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Abstract. These are some brief notes on measure theory, concentrating on

Lebesgue measure on Rn. Some missing topics I would have liked to have in-
cluded had time permitted are: the change of variable formula for the Lebesgue

integral on Rn; absolutely continuous functions and functions of bounded vari-

ation of a single variable and their connection with Lebesgue-Stieltjes measures
on R; Radon measures on Rn, and other locally compact Hausdorff topological

spaces, and the Riesz representation theorem for bounded linear functionals

on spaces of continuous functions; and other examples of measures, including
k-dimensional Hausdorff measure in Rn, Wiener measure and Brownian mo-

tion, and Haar measure on topological groups. All these topics can be found

in the references.

c© John K. Hunter, 2011
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CHAPTER 1

Measures

Measures are a generalization of volume; the fundamental example is Lebesgue
measure on Rn, which we discuss in detail in the next Chapter. Moreover, as
formalized by Kolmogorov (1933), measure theory provides the foundation of prob-
ability. Measures are important not only because of their intrinsic geometrical and
probabilistic significance, but because they allow us to define integrals.

This connection, in fact, goes in both directions: we can define an integral
in terms of a measure; or, in the Daniell-Stone approach, we can start with an
integral (a linear functional acting on functions) and use it to define a measure. In
probability theory, this corresponds to taking the expectation of random variables
as the fundamental concept from which the probability of events is derived.

In these notes, we develop the theory of measures first, and then define integrals.
This is (arguably) the more concrete and natural approach; it is also (unarguably)
the original approach of Lebesgue. We begin, in this Chapter, with some prelimi-
nary definitions and terminology related to measures on arbitrary sets. See Folland
[4] for further discussion.

1.1. Sets

We use standard definitions and notations from set theory and will assume the
axiom of choice when needed. The words ‘collection’ and ‘family’ are synonymous
with ‘set’ — we use them when talking about sets of sets. We denote the collection
of subsets, or power set, of a set X by P(X). The notation 2X is also used.

If E ⊂ X and the set X is understood, we denote the complement of E in X
by Ec = X \ E. De Morgan’s laws state that(⋃

α∈I
Eα

)c
=
⋂
α∈I

Ecα,

(⋂
α∈I

Eα

)c
=

∞⋃
α∈I

Ecα.

We say that a collection

C = {Eα ⊂ X : α ∈ I}

of subsets of a set X, indexed by a set I, covers E ⊂ X if⋃
α∈I

Eα ⊃ E.

The collection C is disjoint if Eα ∩ Eβ = ∅ for α 6= β.
The Cartesian product, or product, of sets X, Y is the collection of all ordered

pairs

X × Y = {(x, y) : x ∈ X, y ∈ Y } .

1



2 1. MEASURES

1.2. Topological spaces

A topological space is a set equipped with a collection of open subsets that
satisfies appropriate conditions.

Definition 1.1. A topological space (X, T ) is a set X and a collection T ⊂ P(X)
of subsets of X, called open sets, such that

(a) ∅, X ∈ T ;
(b) if {Uα ∈ T : α ∈ I} is an arbitrary collection of open sets, then their

union ⋃
α∈I

Uα ∈ T

is open;
(c) if {Ui ∈ T : i = 1, 2, . . . , N} is a finite collection of open sets, then their

intersection
N⋂
i=1

Ui ∈ T

is open.

The complement of an open set in X is called a closed set, and T is called a topology
on X.

1.3. Extended real numbers

It is convenient to use the extended real numbers

R = {−∞} ∪ R ∪ {∞}.

This allows us, for example, to talk about sets with infinite measure or non-negative
functions with infinite integral. The extended real numbers are totally ordered in
the obvious way: ∞ is the largest element, −∞ is the smallest element, and real
numbers are ordered as in R. Algebraic operations on R are defined when they are
unambiguous e.g. ∞ + x = ∞ for every x ∈ R except x = −∞, but ∞ −∞ is
undefined.

We define a topology on R in a natural way, making R homeomorphic to a
compact interval. For example, the function φ : R→ [−1, 1] defined by

φ(x) =


1 if x =∞
x/
√

1 + x2 if −∞ < x <∞
−1 if x = −∞

is a homeomorphism.
A primary reason to use the extended real numbers is that upper and lower

bounds always exist. Every subset of R has a supremum (equal to ∞ if the subset
contains ∞ or is not bounded from above in R) and infimum (equal to −∞ if the
subset contains −∞ or is not bounded from below in R). Every increasing sequence
of extended real numbers converges to its supremum, and every decreasing sequence
converges to its infimum. Similarly, if {an} is a sequence of extended real-numbers
then

lim sup
n→∞

an = inf
n∈N

(
sup
i≥n

ai

)
, lim inf

n→∞
an = sup

n∈N

(
inf
i≥n

ai

)
both exist as extended real numbers.
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Every sum
∑∞
i=1 xi with non-negative terms xi ≥ 0 converges in R (to ∞ if

xi =∞ for some i ∈ N or the series diverges in R), where the sum is defined by

∞∑
i=1

xi = sup

{∑
i∈F

xi : F ⊂ N is finite

}
.

As for non-negative sums of real numbers, non-negative sums of extended real
numbers are unconditionally convergent (the order of the terms does not matter);
we can rearrange sums of non-negative extended real numbers

∞∑
i=1

(xi + yi) =

∞∑
i=1

xi +

∞∑
i=1

yi;

and double sums may be evaluated as iterated single sums

∞∑
i,j=1

xij = sup

 ∑
(i,j)∈F

xij : F ⊂ N× N is finite


=

∞∑
i=1

 ∞∑
j=1

xij


=

∞∑
j=1

( ∞∑
i=1

xij

)
.

Our use of extended real numbers is closely tied to the order and monotonicity
properties of R. In dealing with complex numbers or elements of a vector space,
we will always require that they are strictly finite.

1.4. Outer measures

As stated in the following definition, an outer measure is a monotone, countably
subadditive, non-negative, extended real-valued function defined on all subsets of
a set.

Definition 1.2. An outer measure µ∗ on a set X is a function

µ∗ : P(X)→ [0,∞]

such that:

(a) µ∗(∅) = 0;
(b) if E ⊂ F ⊂ X, then µ∗(E) ≤ µ∗(F );
(c) if {Ei ⊂ X : i ∈ N} is a countable collection of subsets of X, then

µ∗

( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

µ∗(Ei).

We obtain a statement about finite unions from a statement about infinite
unions by taking all but finitely many sets in the union equal to the empty set.
Note that µ∗ is not assumed to be additive even if the collection {Ei} is disjoint.
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1.5. σ-algebras

A σ-algebra on a set X is a collection of subsets of a set X that contains ∅ and
X, and is closed under complements, finite unions, countable unions, and countable
intersections.

Definition 1.3. A σ-algebra on a set X is a collection A of subsets of X such that:

(a) ∅, X ∈ A;
(b) if A ∈ A then Ac ∈ A;
(c) if Ai ∈ A for i ∈ N then

∞⋃
i=1

Ai ∈ A,
∞⋂
i=1

Ai ∈ A.

From de Morgan’s laws, a collection of subsets is σ-algebra if it contains ∅ and
is closed under the operations of taking complements and countable unions (or,
equivalently, countable intersections).

Example 1.4. If X is a set, then {∅, X} and P(X) are σ-algebras on X; they are
the smallest and largest σ-algebras on X, respectively.

Measurable spaces provide the domain of measures, defined below.

Definition 1.5. A measurable space (X,A) is a non-empty set X equipped with
a σ-algebra A on X.

It is useful to compare the definition of a σ-algebra with that of a topology in
Definition 1.1. There are two significant differences. First, the complement of a
measurable set is measurable, but the complement of an open set is not, in general,
open, excluding special cases such as the discrete topology T = P(X). Second,
countable intersections and unions of measurable sets are measurable, but only
finite intersections of open sets are open while arbitrary (even uncountable) unions
of open sets are open. Despite the formal similarities, the properties of measurable
and open sets are very different, and they do not combine in a straightforward way.

If F is any collection of subsets of a set X, then there is a smallest σ-algebra
on X that contains F , denoted by σ(F).

Definition 1.6. If F is any collection of subsets of a set X, then the σ-algebra
generated by F is

σ(F) =
⋂
{A ⊂ P(X) : A ⊃ F and A is a σ-algebra} .

This intersection is nonempty, since P(X) is a σ-algebra that contains F , and
an intersection of σ-algebras is a σ-algebra. An immediate consequence of the
definition is the following result, which we will use repeatedly.

Proposition 1.7. If F is a collection of subsets of a set X such that F ⊂ A where
A is a σ-algebra on X, then σ(F) ⊂ A.

Among the most important σ-algebras are the Borel σ-algebras on topological
spaces.

Definition 1.8. Let (X, T ) be a topological space. The Borel σ-algebra

B(X) = σ(T )

is the σ-algebra generated by the collection T of open sets on X.
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1.6. Measures

A measure is a countably additive, non-negative, extended real-valued function
defined on a σ-algebra.

Definition 1.9. A measure µ on a measurable space (X,A) is a function

µ : A → [0,∞]

such that

(a) µ(∅) = 0;
(b) if {Ai ∈ A : i ∈ N} is a countable disjoint collection of sets in A, then

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

In comparison with an outer measure, a measure need not be defined on all
subsets of a set, but it is countably additive rather than countably subadditive.
A measure µ on a set X is finite if µ(X) < ∞, and σ-finite if X =

⋃∞
n=1An

is a countable union of measurable sets An with finite measure, µ(An) < ∞. A
probability measure is a finite measure with µ(X) = 1.

A measure space (X,A, µ) consists of a set X, a σ-algebra A on X, and a
measure µ defined on A. When A and µ are clear from the context, we will refer to
the measure space X. We define subspaces of measure spaces in the natural way.

