.1). Now, by partial integration,

<l |

2

J(y) = 1 [e_%sina:yr:oo L
V2T r=—00 /27 JR

12
2 cosxydr

that is
g (y) +yg(y) =0

and we get
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If £ = (&,...,&,) is an R"-valued random variable with &, € L'(P),
k =1,...,n, the characteristic function ¢, of { is defined by

ce(y) = E [¢V] = P(—y), y e R™
For example, if £ € N(0,0), then £ = oG, where G € N(0, 1), and we get

ce(y) = E [V = 4, (—ay)

Choosing y = 1 results in
E "] = e~ 2 2[€%] if € € N(0,0).

Thus if (§,)7_; is a centred real-valued Gaussian process

. 1
E [ezzkzlykgk} = eXp(—ﬁE [(Zzzl?/kgk)ﬂ

1
= exp(—5 X0 E (6] — Drgiancayimn B [§6]).

In particular, if

E[§&] =0, j#k

we see that ,
o3 B[e]

E [eizzzlykgk} — HZ

or
E [eiEZ:kaﬁk} — HZ:1E [eiykfk] ]

Stated otherwise, the Fourier tranforms of the measures P . ¢
agree. Below we will show that complex measures in R"™ with the same
Fourier transforms are equal and we get the following

Theorem 6.2.2. Let (£,)7_; be a centred real-valued Gaussian process with
uncorrelated components, that is

Elg&] =0, j £k
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Then the random variables &4, ..., &, are independent.

6.3 Fourier Inversion

Theorem 6.3.1. Suppose f € L'(m,). If f € L'(my,) and f is bounded
and continuous

dy

fla) = [ o fly) s e R

PROOQOF. Choose € > 0. We have

iya) — Sy f dy gy 22 dY
/ i) =5l f(y)wz/ f(u){/ pilva—u) 1y (ZW)”}du

where the right side equals

/ f(w) {/ i) =3 10 dv } dlﬁl _ f(u)efﬁhkx‘z du
" n Vo V2w en R \/ﬁen

1 d
= flz+ 62)6’5|Z|2—Z.
R" 2w
Thus J g
. &2 A 1

R @2m)r  Jre Vor'
By letting ¢ — 0 and using the Lebesgue Dominated Convergence Theorem,
Theorem 6.3.1 follows at once.

Recall that C°(R"™) denotes the class of all functions f : R" — R
with compact support which are infinitely many times differentiable. If f €
C>*(R"™) then fe LY(m,). To see this, suppose yx # 0 and use partial
integration to obtain

f = [ e e = — [ g @y

and

fy) = — / de*“ﬂ”’wf;i)(x)dx,zeN.
R
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Thus
Ly '] f(y) < / | fD(z) | da, 1 €N
Rﬂ,

and we conclude that

sup (14 | y )" | f(y) |< oo
yeR”

and, hence, f € L'(m,,).

Corollary 6.3.1. If f € C®(R"), then f € L*(m,) and

dy

fla) = [ @ flgts e R

Corollary 6.3.2 If pu is a complex Borel measure in R"™ and fi = 0, then
w=0.

PROOF. Choose f € C*(R"™). We multiply the equation fi(—y) = 0 by (’;(Ty))n
and integrate over R" with respect to Lebesgue measure to obtain

- f(@)du(r) = 0.

Since f € C°(R") is arbitrary it follows that ;1 = 0. The theorem is proved.
6.4. Non-Differentiability of Brownian Paths

Let ND denote the set of all real-valued continuous function defined on the
unit interval which are not differentiable at any point. It is well known that
ND is non-empty. In fact, if v is Wiener measure on C'[0,1], = € ND
a.e. [v]. The purpose of this section is to prove this important property of
Brownian motion.
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Let W = (W(t))o<t<1 be a real-valued Brownian motion in the time
interval [0, 1] such that every path ¢t — W (t), 0 <t <1 is continuous. Recall
that

EW(®)] =0

and
E W (s)W(t)] = min(s,t).

If
0<ty<..<t,<1

and 1 <j<k<n
E{W(te) = W(te-1))(W(t;) — W(tj-1)]
= E[(W(t)W (t;)]—E [W (te)W (tj—1)]|—E [W (Lo )W (t;)|+E [W (te—1)W (t;-1)]
- tj - tj,1 - tj + tj,1 - O
From the previous section we now infer that the random variables
W(t1) = W(to), ... W(tn) = W(tn—1)
are independent.

Theorem 7. The function t — W(t), 0 <t <1 is not differentiable at
any point t € [0,1] a.s. [P].

PROOF. Without loss of generality we assume the underlying probability
space is complete. Let ¢,e > 0 and denote by B(c,¢) the set of all w € Q
such that

| W(t)—W(s)|<c|t—sl|ifte[s—e,s+e]N]0,1]
for some s € [0,1]. It is enough to prove that the set
j=1k=1

is of probability zero. From now on let ¢,e > 0 be fixed. It is enough to
prove P[B(c,e)] =0.
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Set

_ ol
Xn,k—k§r§13§+3|W( - ) W(n)l

for each integer n > 3 and k € {0,...,n — 3} .
Let n > 3 be so large that

We claim that

If w € B(c,¢e) there exists an s € [0, 1] such that
| W(t)—W(s)|<c|t—s|ifte[s—es+e]N]0,1].