Definition 1.10. If (X,A, µ) is a measure space and E ⊂ X is a measurable
subset, then the measure subspace (E, A|E , µ|E) is defined by restricting µ to E:

A|E = {A ∩ E : A ∈ A} , µ|E (A ∩ E) = µ(A ∩ E).

As we will see, the construction of nontrivial measures, such as Lebesgue mea-
sure, requires considerable effort. Nevertheless, there is at least one useful example
of a measure that is simple to define.

Example 1.11. Let X be an arbitrary non-empty set. Define ν : P(X) → [0,∞]
by

ν(E) = number of elements in E,

where ν(∅) = 0 and ν(E) =∞ if E is not finite. Then ν is a measure, called count-
ing measure on X. Every subset of X is measurable with respect to ν. Counting
measure is finite if X is finite and σ-finite if X is countable.

A useful implication of the countable additivity of a measure is the following
monotonicity result.

Proposition 1.12. If {Ai : i ∈ N} is an increasing sequence of measurable sets,
meaning that Ai+1 ⊃ Ai, then

(1.1) µ

( ∞⋃
i=1

Ai

)
= lim
i→∞

µ(Ai).

If {Ai : i ∈ N} is a decreasing sequence of measurable sets, meaning that Ai+1 ⊂ Ai,
and µ(A1) <∞, then

(1.2) µ

( ∞⋂
i=1

Ai

)
= lim
i→∞

µ(Ai).
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Proof. If {Ai : i ∈ N} is an increasing sequence of sets and Bi = Ai+1 \ Ai,
then {Bi : i ∈ N} is a disjoint sequence with the same union, so by the countable
additivity of µ

µ

( ∞⋃
i=1

Ai

)
= µ

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

µ (Bi) .

Moreover, since Aj =
⋃j
i=1Bi,

µ(Aj) =

j∑
i=1

µ (Bi) ,

which implies that
∞∑
i=1

µ (Bi) = lim
j→∞

µ(Aj)

and the first result follows.
If µ(A1) <∞ and {Ai} is decreasing, then {Bi = A1 \Ai} is increasing and

µ(Bi) = µ(A1)− µ(Ai).

It follows from the previous result that

µ

( ∞⋃
i=1

Bi

)
= lim
i→∞

µ(Bi) = µ(A1)− lim
i→∞

µ(Ai).

Since
∞⋃
i=1

Bi = A1 \
∞⋂
i=1

Ai, µ

( ∞⋃
i=1

Bi

)
= µ(A1)− µ

( ∞⋂
i=1

Ai

)
,

the result follows. �

Example 1.13. To illustrate the necessity of the condition µ(A1) < ∞ in the
second part of the previous proposition, or more generally µ(An) < ∞ for some
n ∈ N, consider counting measure ν : P(N)→ [0,∞] on N. If

An = {k ∈ N : k ≥ n},
then ν(An) =∞ for every n ∈ N, so ν(An)→∞ as n→∞, but

∞⋂
n=1

An = ∅, ν

( ∞⋂
n=1

An

)
= 0.

1.7. Sets of measure zero

A set of measure zero, or a null set, is a measurable set N such that µ(N) = 0.
A property which holds for all x ∈ X \N where N is a set of measure zero is said
to hold almost everywhere, or a.e. for short. If we want to emphasize the measure,
we say µ-a.e. In general, a subset of a set of measure zero need not be measurable,
but if it is, it must have measure zero.

It is frequently convenient to use measure spaces which are complete in the
following sense. (This is, of course, a different sense of ‘complete’ than the one used
in talking about complete metric spaces.)

Definition 1.14. A measure space (X,A, µ) is complete if every subset of a set of
measure zero is measurable.
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Note that completeness depends on the measure µ, not just the σ-algebra
A. Any measure space (X,A, µ) is contained in a uniquely defined completion
(X,A, µ), which the smallest complete measure space that contains it and is given
explicitly as follows.

Theorem 1.15. If (X,A, µ) is a measure space, define (X,A, µ) by

A = {A ∪M : A ∈ A, M ⊂ N where N ∈ A satisfies µ(N) = 0}
with µ(A ∪ M) = µ(A). Then (X,A, µ) is a complete measure space such that
A ⊃ A and µ is the unique extension of µ to A.

Proof. The collection A is a σ-algebra. It is closed under complementation
because, with the notation used in the definition,

(A ∪M)c = Ac ∩M c, M c = N c ∪ (N \M).

Therefore
(A ∪M)c = (Ac ∩N c) ∪ (Ac ∩ (N \M)) ∈ A,

since Ac ∩N c ∈ A and Ac ∩ (N \M) ⊂ N . Moreover, A is closed under countable
unions because if Ai ∈ A and Mi ⊂ Ni where µ(Ni) = 0 for each i ∈ N, then

∞⋃
i=1

Ai ∪Mi =

( ∞⋃
i=1

Ai

)
∪

( ∞⋃
i=1

Mi

)
∈ A,

since
∞⋃
i=1

Ai ∈ A,
∞⋃
i=1

Mi ⊂
∞⋃
i=1

Ni, µ

( ∞⋃
i=1

Ni

)
= 0.

It is straightforward to check that µ is well-defined and is the unique extension of
µ to a measure on A, and that (X,A, µ) is complete. �





CHAPTER 2

Lebesgue Measure on Rn

Our goal is to construct a notion of the volume, or Lebesgue measure, of rather
general subsets of Rn that reduces to the usual volume of elementary geometrical
sets such as cubes or rectangles.

If L(Rn) denotes the collection of Lebesgue measurable sets and

µ : L(Rn)→ [0,∞]

denotes Lebesgue measure, then we want L(Rn) to contain all n-dimensional rect-
angles and µ(R) should be the usual volume of a rectangle R. Moreover, we want
µ to be countably additive. That is, if

{Ai ∈ L(Rn) : i ∈ N}

is a countable collection of disjoint measurable sets, then their union should be
measurable and

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ (Ai) .

The reason for requiring countable additivity is that finite additivity is too weak
a property to allow the justification of any limiting processes, while uncountable
additivity is too strong; for example, it would imply that if the measure of a set
consisting of a single point is zero, then the measure of every subset of Rn would
be zero.

It is not possible to define the Lebesgue measure of all subsets of Rn in a
geometrically reasonable way. Hausdorff (1914) showed that for any dimension
n ≥ 1, there is no countably additive measure defined on all subsets of Rn that is
invariant under isometries (translations and rotations) and assigns measure one to
the unit cube. He further showed that if n ≥ 3, there is no such finitely additive
measure. This result is dramatized by the Banach-Tarski ‘paradox’: Banach and
Tarski (1924) showed that if n ≥ 3, one can cut up a ball in Rn into a finite number
of pieces and use isometries to reassemble the pieces into a ball of any desired volume
e.g. reassemble a pea into the sun. The ‘construction’ of these pieces requires the
axiom of choice.1 Banach (1923) also showed that if n = 1 or n = 2 there are
finitely additive, isometrically invariant extensions of Lebesgue measure on Rn that
are defined on all subsets of Rn, but these extensions are not countably additive.
For a detailed discussion of the Banach-Tarski paradox and related issues, see [10].

The moral of these results is that some subsets of Rn are too irregular to define
their Lebesgue measure in a way that preserves countable additivity (or even finite
additivity in n ≥ 3 dimensions) together with the invariance of the measure under

1Solovay (1970) proved that one has to use the axiom of choice to obtain non-Lebesgue
measurable sets.

9
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isometries. We will show, however, that such a measure can be defined on a σ-
algebra L(Rn) of Lebesgue measurable sets which is large enough to include all set
of ‘practical’ importance in analysis. Moreover, as we will see, it is possible to define
an isometrically-invariant, countably sub-additive outer measure on all subsets of
Rn.

There are many ways to construct Lebesgue measure, all of which lead to the
same result. We will follow an approach due to Carathéodory, which generalizes
to other measures: We first construct an outer measure on all subsets of Rn by
approximating them from the outside by countable unions of rectangles; we then
restrict this outer measure to a σ-algebra of measurable subsets on which it is count-
ably additive. This approach is somewhat asymmetrical in that we approximate
sets (and their complements) from the outside by elementary sets, but we do not
approximate them directly from the inside.

Jones [5], Stein and Shakarchi [8], and Wheeler and Zygmund [11] give detailed
introductions to Lebesgue measure on Rn. Cohn [2] gives a similar development to
the one here, and Evans and Gariepy [3] discuss more advanced topics.

2.1. Lebesgue outer measure

We use rectangles as our elementary sets, defined as follows.

Definition 2.1. An n-dimensional, closed rectangle with sides oriented parallel to
the coordinate axes, or rectangle for short, is a subset R ⊂ Rn of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn]

where −∞ < ai ≤ bi <∞ for i = 1, . . . , n. The volume µ(R) of R is

µ(R) = (b1 − a1)(b2 − a2) . . . (bn − an).

If n = 1 or n = 2, the volume of a rectangle is its length or area, respectively.
We also consider the empty set to be a rectangle with µ(∅) = 0. We denote the
collection of all n-dimensional rectangles by R(Rn), or R when n is understood,
and then R 7→ µ(R) defines a map

µ : R(Rn)→ [0,∞).

The use of this particular class of elementary sets is for convenience. We could
equally well use open or half-open rectangles, cubes, balls, or other suitable ele-
mentary sets; the result would be the same.

Definition 2.2. The outer Lebesgue measure µ∗(E) of a subset E ⊂ Rn, or outer
measure for short, is

(2.1) µ∗(E) = inf

{ ∞∑
i=1

µ(Ri) : E ⊂
⋃∞
i=1Ri, Ri ∈ R(Rn)

}
where the infimum is taken over all countable collections of rectangles whose union
contains E. The map

µ∗ : P(Rn)→ [0,∞], µ∗ : E 7→ µ∗(E)

is called outer Lebesgue measure.
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In this definition, a sum
∑∞
i=1 µ(Ri) and µ∗(E) may take the value ∞. We do

not require that the rectangles Ri are disjoint, so the same volume may contribute
to multiple terms in the sum on the right-hand side of (2.1); this does not affect
the value of the infimum.

Example 2.3. Let E = Q ∩ [0, 1] be the set of rational numbers between 0 and 1.
Then E has outer measure zero. To prove this, let {qi : i ∈ N} be an enumeration
of the points in E. Given ε > 0, let Ri be an interval of length ε/2i which contains
qi. Then E ⊂

⋃∞
i=1 µ(Ri) so

0 ≤ µ∗(E) ≤
∞∑
i=1

µ(Ri) = ε.

Hence µ∗(E) = 0 since ε > 0 is arbitrary. The same argument shows that any
countable set has outer measure zero. Note that if we cover E by a finite collection
of intervals, then the union of the intervals would have to contain [0, 1] since E is
dense in [0, 1] so their lengths sum to at least one.

The previous example illustrates why we need to use countably infinite collec-
tions of rectangles, not just finite collections, to define the outer measure.2 The
‘countable ε-trick’ used in the example appears in various forms throughout measure
theory.

Next, we prove that µ∗ is an outer measure in the sense of Definition 1.2.

Theorem 2.4. Lebesgue outer measure µ∗ has the following properties.

(a) µ∗(∅) = 0;
(b) if E ⊂ F , then µ∗(E) ≤ µ∗(F );
(c) if {Ei ⊂ Rn : i ∈ N} is a countable collection of subsets of Rn, then

µ∗

( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

µ∗ (Ei) .

Proof. It follows immediately from Definition 2.2 that µ∗(∅) = 0, since every
collection of rectangles covers ∅, and that µ∗(E) ≤ µ∗(F ) if E ⊂ F since any cover
of F covers E.

The main property to prove is the countable subadditivity of µ∗. If µ∗ (Ei) =∞
for some i ∈ N, there is nothing to prove, so we may assume that µ∗ (Ei) is finite
for every i ∈ N. If ε > 0, there is a countable covering {Rij : j ∈ N} of Ei by
rectangles Rij such that

∞∑
j=1

µ(Rij) ≤ µ∗(Ei) +
ε

2i
, Ei ⊂

∞⋃
j=1

Rij .

Then {Rij : i, j ∈ N} is a countable covering of

E =

∞⋃
i=1

Ei

2The use of finitely many intervals leads to the notion of the Jordan content of a set, intro-

duced by Peano (1887) and Jordan (1892), which is closely related to the Riemann integral; Borel
(1898) and Lebesgue (1902) generalized Jordan’s approach to allow for countably many intervals,

leading to Lebesgue measure and the Lebesgue integral.
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and therefore

µ∗(E) ≤
∞∑

i,j=1

µ(Rij) ≤
∞∑
i=1

{
µ∗(Ei) +

ε

2i

}
=

∞∑
i=1

µ∗(Ei) + ε.

Since ε > 0 is arbitrary, it follows that

µ∗(E) ≤
∞∑
i=1

µ∗(Ei)

which proves the result. �

2.2. Outer measure of rectangles

In this section, we prove the geometrically obvious, but not entirely trivial, fact
that the outer measure of a rectangle is equal to its volume. The main point is to
show that the volumes of a countable collection of rectangles that cover a rectangle
R cannot sum to less than the volume of R.3

We begin with some combinatorial facts about finite covers of rectangles [8].
We denote the interior of a rectangle R by R◦, and we say that rectangles R, S
are almost disjoint if R◦ ∩S◦ = ∅, meaning that they intersect at most along their
boundaries. The proofs of the following results are cumbersome to write out in
detail (it’s easier to draw a picture) but we briefly explain the argument.

Lemma 2.5. Suppose that

R = I1 × I2 × · · · × In

is an n-dimensional rectangle where each closed, bounded interval Ii ⊂ R is an
almost disjoint union of closed, bounded intervals {Ii,j ⊂ R : j = 1, . . . , Ni},

Ii =

Ni⋃
j=1

Ii,j .

Define the rectangles

(2.2) Sj1j2...jn = I1,j1 × I1,j2 × · · · × Ijn .

Then

µ(R) =

N1∑
j1=1

· · ·
Nn∑
jn=1

µ (Sj1j2...jn) .

Proof. Denoting the length of an interval I by |I|, using the fact that

|Ii| =
Ni∑
j=1

|Ii,j |,

3As a partial justification of the need to prove this fact, note that it would not be true if we
allowed uncountable covers, since we could cover any rectangle by an uncountable collection of

points all of whose volumes are zero.
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and expanding the resulting product, we get that

µ(R) = |I1||I2| . . . |In|

=

 N1∑
j1=1

|I1,j1 |

 N2∑
j2=1

|I2,j2 |

 . . .

 Nn∑
jn=1

|In,jn |


=

N1∑
j1=1

N2∑
j2=1

· · ·
Nn∑
jn=1

|I1,j1 ||I2,j2 | . . . |In,jn |

=

N1∑
j1=1

N2∑
j2=1

· · ·
Nn∑
jn=1

µ (Sj1j2...jn) .

�

Proposition 2.6. If a rectangle R is an almost disjoint, finite union of rectangles
{R1, R2, . . . , RN}, then

(2.3) µ(R) =

N∑
i=1

µ(Ri).

If R is covered by rectangles {R1, R2, . . . , RN}, which need not be disjoint, then

(2.4) µ(R) ≤
N∑
i=1

µ(Ri).

Proof. Suppose that

R = [a1, b1]× [a2, b2]× · · · × [an, bn]

is an almost disjoint union of the rectangles {R1, R2, . . . , RN}. Then by ‘extending
the sides’ of the Ri, we may decompose R into an almost disjoint collection of
rectangles

{Sj1j2...jn : 1 ≤ ji ≤ Ni for 1 ≤ i ≤ n}
that is obtained by taking products of subintervals of partitions of the coordinate
intervals [ai, bi] into unions of almost disjoint, closed subintervals. Explicitly, we
partition [ai, bi] into

ai = ci,0 ≤ ci,1 ≤ · · · ≤ ci,Ni = bi, Ii,j = [ci,j−1, ci,j ].

where the ci,j are obtained by ordering the left and right ith coordinates of all faces
of rectangles in the collection {R1, R2, . . . , RN}, and define rectangles Sj1j2...jn as
in (2.2).

Each rectangle Ri in the collection is an almost disjoint union of rectangles
Sj1j2...jn , and their union contains all such products exactly once, so by applying
Lemma 2.5 to each Ri and summing the results we see that

N∑
i=1

µ(Ri) =

N1∑
j1=1

· · ·
Nn∑
jn=1

µ (Sj1j2...jn) .

Similarly, R is an almost disjoint union of all the rectangles Sj1j2...jn , so Lemma 2.5
implies that

µ(R) =

N1∑
j1=1

· · ·
Nn∑
jn=1

µ (Sj1j2...jn) ,
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and (2.3) follows.
If a finite collection of rectangles {R1, R2, . . . , RN} covers R, then there is a

almost disjoint, finite collection of rectangles {S1, S2, . . . , SM} such that

R =

M⋃
i=1

Si,

M∑
i=1

µ(Si) ≤
N∑
i=1

µ(Ri).

To obtain the Si, we replace Ri by the rectangle R ∩ Ri, and then decompose
these possibly non-disjoint rectangles into an almost disjoint, finite collection of
sub-rectangles with the same union; we discard ‘overlaps’ which can only reduce
the sum of the volumes. Then, using (2.3), we get

µ(R) =

M∑
i=1

µ(Si) ≤
N∑
i=1

µ(Ri),

which proves (2.4). �

The outer measure of a rectangle is defined in terms of countable covers. We
reduce these to finite covers by using the topological properties of Rn.

Proposition 2.7. If R is a rectangle in Rn, then µ∗(R) = µ(R).

Proof. Since {R} covers R, we have µ∗(R) ≤ µ(R), so we only need to prove
the reverse inequality.

Suppose that {Ri : i ∈ N} is a countably infinite collection of rectangles that
covers R. By enlarging Ri slightly we may obtain a rectangle Si whose interior S◦i
contains Ri such that

µ(Si) ≤ µ(Ri) +
ε

2i
.

Then {S◦i : i ∈ N} is an open cover of the compact set R, so it contains a finite
subcover, which we may label as {S◦1 , S◦2 , . . . , S◦N}. Then {S1, S2, . . . , SN} covers
R and, using (2.4), we find that

µ(R) ≤
N∑
i=1

µ(Si) ≤
N∑
i=1

{
µ(Ri) +

ε

2i

}
≤
∞∑
i=1

µ(Ri) + ε.

Since ε > 0 is arbitrary, we have

µ(R) ≤
∞∑
i=1

µ(Ri)

and it follows that µ(R) ≤ µ∗(R). �

2.3. Carathéodory measurability

We will obtain Lebesgue measure as the restriction of Lebesgue outer measure
to Lebesgue measurable sets. The construction, due to Carathéodory, works for any
outer measure, as given in Definition 1.2, so we temporarily consider general outer
measures. We will return to Lebesgue measure on Rn at the end of this section.

The following is the Carathéodory definition of measurability.

Definition 2.8. Let µ∗ be an outer measure on a set X. A subset A ⊂ X is
Carathéodory measurable with respect to µ∗, or measurable for short, if

(2.5) µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)
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for every subset E ⊂ X.

We also write E ∩ Ac as E \ A. Thus, a measurable set A splits any set
E into disjoint pieces whose outer measures add up to the outer measure of E.
Heuristically, this condition means that a set is measurable if it divides other sets
in a ‘nice’ way. The regularity of the set E being divided is not important here.

Since µ∗ is subadditive, we always have that

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac).