Now choose k € {0, ...,n — 3} such that

{k k 3]
s€|—,—+ 1.
nn n
Itk <j<k+3,
Jj+1 J J+1 j
_ 2y < CAL —W(L
(W) = W) W) = W(s) [+ | W(s) = (L)
6c
S_
n

and, hence, X, ; < %. Now

6
B(e,e) C [ min X, < —C}
0<k<n—3 n

and it is enough to prove that

lim P [ min X, < @} = 0.

n— o0 0<k<n—3 n

But
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where the right side converges to zero as n — oo. The theorem is proved.

Recall that a function of bounded variation possesses a derivative a.e.
with respect to Lebesgue measure. Therefore, with probability one, a Brown-
ian path is not of bounded variation. In view of this an integral of the type

/0 F(HAW (1)

cannot be interpreted as an ordinary Stieltjes integral. Nevertheless, such
an integral can be defined by completely different means and is basic in, for
example, financial mathematics.

[k
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CHAPTER 6
COMPLEX INTEGRATION

Introduction

In this section, in order to illustrate the power of Lebesgue integration, we
collect a few results, which often appear with uncomplete proofs at the un-
dergraduate level.

6.1. Complex Integrand

So far we have only treated integration of functions with their values in R or
[0, 00] and it is the purpose of this section to discuss integration of complex
valued functions.

Suppose (X, M, p1) is a positive measure. Let f,g € L'(1). We define

[+ igau= [ san+i [ oin

If @ and (8 are real numbers,

[ s ins +igdn = [ ((af = Bo)+itag+ B1)d

X

:/X(af_ﬁg)du+z‘/(ag+ﬁf)du

X

:@/deu—B/nguﬂa/xgdwriﬁ/xfdu

~ G+ i) [ fau+i [ gin)

— (a+if) /X (f +ig)dn.
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We write f € L'(y; C) if Re f, Im f € L'(u) and have, for every f € L*(u; C)

and complex «,
/ ozfd,u:oz/ fdu.
X b's

Clearly, if f,g € L'(u; C), then

/X(f+g)d#=/xfdﬂ+/ngu-

Now suppose p is a complex measure on M. If

f € LYp; C) =4, L (pire; C) N L (pigy; C)

/deuz/xfduReJri/demm-

It follows for every f,g € L'(u; C) and a € C that

/Xafd,u:a/xfd,u.
/X(f+g)du=/xfdﬂ+/ngu-

HH

we define

and

6.2. The Fourier Transform

Below, if © = (x4, ...,x,) and y = (Y1, ..., yn) € R", we let

<.I', y> = ZZzlxkyk-

and
|z |=V{z,y).

If 1 is a complex measure on R,, (or R, ) the Fourier transform f of 4 is
defined by

o) = [ e duta), y e R,
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Note that
f1(0) = u(R").
The Fourier transform of a function f € L'(m,; C) is defined by

~

f(y) = i(y) where dp = fdm,,.

Theorem 6.2.1. The canonical Gaussian measure v, in R"™ has the Fourier
transform

<

~ — g

PROOF. Since
Yo =71 ® ... @7, (n factors)

it is enough to consider the special case n = 1. Set

2
2

A —

1
9(y) =1 (y) = E/Re

Note that ¢g(0) = 1. Since

cos rydzx.

| cosz(y + h) — coszy
h

the Lebesgue Dominated Convergence Theorem yields

J(y) = \/%/R—xe_

(Exercise: Prove this by using Example 2.2.1). Now, by partial integration,

<l |

12
2 sinxydx

=00 2

1 fL‘2 x
q'(y) = [6_7 sin xy} ~ Y| % cos xydx
V2T T=—00 V2T JRr

that is
g (y) +yg(y) =0

and we get
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If &£ = (&,...,§,) is an R"-valued random variable with &, € L'(P),
k =1,...,n, the characteristic function ¢, of { is defined by

ce(y) = E [¢“V] = Pe(~y), y € R".
For example, if £ € N(0,0), then £ = 0GG, where G € N(0, 1), and we get

ce(y) = E [V = 4, (—ay)

Choosing y = 1 results in
E[e*] = e~ 22[¢%] if ¢ € N(0,0).

Thus if (§,)7_; is a centred real-valued Gaussian process

. 1
E [ezzkzlykfk} — eXp(_iE [(Zzz1yk€k)2]

1
= exp(—QEzzly,%E [&i] — Yi<jek<n¥iUr [5j£k])-

In particular, if
we see that

o E[E]

E [eixzzlykfk} — HZ

or
E [eizzzlykfk] — HZ:1E [6iyk£k} ]

Stated otherwise, the Fourier tranforms of the measures P | ¢
agree. Below we will show that complex measures in R" with the same
Fourier transforms are equal and we get the following

Theorem 6.2.2. Let (£,)7_; be a centred real-valued Gaussian process with
uncorrelated components, that is

Elg&] =0, j £k
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Then the random variables &, ..., &, are independent.