Thus, in order to prove that A ⊂ X is measurable, it is sufficient to show that

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac)

for every E ⊂ X, and then we have equality as in (2.5).
Definition 2.8 is perhaps not the most intuitive way to define the measurability

of sets, but it leads directly to the following key result.

Theorem 2.9. The collection of Carathéodory measurable sets with respect to an
outer measure µ∗ is a σ-algebra, and the restriction of µ∗ to the measurable sets is
a measure.

Proof. It follows immediately from (2.5) that ∅ is measurable and the comple-
ment of a measurable set is measurable, so to prove that the collection of measurable
sets is a σ-algebra, we only need to show that it is closed under countable unions.
We will prove at the same time that µ∗ is countably additive on measurable sets;
since µ∗(∅) = 0, this will prove that the restriction of µ∗ to the measurable sets is
a measure.

First, we prove that the union of measurable sets is measurable. Suppose that
A, B are measurable and E ⊂ X. The measurability of A and B implies that

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)
= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc)

+ µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc).
(2.6)

Since A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B) and µ∗ is subadditive, we have

µ∗(E ∩ (A ∪B)) ≤ µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B).

The use of this inequality and the relation Ac ∩Bc = (A∪B)c in (2.6) implies that

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c)

so A ∪B is measurable.
Moreover, if A is measurable and A ∩ B = ∅, then by taking E = A ∪ B in

(2.5), we see that

µ∗(A ∪B) = µ∗(A) + µ∗(B).

Thus, the outer measure of the union of disjoint, measurable sets is the sum of
their outer measures. The repeated application of this result implies that the finite
union of measurable sets is measurable and µ∗ is finitely additive on the collection
of measurable sets.

Next, we we want to show that the countable union of measurable sets is
measurable. It is sufficient to consider disjoint unions. To see this, note that if



16 2. LEBESGUE MEASURE ON Rn

{Ai : i ∈ N} is a countably infinite collection of measurable sets, then

Bj =

j⋃
i=1

Ai, for j ≥ 1

form an increasing sequence of measurable sets, and

Cj = Bj \Bj−1 for j ≥ 2, C1 = B1

form a disjoint measurable collection of sets. Moreover

∞⋃
i=1

Ai =

∞⋃
j=1

Cj .

Suppose that {Ai : i ∈ N} is a countably infinite, disjoint collection of measur-
able sets, and define

Bj =

j⋃
i=1

Ai, B =

∞⋃
i=1

Ai.

Let E ⊂ X. Since Aj is measurable and Bj = Aj ∪ Bj−1 is a disjoint union (for
j ≥ 2),

µ∗(E ∩Bj) = µ∗(E ∩Bj ∩Aj) + µ∗(E ∩Bj ∩Acj), .

= µ∗(E ∩Aj) + µ∗(E ∩Bj−1).

Also µ∗(E ∩B1) = µ∗(E ∩A1). It follows by induction that

µ∗(E ∩Bj) =

j∑
i=1

µ∗(E ∩Ai).

Since Bj is a finite union of measurable sets, it is measurable, so

µ∗(E) = µ∗(E ∩Bj) + µ∗(E ∩Bcj ),

and since Bcj ⊃ Bc, we have

µ∗(E ∩Bcj ) ≥ µ∗(E ∩Bc).

It follows that

µ∗(E) ≥
j∑
i=1

µ∗(E ∩Ai) + µ∗(E ∩Bc).

Taking the limit of this inequality as j →∞ and using the subadditivity of µ∗, we
get

µ∗(E) ≥
∞∑
i=1

µ∗(E ∩Ai) + µ∗(E ∩Bc)

≥ µ∗
( ∞⋃
i=1

E ∩Ai

)
+ µ∗(E ∩Bc)

≥ µ∗ (E ∩B) + µ∗(E ∩Bc)
≥ µ∗(E).

(2.7)
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Therefore, we must have equality in (2.7), which shows that B =
⋃∞
i=1Ai is mea-

surable. Moreover,

µ∗

( ∞⋃
i=1

E ∩Ai

)
=

∞∑
i=1

µ∗(E ∩Ai),

so taking E = X, we see that µ∗ is countably additive on the σ-algebra of measur-
able sets. �

Returning to Lebesgue measure on Rn, the preceding theorem shows that we
get a measure on Rn by restricting Lebesgue outer measure to its Carathéodory-
measurable sets, which are the Lebesgue measurable subsets of Rn.

Definition 2.10. A subset A ⊂ Rn is Lebesgue measurable if

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)
for every subset E ⊂ Rn. If L(Rn) denotes the σ-algebra of Lebesgue measurable
sets, the restriction of Lebesgue outer measure µ∗ to the Lebesgue measurable sets

µ : L(Rn)→ [0,∞], µ = µ∗|L(Rn)

is called Lebesgue measure.

From Proposition 2.7, this notation is consistent with our previous use of µ to
denote the volume of a rectangle. If E ⊂ Rn is any measurable subset of Rn, then
we define Lebesgue measure on E by restricting Lebesgue measure on Rn to E, as
in Definition 1.10, and denote the corresponding σ-algebra of Lebesgue measurable
subsets of E by L(E).

Next, we prove that all rectangles are measurable; this implies that L(Rn) is a
‘large’ collection of subsets of Rn. Not all subsets of Rn are Lebesgue measurable,
however; e.g. see Example 2.17 below.

Proposition 2.11. Every rectangle is Lebesgue measurable.

Proof. Let R be an n-dimensional rectangle and E ⊂ Rn. Given ε > 0, there
is a cover {Ri : i ∈ N} of E by rectangles Ri such that

µ∗(E) + ε ≥
∞∑
i=1

µ(Ri).

We can decompose Ri into an almost disjoint, finite union of rectangles

{R̃i, Si,1, . . . , Si,N}
such that

Ri = R̃i +

N⋃
j=1

Si,j , R̃i = Ri ∩R ⊂ R, Si,j ⊂ Rc.

From (2.3),

µ(Ri) = µ(R̃i) +

N∑
j=1

µ(Si,j).

Using this result in the previous sum, relabeling the Si,j as Si, and rearranging the
resulting sum, we get that

µ∗(E) + ε ≥
∞∑
i=1

µ(R̃i) +

∞∑
i=1

µ(Si).
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Since the rectangles {R̃i : i ∈ N} cover E ∩R and the rectangles {Si : i ∈ N} cover
E ∩Rc, we have

µ∗(E ∩R) ≤
∞∑
i=1

µ(R̃i), µ∗(E ∩Rc) ≤
∞∑
i=1

µ(Si).

Hence,

µ∗(E) + ε ≥ µ∗(E ∩R) + µ∗(E ∩Rc).
Since ε > 0 is arbitrary, it follows that

µ∗(E) ≥ µ∗(E ∩R) + µ∗(E ∩Rc),
which proves the result. �

An open rectangle R◦ is a union of an increasing sequence of closed rectangles
whose volumes approach µ(R); for example

(a1, b1)× (a2, b2)× · · · × (an, bn)

=

∞⋃
k=1

[a1 +
1

k
, b1 −

1

k
]× [a2 +

1

k
, b2 −

1

k
]× · · · × [an +

1

k
, bn −

1

k
].

Thus, R◦ is measurable and, from Proposition 1.12,

µ(R◦) = µ(R).

Moreover if ∂R = R \R◦ denotes the boundary of R, then

µ(∂R) = µ(R)− µ(R◦) = 0.

2.4. Null sets and completeness

Sets of measure zero play a particularly important role in measure theory and
integration. First, we show that all sets with outer Lebesgue measure zero are
Lebesgue measurable.

Proposition 2.12. If N ⊂ Rn and µ∗(N) = 0, then N is Lebesgue measurable,
and the measure space (Rn,L(Rn), µ) is complete.

Proof. If N ⊂ Rn has outer Lebesgue measure zero and E ⊂ Rn, then

0 ≤ µ∗(E ∩N) ≤ µ∗(N) = 0,

so µ∗(E ∩N) = 0. Therefore, since E ⊃ E ∩N c,

µ∗(E) ≥ µ∗(E ∩N c) = µ∗(E ∩N) + µ∗(E ∩N c),

which shows that N is measurable. If N is a measurable set with µ(N) = 0 and
M ⊂ N , then µ∗(M) = 0, since µ∗(M) ≤ µ(N). Therefore M is measurable and
(Rn,L(Rn), µ) is complete. �

In view of the importance of sets of measure zero, we formulate their definition
explicitly.

Definition 2.13. A subset N ⊂ Rn has Lebesgue measure zero if for every ε > 0
there exists a countable collection of rectangles {Ri : i ∈ N} such that

N ⊂
∞⋃
i=1

Ri,

∞∑
i=1

µ(Ri) < ε.
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The argument in Example 2.3 shows that every countable set has Lebesgue
measure zero, but sets of measure zero may be uncountable; in fact the fine structure
of sets of measure zero is, in general, very intricate.

Example 2.14. The standard Cantor set, obtained by removing ‘middle thirds’
from [0, 1], is an uncountable set of zero one-dimensional Lebesgue measure.

Example 2.15. The x-axis in R2

A =
{

(x, 0) ∈ R2 : x ∈ R
}

has zero two-dimensional Lebesgue measure. More generally, any linear subspace of
Rn with dimension strictly less than n has zero n-dimensional Lebesgue measure.

2.5. Translational invariance

An important geometric property of Lebesgue measure is its translational in-
variance. If A ⊂ Rn and h ∈ Rn, let

A+ h = {x+ h : x ∈ A}
denote the translation of A by h.

Proposition 2.16. If A ⊂ Rn and h ∈ Rn, then

µ∗(A+ h) = µ∗(A),

and A+ h is measurable if and only if A is measurable.

Proof. The invariance of outer measure µ∗ result is an immediate consequence
of the definition, since {Ri + h : i ∈ N} is a cover of A + h if and only if {Ri :
i ∈ N} is a cover of A, and µ(R + h) = µ(R) for every rectangle R. Moreover, the
Carathéodory definition of measurability is invariant under translations since

(E + h) ∩ (A+ h) = (E ∩A) + h.

�

The space Rn is a locally compact topological (abelian) group with respect to
translation, which is a continuous operation. More generally, there exists a (left or
right) translation-invariant measure, called Haar measure, on any locally compact
topological group; this measure is unique up to a scalar factor.

The following is the standard example of a non-Lebesgue measurable set, due
to Vitali (1905).

Example 2.17. Define an equivalence relation ∼ on R by x ∼ y if x − y ∈ Q.
This relation has uncountably many equivalence classes, each of which contains a
countably infinite number of points and is dense in R. Let E ⊂ [0, 1] be a set that
contains exactly one element from each equivalence class, so that R is the disjoint
union of the countable collection of rational translates of E. Then we claim that E
is not Lebesgue measurable.

To show this, suppose for contradiction that E is measurable. Let {qi : i ∈ N}
be an enumeration of the rational numbers in the interval [−1, 1] and let Ei = E+qi
denote the translation of E by qi. Then the sets Ei are disjoint and

[0, 1] ⊂
∞⋃
i=1

Ei ⊂ [−1, 2].
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The translational invariance of Lebesgue measure implies that each Ei is measurable
with µ(Ei) = µ(E), and the countable additivity of Lebesgue measure implies that

1 ≤
∞∑
i=1

µ(Ei) ≤ 3.

But this is impossible, since
∑∞
i=1 µ(Ei) is either 0 or ∞, depending on whether if

µ(E) = 0 or µ(E) > 0.

The above example is geometrically simpler on the circle T = R/Z. When
reduced modulo one, the sets {Ei : i ∈ N} partition T into a countable union of
disjoint sets which are translations of each other. If the sets were measurable, their
measures would be equal so they must sum to 0 or ∞, but the measure of T is one.

2.6. Borel sets

The relationship between measure and topology is not a simple one. In this
section, we show that all open and closed sets in Rn, and therefore all Borel sets
(i.e. sets that belong to the σ-algebra generated by the open sets), are Lebesgue
measurable.

Let T (Rn) ⊂ P(Rn) denote the standard metric topology on Rn consisting of
all open sets. That is, G ⊂ Rn belongs to T (Rn) if for every x ∈ G there exists
r > 0 such that Br(x) ⊂ G, where

Br(x) = {y ∈ Rn : |x− y| < r}
is the open ball of radius r centered at x ∈ Rn and | · | denotes the Euclidean norm.

Definition 2.18. The Borel σ-algebra B(Rn) on Rn is the σ-algebra generated by
the open sets, B(Rn) = σ (T (Rn)). A set that belongs to the Borel σ-algebra is
called a Borel set.

Since σ-algebras are closed under complementation, the Borel σ-algebra is also
generated by the closed sets in Rn. Moreover, since Rn is σ-compact (i.e. it is a
countable union of compact sets) its Borel σ-algebra is generated by the compact
sets.

Remark 2.19. This definition is not constructive, since we start with the power set
of Rn and narrow it down until we obtain the smallest σ-algebra that contains the
open sets. It is surprisingly complicated to obtain B(Rn) by starting from the open
or closed sets and taking successive complements, countable unions, and countable
intersections. These operations give sequences of collections of sets in Rn

(2.8) G ⊂ Gδ ⊂ Gδσ ⊂ Gδσδ ⊂ . . . , F ⊂ Fσ ⊂ Fσδ ⊂ Fδσδ ⊂ . . . ,
where G denotes the open sets, F the closed sets, σ the operation of countable
unions, and δ the operation of countable intersections. These collections contain
each other; for example, Fσ ⊃ G and Gδ ⊃ F . This process, however, has to
be repeated up to the first uncountable ordinal before we obtain B(Rn). This is
because if, for example, {Ai : i ∈ N} is a countable family of sets such that

A1 ∈ Gδ \G, A2 ∈ Gδσ \Gδ, A3 ∈ Gδσδ \Gδσ, . . .
and so on, then there is no guarantee that

⋃∞
i=1Ai or

⋂∞
i=1Ai belongs to any of

the previously constructed families. In general, one only knows that they belong to
the ω + 1 iterates Gδσδ...σ or Gδσδ...δ, respectively, where ω is the ordinal number
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of N. A similar argument shows that in order to obtain a family which is closed
under countable intersections or unions, one has to continue this process until one
has constructed an uncountable number of families.

To show that open sets are measurable, we will represent them as countable
unions of rectangles. Every open set in R is a countable disjoint union of open
intervals (one-dimensional open rectangles). When n ≥ 2, it is not true that every
open set in Rn is a countable disjoint union of open rectangles, but we have the
following substitute.

Proposition 2.20. Every open set in Rn is a countable union of almost disjoint
rectangles.

Proof. Let G ⊂ Rn be open. We construct a family of cubes (rectangles of
equal sides) as follows. First, we bisect Rn into almost disjoint cubes {Qi : i ∈ N}
of side one with integer coordinates. If Qi ⊂ G, we include Qi in the family, and
if Qi is disjoint from G, we exclude it. Otherwise, we bisect the sides of Qi to
obtain 2n almost disjoint cubes of side one-half and repeat the procedure. Iterating
this process arbitrarily many times, we obtain a countable family of almost disjoint
cubes.

The union of the cubes in this family is contained in G, since we only include
cubes that are contained in G. Conversely, if x ∈ G, then since G is open some suf-
ficiently small cube in the bisection procedure that contains x is entirely contained
in G, and the largest such cube is included in the family. Hence the union of the
family contains G, and is therefore equal to G. �

In fact, the proof shows that every open set is an almost disjoint union of dyadic
cubes.

Proposition 2.21. The Borel algebra B(Rn) is generated by the collection of rect-
angles R(Rn). Every Borel set is Lebesgue measurable.

Proof. Since R is a subset of the closed sets, we have σ(R) ⊂ B. Conversely,
by the previous proposition, σ(R) ⊃ T , so σ(R) ⊃ σ(T ) = B, and therefore
B = σ(R). From Proposition 2.11, we have R ⊂ L. Since L is a σ-algebra, it
follows that σ(R) ⊂ L, so B ⊂ L. �

Note that if

G =

∞⋃
i=1

Ri

is a decomposition of an open set G into an almost disjoint union of closed rectan-
gles, then

G ⊃
∞⋃
i=1

R◦i

is a disjoint union, and therefore
∞∑
i=1

µ(R◦i ) ≤ µ(G) ≤
∞∑
i=1

µ(Ri).

Since µ(R◦i ) = µ(Ri), it follows that

µ(G) =

∞∑
i=1

µ(Ri)
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for any such decomposition and that the sum is independent of the way in which
G is decomposed into almost disjoint rectangles.

The Borel σ-algebra B is not complete and is strictly smaller than the Lebesgue
σ-algebra L. In fact, one can show that the cardinality of B is equal to the cardinal-
ity c of the real numbers, whereas the cardinality of L is equal to 2c. For example,
the Cantor set is a set of measure zero with the same cardinality as R and every
subset of the Cantor set is Lebesgue measurable.

We can obtain examples of sets that are Lebesgue measurable but not Borel
measurable by considering subsets of sets of measure zero. In the following example
of such a set in R, we use some properties of measurable functions which will be
proved later.

Example 2.22. Let f : [0, 1] → [0, 1] denote the standard Cantor function and
define g : [0, 1]→ [0, 1] by

g(y) = inf {x ∈ [0, 1] : f(x) = y} .
Then g is an increasing, one-to-one function that maps [0, 1] onto the Cantor set
C. Since g is increasing it is Borel measurable, and the inverse image of a Borel
set under g is Borel. Let E ⊂ [0, 1] be a non-Lebesgue measurable set. Then
F = g(E) ⊂ C is Lebesgue measurable, since it is a subset of a set of measure zero,
but F is not Borel measurable, since if it was E = g−1(F ) would be Borel.

Other examples of Lebesgue measurable sets that are not Borel sets arise from
the theory of product measures in Rn for n ≥ 2. For example, let N = E×{0} ⊂ R2

where E ⊂ R is a non-Lebesgue measurable set in R. Then N is a subset of the
x-axis, which has two-dimensional Lebesgue measure zero, so N belongs to L(R2)
since Lebesgue measure is complete. One can show, however, that if a set belongs
to B(R2) then every section with fixed x or y coordinate, belongs to B(R); thus, N
cannot belong to B(R2) since the y = 0 section E is not Borel.

As we show below, L(Rn) is the completion of B(Rn) with respect to Lebesgue
measure, meaning that we get all Lebesgue measurable sets by adjoining all subsets
of Borel sets of measure zero to the Borel σ-algebra and taking unions of such sets.

2.7. Borel regularity

Regularity properties of measures refer to the possibility of approximating in
measure one class of sets (for example, nonmeasurable sets) by another class of
sets (for example, measurable sets). Lebesgue measure is Borel regular in the sense
that Lebesgue measurable sets can be approximated in measure from the outside
by open sets and from the inside by closed sets, and they can be approximated
by Borel sets up to sets of measure zero. Moreover, there is a simple criterion for
Lebesgue measurability in terms of open and closed sets.

The following theorem expresses a fundamental approximation property of
Lebesgue measurable sets by open and compact sets. Equations (2.9) and (2.10)
are called outer and inner regularity, respectively.