6.3 Fourier Inversion

Theorem 6.3.1. Suppose f € L*(m,). If f € L'(m,) and f is bounded
and continuous

- - d
fla) = [ o fl) s r e R

PROOF. Choose € > 0. We have

ily,z) Syl f dy itva—wy — 212 Ay
/ i) o=l f(y>(27r)”:/ f(u){/ G- 1yl (2W)n}du

where the right side equals

w1 dv du 1 2 du
i(v,2=2) —Zvl? _ — 5oz lu—z|
U e = e 2 — = u)e 2 -
/nf( ){/n v 2T }\/27r en Rnf( ) V2T en

d
= f(:v—l—az)e’%'Z‘Q—z.
R» 27
Thus p p

2
i(yx) ,—5lyl? f vy _ o Cld
e e 2 f(y) = flz+ez)e 2 .

R" (2m)n R” V2T

By letting ¢ — 0 and using the Lebesgue Dominated Convergence Theorem,
Theorem 6.3.1 follows at once.

Recall that C°(R"™) denotes the class of all functions f : R" — R
with compact support which are infinitely many times differentiable. If f €
C>®(R™) then fe L*(m,). To see this, suppose y, # 0 and use partial
integration to obtain

£ —i{x 1 —i(z /
for = [ e e = — [ g @yt
and )
1O = Gy /R e f (), 1 € N.



197
Thus
Ly ' f(y) IS/ | f9(2) | dz, 1 €N
R'n,

and we conclude that

sup (14 |y )" | f(y) |< oo.
yeRn

and, hence, f € L'(m,,).

Corollary 6.3.1. If f € C®(R"), then f € L*(m,) and

dy

fla) = [ @ fl) gt e R

Corollary 6.3.2 If p is a complex Borel measure in R" and fi = 0, then
pw=0.

fw)
2m)n

PROOF. Choose f € C*(R"™). We multiply the equation [i(—y) = 0 by )

(
and integrate over R™ with respect to Lebesgue measure to obtain

- f(@)dp(z) = 0.

Since f € C°(R") is arbitrary it follows that p = 0. The theorem is proved.
6.4. Non-Differentiability of Brownian Paths

Let ND denote the set of all real-valued continuous function defined on the
unit interval which are not differentiable at any point. It is well known that
ND is non-empty. In fact, if v is Wiener measure on C'[0,1], = € ND
a.e. [v]. The purpose of this section is to prove this important property of
Brownian motion.
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Let W = (W(t))o<t<1 be a real-valued Brownian motion in the time
interval [0, 1] such that every path ¢t — W (t), 0 <t <1 is continuous. Recall
that

EW(t)] =0

and
E W (s)W(t)] = min(s,t).

If
0<tyg<..<t,<1

and1<j<k<n
E{W(te) = W(te-1))(W(t;) = W(tj-1)]
= E[(W(ti)W ()] —E W (t)W (tj—1)]|=E [W(te_)W (t;)|+E [W (tr_1) W (t;-1)]
- tj - tj,1 - tj + tj,1 - O
From the previous section we now infer that the random variables
W(t1) = W(to), ... W(tn) = W(tn—1)
are independent.

Theorem 7. The function t — W(t), 0 <t < 1 is not differentiable at
any point t € [0,1] a.s. [P].

PROOF. Without loss of generality we assume the underlying probability
space is complete. Let ¢,e > 0 and denote by B(c,¢) the set of all w € Q
such that

| W(t)—W(s)|<c|t—sl|ifte[s—e,s+eN]0,1]
for some s € [0,1]. It is enough to prove that the set
j=1k=1

is of probability zero. From now on let c,e > 0 be fixed. It is enough to
prove P [B(c,e)] =0.



Set

X = max [ W(E——=) = W(2)|

E<j<k-+3 n

for each integer n > 3 and k € {0,...,n — 3}.
Let n > 3 be so large that

We claim that

If w € B(c,€) there exists an s € [0, 1] such that

| W(t)—W(s)|<cl|t—s]|ifte[s—e,s+e]N]0,1].

Now choose k € {0, ...,n — 3} such that

[k k 3}
sE€ ==+ 1.
nn n
Ifk<j<k+3,
Jj+1 J J+1
—W(L) I
(W) W) = W
6¢
< =
n

and, hence, X, ; < %. Now

6
B(c,e) C [ min X, < —C}
0<k<n—3 n

and it is enough to prove that

lim P [ min X, < @} =0.

n— o0 0<k<n-—3 n

But

-3
6¢c 6¢

P in X,.<—|< E Pl X, < —
{ min k< ] < 2 { & n]

0<k<n—3 n

199
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where the right side converges to zero as n — oco. The theorem is proved.

Recall that a function of bounded variation possesses a derivative a.e.
with respect to Lebesgue measure. Therefore, with probability one, a Brown-
ian path is not of bounded variation. In view of this an integral of the type

/0 F(HAW (1)

cannot be interpreted as an ordinary Stieltjes integral. Nevertheless, such
an integral can be defined by completely different means and is basic in, for
example, financial mathematics.

(k)
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