Theorem 2.23. If A ⊂ Rn, then

(2.9) µ∗(A) = inf {µ(G) : A ⊂ G, G open} ,
and if A is Lebesgue measurable, then

(2.10) µ(A) = sup {µ(K) : K ⊂ A, K compact} .
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Proof. First, we prove (2.9). The result is immediate if µ∗(A) = ∞, so we
suppose that µ∗(A) is finite. If A ⊂ G, then µ∗(A) ≤ µ(G), so

µ∗(A) ≤ inf {µ(G) : A ⊂ G, G open} ,
and we just need to prove the reverse inequality,

(2.11) µ∗(A) ≥ inf {µ(G) : A ⊂ G, G open} .
Let ε > 0. There is a cover {Ri : i ∈ N} of A by rectangles Ri such that

∞∑
i=1

µ(Ri) ≤ µ∗(A) +
ε

2
.

Let Si be an rectangle whose interior S◦i contains Ri such that

µ(Si) ≤ µ(Ri) +
ε

2i+1
.

Then the collection of open rectangles {S◦i : i ∈ N} covers A and

G =

∞⋃
i=1

S◦i

is an open set that contains A. Moreover, since {Si : i ∈ N} covers G,

µ(G) ≤
∞∑
i=1

µ(Si) ≤
∞∑
i=1

µ(Ri) +
ε

2
,

and therefore

(2.12) µ(G) ≤ µ∗(A) + ε.

It follows that
inf {µ(G) : A ⊂ G, G open} ≤ µ∗(A) + ε,

which proves (2.11) since ε > 0 is arbitrary.
Next, we prove (2.10). If K ⊂ A, then µ(K) ≤ µ(A), so

sup {µ(K) : K ⊂ A, K compact} ≤ µ(A).

Therefore, we just need to prove the reverse inequality,

(2.13) µ(A) ≤ sup {µ(K) : K ⊂ A, K compact} .
To do this, we apply the previous result to Ac and use the measurability of A.

First, suppose that A is a bounded measurable set, in which case µ(A) < ∞.
Let F ⊂ Rn be a compact set that contains A. By the preceding result, for any
ε > 0, there is an open set G ⊃ F \A such that

µ(G) ≤ µ(F \A) + ε.

Then K = F \ G is a compact set such that K ⊂ A. Moreover, F ⊂ K ∪ G and
F = A ∪ (F \A), so

µ(F ) ≤ µ(K) + µ(G), µ(F ) = µ(A) + µ(F \A).

It follows that

µ(A) = µ(F )− µ(F \A)

≤ µ(F )− µ(G) + ε

≤ µ(K) + ε,
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which implies (2.13) and proves the result for bounded, measurable sets.
Now suppose that A is an unbounded measurable set, and define

(2.14) Ak = {x ∈ A : |x| ≤ k} .

Then {Ak : k ∈ N} is an increasing sequence of bounded measurable sets whose
union is A, so

(2.15) µ(Ak) ↑ µ(A) as k →∞.

If µ(A) = ∞, then µ(Ak) → ∞ as k → ∞. By the previous result, we can find a
compact set Kk ⊂ Ak ⊂ A such that

µ(Kk) + 1 ≥ µ(Ak)

so that µ(Kk)→∞. Therefore

sup {µ(K) : K ⊂ A, K compact} =∞,

which proves the result in this case.
Finally, suppose that A is unbounded and µ(A) < ∞. From (2.15), for any

ε > 0 we can choose k ∈ N such that

µ(A) ≤ µ(Ak) +
ε

2
.

Moreover, since Ak is bounded, there is a compact set K ⊂ Ak such that

µ(Ak) ≤ µ(K) +
ε

2
.

Therefore, for every ε > 0 there is a compact set K ⊂ A such that

µ(A) ≤ µ(K) + ε,

which gives (2.13), and completes the proof. �

It follows that we may determine the Lebesgue measure of a measurable set in
terms of the Lebesgue measure of open or compact sets by approximating the set
from the outside by open sets or from the inside by compact sets.

The outer approximation in (2.9) does not require that A is measurable. Thus,
for any set A ⊂ Rn, given ε > 0, we can find an open set G ⊃ A such that
µ(G) − µ∗(A) < ε. If A is measurable, we can strengthen this condition to get
that µ∗(G \ A) < ε; in fact, this gives a necessary and sufficient condition for
measurability.

Theorem 2.24. A subset A ⊂ Rn is Lebesgue measurable if and only if for every
ε > 0 there is an open set G ⊃ A such that

(2.16) µ∗(G \A) < ε.

Proof. First we assume that A is measurable and show that it satisfies the
condition given in the theorem.

Suppose that µ(A) <∞ and let ε > 0. From (2.12) there is an open set G ⊃ A
such that µ(G) < µ∗(A) + ε. Then, since A is measurable,

µ∗(G \A) = µ∗(G)− µ∗(G ∩A) = µ(G)− µ∗(A) < ε,

which proves the result when A has finite measure.
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If µ(A) =∞, define Ak ⊂ A as in (2.14), and let ε > 0. Since Ak is measurable
with finite measure, the argument above shows that for each k ∈ N, there is an
open set Gk ⊃ Ak such that

µ(Gk \Ak) <
ε

2k
.

Then G =
⋃∞
k=1Gk is an open set that contains A, and

µ∗(G \A) = µ∗

( ∞⋃
k=1

Gk \A

)
≤
∞∑
k=1

µ∗(Gk \A) ≤
∞∑
k=1

µ∗(Gk \Ak) < ε.

Conversely, suppose that A ⊂ Rn satisfies the condition in the theorem. Let
ε > 0, and choose an open set G ⊃ A such that µ∗(G \A) < ε. If E ⊂ Rn, we have

E ∩Ac = (E ∩Gc) ∪ (E ∩ (G \A)).

Hence, by the subadditivity and monotonicity of µ∗ and the measurability of G,

µ∗(E ∩A) + µ∗(E ∩Ac) ≤ µ∗(E ∩A) + µ∗(E ∩Gc) + µ∗(E ∩ (G \A))

≤ µ∗(E ∩G) + µ∗(E ∩Gc) + µ∗(G \A)

< µ∗(E) + ε.

Since ε > 0 is arbitrary, it follows that

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac)
which proves that A is measurable. �

This theorem states that a set is Lebesgue measurable if and only if it can be
approximated from the outside by an open set in such a way that the difference
has arbitrarily small outer Lebesgue measure. This condition can be adopted as
the definition of Lebesgue measurable sets, rather than the Carathéodory definition
which we have used c.f. [5, 8, 11].

The following theorem gives another characterization of Lebesgue measurable
sets, as ones that can be ‘squeezed’ between open and closed sets.

Theorem 2.25. A subset A ⊂ Rn is Lebesgue measurable if and only if for every
ε > 0 there is an open set G and a closed set F such that G ⊃ A ⊃ F and

(2.17) µ(G \ F ) < ε.

If µ(A) <∞, then F may be chosen to be compact.

Proof. If A satisfies the condition in the theorem, then it follows from the
monotonicity of µ∗ that µ∗(G \ A) ≤ µ(G \ F ) < ε, so A is measurable by Theo-
rem 2.24.

Conversely, if A is measurable then Ac is measurable, and by Theorem 2.24
given ε > 0, there are open sets G ⊃ A and H ⊃ Ac such that

µ∗(G \A) <
ε

2
, µ∗(H \Ac) < ε

2
.

Then, defining the closed set F = Hc, we have G ⊃ A ⊃ F and

µ(G \ F ) ≤ µ∗(G \A) + µ∗(A \ F ) = µ∗(G \A) + µ∗(H \Ac) < ε.

Finally, suppose that µ(A) <∞ and let ε > 0. From Theorem 2.23, since A is
measurable, there is a compact set K ⊂ A such that µ(A) < µ(K) + ε/2 and

µ(A \K) = µ(A)− µ(K) <
ε

2
.
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As before, from Theorem 2.24 there is an open set G ⊃ A such that

µ(G) < µ(A) + ε/2.

It follows that G ⊃ A ⊃ K and

µ(G \K) = µ(G \A) + µ(A \K) < ε,

which shows that we may take F = K compact when A has finite measure. �

From the previous results, we can approximate measurable sets by open or
closed sets, up to sets of arbitrarily small but, in general, nonzero measure. By
taking countable intersections of open sets or countable unions of closed sets, we
can approximate measurable sets by Borel sets, up to sets of measure zero

Definition 2.26. The collection of sets in Rn that are countable intersections of
open sets is denoted by Gδ(Rn), and the collection of sets in Rn that are countable
unions of closed sets is denoted by Fσ(Rn).

Gδ and Fσ sets are Borel. Thus, it follows from the next result that every
Lebesgue measurable set can be approximated up to a set of measure zero by a
Borel set. This is the Borel regularity of Lebesgue measure.

Theorem 2.27. Suppose that A ⊂ Rn is Lebesgue measurable. Then there exist
sets G ∈ Gδ(Rn) and F ∈ Fσ(Rn) such that

G ⊃ A ⊃ F, µ(G \A) = µ(A \ F ) = 0.

Proof. For each k ∈ N, choose an open set Gk and a closed set Fk such that
Gk ⊃ A ⊃ Fk and

µ(Gk \ Fk) ≤ 1

k
Then

G =

∞⋂
k=1

Gk, F =

∞⋃
k=1

Fk

are Gδ and Fσ sets with the required properties. �

In particular, since any measurable set can be approximated up to a set of
measure zero by a Gδ or an Fσ, the complexity of the transfinite construction of
general Borel sets illustrated in (2.8) is ‘hidden’ inside sets of Lebesgue measure
zero.

As a corollary of this result, we get that the Lebesgue σ-algebra is the comple-
tion of the Borel σ-algebra with respect to Lebesgue measure.

Theorem 2.28. The Lebesgue σ-algebra L(Rn) is the completion of the Borel σ-
algebra B(Rn).

Proof. Lebesgue measure is complete from Proposition 2.12. By the previous
theorem, if A ⊂ Rn is Lebesgue measurable, then there is a Fσ set F ⊂ A such that
M = A \ F has Lebesgue measure zero. It follows by the approximation theorem
that there is a Borel set N ∈ Gδ with µ(N) = 0 and M ⊂ N . Thus, A = F ∪M
where F ∈ B and M ⊂ N ∈ B with µ(N) = 0, which proves that L(Rn) is the
completion of B(Rn) as given in Theorem 1.15. �
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2.8. Linear transformations

The definition of Lebesgue measure is not rotationally invariant, since we used
rectangles whose sides are parallel to the coordinate axes. In this section, we show
that the resulting measure does not, in fact, depend upon the direction of the
coordinate axes and is invariant under orthogonal transformations. We also show
that Lebesgue measure transforms under a linear map by a factor equal to the
absolute value of the determinant of the map.

As before, we use µ∗ to denote Lebesgue outer measure defined using rectangles
whose sides are parallel to the coordinate axes; a set is Lebesgue measurable if it
satisfies the Carathéodory criterion (2.8) with respect to this outer measure. If
T : Rn → Rn is a linear map and E ⊂ Rn, we denote the image of E under T by

TE = {Tx ∈ Rn : x ∈ E} .

First, we consider the Lebesgue measure of rectangles whose sides are not paral-
lel to the coordinate axes. We use a tilde to denote such rectangles by R̃; we denote
closed rectangles whose sides are parallel to the coordinate axes by R as before.
We refer to R̃ and R as oblique and parallel rectangles, respectively. We denote
the volume of a rectangle R̃ by v(R̃), i.e. the product of the lengths of its sides, to

avoid confusion with its Lebesgue measure µ(R̃). We know that µ(R) = v(R) for

parallel rectangles, and that R̃ is measurable since it is closed, but we have not yet
shown that µ(R̃) = v(R̃) for oblique rectangles.

More explicitly, we regard Rn as a Euclidean space equipped with the standard
inner product,

(x, y) =

n∑
i=1

xiyi, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

If {e1, e2, . . . , en} is the standard orthonormal basis of Rn,

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . en = (0, 0, . . . , 1),

and {ẽ1, ẽ2, . . . , ẽn} is another orthonormal basis, then we useR to denote rectangles

whose sides are parallel to {ei} and R̃ to denote rectangles whose sides are parallel
to {ẽi}. The linear map Q : Rn → Rn defined by Qei = ẽi is orthogonal, meaning
that QT = Q−1 and

(Qx,Qy) = (x, y) for all x, y ∈ Rn.

Since Q preserves lengths and angles, it maps a rectangle R to a rectangle R̃ = QR
such that v(R̃) = v(R).

We will use the following lemma.

Lemma 2.29. If an oblique rectangle R̃ contains a finite almost disjoint collection
of parallel rectangles {R1, R2, . . . , RN} then

N∑
i=1

v(Ri) ≤ v(R̃).

This result is geometrically obvious, but a formal proof seems to require a fuller
discussion of the volume function on elementary geometrical sets, which is included
in the theory of valuations in convex geometry. We omit the details.
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Proposition 2.30. If R̃ is an oblique rectangle, then given any ε > 0 there is a
collection of parallel rectangles {Ri : i ∈ N} that covers R̃ and satisfies

∞∑
i=1

v(Ri) ≤ v(R̃) + ε.

Proof. Let S̃ be an oblique rectangle that contains R̃ in its interior such that

v(S̃) ≤ v(R̃) + ε.

Then, from Proposition 2.20, we may decompose the interior of S into an almost
disjoint union of parallel rectangles

S̃◦ =

∞⋃
i=1

Ri.

It follows from the previous lemma that for every N ∈ N
N∑
i=1

v(Ri) ≤ v(S̃),

which implies that
∞∑
i=1

v(Ri) ≤ v(S̃) ≤ v(R̃) + ε.

Moreover, the collection {Ri} covers R̃ since its union is S̃◦, which contains R̃. �

Conversely, by reversing the roles of the axes, we see that if R is a parallel
rectangle and ε > 0, then there is a cover of R by oblique rectangles {R̃i : i ∈ N}
such that

(2.18)

∞∑
i=1

v(R̃i) ≤ v(R) + ε.

Theorem 2.31. If E ⊂ Rn and Q : Rn → Rn is an orthogonal transformation,
then

µ∗(QE) = µ∗(E),

and E is Lebesgue measurable if an only if QE is Lebesgue measurable.

Proof. Let Ẽ = QE. Given ε > 0 there is a cover of Ẽ by parallel rectangles
{Ri : i ∈ N} such that

∞∑
i=1

v(Ri) ≤ µ∗(Ẽ) +
ε

2
.

From (2.18), for each i ∈ N we can choose a cover {R̃i,j : j ∈ N} of Ri by oblique
rectangles such that

∞∑
i=1

v(R̃i,j) ≤ v(Ri) +
ε

2i+1
.

Then {R̃i,j : i, j ∈ N} is a countable cover of Ẽ by oblique rectangles, and

∞∑
i,j=1

v(R̃i,j) ≤
∞∑
i=1

v(Ri) +
ε

2
≤ µ∗(Ẽ) + ε.
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If Ri,j = QT R̃i,j , then {Ri,j : j ∈ N} is a cover of E by parallel rectangles, so

µ∗(E) ≤
∞∑

i,j=1

v(Ri,j).

Moreover, since Q is orthogonal, we have v(Ri,j) = v(R̃i,j). It follows that

µ∗(E) ≤
∞∑

i,j=1

v(Ri,j) =

∞∑
i,j=1

v(R̃i,j) ≤ µ∗(Ẽ) + ε,

and since ε > 0 is arbitrary, we conclude that

µ∗(E) ≤ µ∗(Ẽ).

By applying the same argument to the inverse mapping E = QT Ẽ, we get the
reverse inequality, and it follows that µ∗(E) = µ∗(Ẽ).

Since µ∗ is invariant under Q, the Carathéodory criterion for measurability is
invariant, and E is measurable if and only if QE is measurable. �

It follows from Theorem 2.31 that Lebesgue measure is invariant under rotations
and reflections.4 Since it is also invariant under translations, Lebesgue measure is
invariant under all isometries of Rn.

Next, we consider the effect of dilations on Lebesgue measure. Arbitrary linear
maps may then be analyzed by decomposing them into rotations and dilations.

Proposition 2.32. Suppose that Λ : Rn → Rn is the linear transformation

(2.19) Λ : (x1, x2, . . . , xn) 7→ (λ1x1, λ2x2, . . . , λnxn)

where the λi > 0 are positive constants. Then

µ∗(ΛE) = (det Λ)µ∗(E),

and E is Lebesgue measurable if and only if ΛE is Lebesgue measurable.

Proof. The diagonal map Λ does not change the orientation of a rectan-
gle, so it maps a cover of E by parallel rectangles to a cover of ΛE by paral-
lel rectangles, and conversely. Moreover, Λ multiplies the volume of a rectangle
by det Λ = λ1 . . . λn, so it immediate from the definition of outer measure that
µ∗(ΛE) = (det Λ)µ∗(E), and E satisfies the Carathéodory criterion for measura-
bility if and only if ΛE does. �

Theorem 2.33. Suppose that T : Rn → Rn is a linear transformation and E ⊂ Rn.
Then

µ∗(TE) = |detT |µ∗(E),

and TE is Lebesgue measurable if E is measurable

Proof. If T is singular, then its range is a lower-dimensional subspace of Rn,
which has Lebesgue measure zero, and its determinant is zero, so the result holds.5

We therefore assume that T is nonsingular.

4Unlike differential volume forms, Lebesgue measure does not depend on the orientation of

Rn; such measures are sometimes referred to as densities in differential geometry.
5In this case TE, is always Lebesgue measurable, with measure zero, even if E is not

measurable.
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In that case, according to the polar decomposition, the map T may be written
as a composition

T = QU

of a positive definite, symmetric map U =
√
TTT and an orthogonal map Q. Any

positive-definite, symmetric map U may be diagonalized by an orthogonal map O
to get

U = OTΛO

where Λ : Rn → Rn has the form (2.19). From Theorem 2.31, orthogonal mappings
leave the Lebesgue measure of a set invariant, so from Proposition 2.32

µ∗(TE) = µ∗(ΛE) = (det Λ)µ∗(E).

Since |detQ| = 1 for any orthogonal map Q, we have det Λ = |detT |, and it follows
that µ∗(TE) = |detT |µ∗(E).

Finally, it is straightforward to see that TE is measurable if E is measurable.
�

2.9. Lebesgue-Stieltjes measures

We briefly consider a generalization of one-dimensional Lebesgue measure,
called Lebesgue-Stieltjes measures on R. These measures are obtained from an
increasing, right-continuous function F : R→ R, and assign to a half-open interval
(a, b] the measure

µF ((a, b]) = F (b)− F (a).

The use of half-open intervals is significant here because a Lebesgue-Stieltjes mea-
sure may assign nonzero measure to a single point. Thus, unlike Lebesgue measure,
we need not have µF ([a, b]) = µF ((a, b]). Half-open intervals are also convenient
because the complement of a half-open interval is a finite union of (possibly infi-
nite) half-open intervals of the same type. Thus, the collection of finite unions of
half-open intervals forms an algebra.

The right-continuity of F is consistent with the use of intervals that are half-
open at the left, since

∞⋂
i=1

(a, a+ 1/i] = ∅,

so, from (1.2), if F is to define a measure we need

lim
i→∞

µF ((a, a+ 1/i]) = 0

or

lim
i→∞

[F (a+ 1/i)− F (a)] = lim
x→a+

F (x)− F (a) = 0.

Conversely, as we state in the next theorem, any such function F defines a Borel
measure on R.

Theorem 2.34. Suppose that F : R → R is an increasing, right-continuous func-
tion. Then there is a unique Borel measure µF : B(R)→ [0,∞] such that

µF ((a, b]) = F (b)− F (a)

for every a < b.
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The construction of µF is similar to the construction of Lebesgue measure on
Rn. We define an outer measure µ∗F : P(R)→ [0,∞] by

µ∗F (E) = inf

{ ∞∑
i=1

[F (bi)− F (ai)] : E ⊂
⋃∞
i=1(ai, bi]

}
,

and restrict µ∗F to its Carathéodory measurable sets, which include the Borel sets.
See e.g. Section 1.5 of Folland [4] for a detailed proof.

The following examples illustrate the three basic types of Lebesgue-Stieltjes
measures.

Example 2.35. If F (x) = x, then µF is Lebesgue measure on R with

µF ((a, b]) = b− a.

Example 2.36. If

F (x) =

{
1 if x ≥ 0,
0 if x < 0,

then µF is the δ-measure supported at 0,

µF (A) =

{
1 if 0 ∈ A,
0 if 0 /∈ A.

Example 2.37. If F : R → R is the Cantor function, then µF assigns measure
one to the Cantor set, which has Lebesgue measure zero, and measure zero to its
complement. Despite the fact that µF is supported on a set of Lebesgue measure
zero, the µF -measure of any countable set is zero.





CHAPTER 3

Measurable functions

Measurable functions in measure theory are analogous to continuous functions
in topology. A continuous function pulls back open sets to open sets, while a
measurable function pulls back measurable sets to measurable sets.

3.1. Measurability

Most of the theory of measurable functions and integration does not depend
on the specific features of the measure space on which the functions are defined, so
we consider general spaces, although one should keep in mind the case of functions
defined on R or Rn equipped with Lebesgue measure.

Definition 3.1. Let (X,A) and (Y,B) be measurable spaces. A function f : X →
Y is measurable if f−1(B) ∈ A for every B ∈ B.

Note that the measurability of a function depends only on the σ-algebras; it is
not necessary that any measures are defined.

In order to show that a function is measurable, it is sufficient to check the
measurability of the inverse images of sets that generate the σ-algebra on the target
space.

Proposition 3.2. Suppose that (X,A) and (Y,B) are measurable spaces and B =
σ(G) is generated by a family G ⊂ P(Y ). Then f : X → Y is measurable if and
only if

f−1(G) ∈ A for every G ∈ G.

Proof. Set operations are natural under pull-backs, meaning that

f−1(Y \B) = X \ f−1(B)

and

f−1

( ∞⋃
i=1

Bi

)
=

∞⋃
i=1

f−1 (Bi) , f−1

( ∞⋂
i=1

Bi

)
=

∞⋂
i=1

f−1 (Bi) .

It follows that
M =

{
B ⊂ Y : f−1(B) ∈ A

}
is a σ-algebra on Y . By assumption, M ⊃ G and therefore M ⊃ σ(G) = B, which
implies that f is measurable. �

It is worth noting the indirect nature of the proof of containment of σ-algebras
in the previous proposition; this is required because we typically cannot use an
explicit representation of sets in a σ-algebra. For example, the proof does not
characterize M, which may be strictly larger than B.

If the target space Y is a topological space, then we always equip it with the
Borel σ-algebra B(Y ) generated by the open sets (unless stated explicitly otherwise).

33
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In that case, it follows from Proposition 3.2 that f : X → Y is measurable if and
only if f−1(G) ∈ A is a measurable subset of X for every set G that is open in Y . In
particular, every continuous function between topological spaces that are equipped
with their Borel σ-algebras is measurable. The class of measurable function is,
however, typically much larger than the class of continuous functions, since we only
require that the inverse image of an open set is Borel; it need not be open.

3.2. Real-valued functions

We specialize to the case of real-valued functions

f : X → R
or extended real-valued functions

f : X → R.
We will consider one case or the other as convenient, and comment on any differ-
ences. A positive extended real-valued function is a function

f : X → [0,∞].

Note that we allow a positive function to take the value zero.
We equip R and R with their Borel σ-algebras B(R) and B(R). A Borel subset

of R has one of the forms

B, B ∪ {∞}, B ∪ {−∞}, B ∪ {−∞,∞}
where B is a Borel subset of R. As Example 2.22 shows, sets that are Lebesgue
measurable but not Borel measurable need not be well-behaved under the inverse
of even a monotone function, which helps explain why we do not include them in
the range σ-algebra on R or R.

By contrast, when the domain of a function is a measure space it is often
convenient to use a complete space. For example, if the domain is Rn we typically
equip it with the Lebesgue σ-algebra, although if completeness is not required
we may use the Borel σ-algebra. With this understanding, we get the following
definitions. We state them for real-valued functions; the definitions for extended
real-valued functions are completely analogous

Definition 3.3. If (X,A) is a measurable space, then f : X → R is measurable
if f−1(B) ∈ A for every Borel set B ∈ B(R). A function f : Rn → R is Lebesgue
measurable if f−1(B) is a Lebesgue measurable subset of Rn for every Borel subset
B of R, and it is Borel measurable if f−1(B) is a Borel measurable subset of Rn
for every Borel subset B of R

This definition ensures that continuous functions f : Rn → R are Borel measur-
able and functions that are equal a.e. to Borel measurable functions are Lebesgue
measurable. If f : R → R is Borel measurable and g : Rn → R is Lebesgue (or
Borel) measurable, then the composition f ◦ g is Lebesgue (or Borel) measurable
since

(f ◦ g)
−1

(B) = g−1
(
f−1(B)

)
.

Note that if f is Lebesgue measurable, then f ◦ g need not be measurable since
f−1(B) need not be Borel even if B is Borel.

We can give more easily verifiable conditions for measurability in terms of
generating families for Borel sets.
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Proposition 3.4. The Borel σ-algebra on R is generated by any of the following
collections of intervals

{(−∞, b) : b ∈ R} , {(−∞, b] : b ∈ R} , {(a,∞) : a ∈ R} , {[a,∞) : a ∈ R} .

Proof. The σ-algebra generated by intervals of the form (−∞, b) is contained
in the Borel σ-algebra B(R) since the intervals are open sets. Conversely, the
σ-algebra contains complementary closed intervals of the form [a,∞), half-open
intersections [a, b), and countable intersections

[a, b] =

∞⋂
n=1

[a, b+
1

n
).

From Proposition 2.20, the Borel σ-algebra B(R) is generated by the collection of
closed rectangles [a, b], so

σ ({(−∞, b) : b ∈ R}) = B(R).

The proof for the other collections is similar. �

The properties given in the following proposition are sometimes taken as the
definition of a measurable function.

Proposition 3.5. If (X,A) is a measurable space, then f : X → R is measurable
if and only if one of the following conditions holds:

{x ∈ X : f(x) < b} ∈ A for every b ∈ R;

{x ∈ X : f(x) ≤ b} ∈ A for every b ∈ R;

{x ∈ X : f(x) > a} ∈ A for every a ∈ R;

{x ∈ X : f(x) ≥ a} ∈ A for every a ∈ R.

Proof. Note that, for example,

{x ∈ X : f(x) < b} = f−1 ((−∞, b))

and the result follows immediately from Propositions 3.2 and 3.4. �

If any one of these equivalent conditions holds, then f−1(B) ∈ A for every set
B ∈ B(R). We will often use a shorthand notation for sets, such as

{f < b} = {x ∈ X : f(x) < b} .

The Borel σ-algebra on R is generated by intervals of the form [−∞, b), [−∞, b],
(a,∞], or [a,∞] where a, b ∈ R, and exactly the same conditions as the ones
in Proposition 3.5 imply the measurability of an extended real-valued functions
f : X → R. In that case, we can allow a, b ∈ R to be extended real numbers
in Proposition 3.5, but it is not necessary to do so in order to imply that f is
measurable.

Measurability is well-behaved with respect to algebraic operations.

Proposition 3.6. If f, g : X → R are real-valued measurable functions and k ∈ R,
then

kf, f + g, fg, f/g

are measurable functions, where we assume that g 6= 0 in the case of f/g.
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Proof. If k > 0, then

{kf < b} = {f < b/k}

so kf is measurable, and similarly if k < 0 or k = 0. We have

{f + g < b} =
⋃

q+r<b;q,r∈Q
{f < q} ∩ {g < r}

so f + g is measurable. The function f2 is measurable since if b ≥ 0{
f2 < b

}
=
{
−
√
b < f <

√
b
}
.

It follows that

fg =
1

2

[
(f + g)2 − f2 − g2

]
is measurable. Finally, if g 6= 0

{1/g < b} =

 {1/b < g < 0} if b < 0,
{−∞ < g < 0} if b = 0,
{−∞ < g < 0} ∪ {1/b < g <∞} if b > 0,

so 1/g is measurable and therefore f/g is measurable. �

An analogous result applies to extended real-valued functions provided that
they are well-defined. For example, f + g is measurable provided that f(x), g(x)
are not simultaneously equal to ∞ and −∞, and fg is is measurable provided that
f(x), g(x) are not simultaneously equal to 0 and ±∞.

Proposition 3.7. If f, g : X → R are extended real-valued measurable functions,
then

|f |, max(f, g), min(f, g)

are measurable functions.

Proof. We have

{max(f, g) < b} = {f < b} ∩ {g < b} ,
{min(f, g) < b} = {f < b} ∪ {g < b} ,

and |f | = max(f, 0)−min(f, 0), from which the result follows. �

3.3. Pointwise convergence

Crucially, measurability is preserved by limiting operations on sequences of
functions. Operations in the following theorem are understood in a pointwise sense;
for example, (

sup
n∈N

fn

)
(x) = sup

n∈N
{fn(x)} .

Theorem 3.8. If {fn : n ∈ N} is a sequence of measurable functions fn : X → R,
then

sup
n∈N

fn, inf
n∈N

fn, lim sup
n→∞

fn, lim inf
n→∞

fn

are measurable extended real-valued functions on X.



3.4. SIMPLE FUNCTIONS 37

Proof. We have for every b ∈ R that{
sup
n∈N

fn ≤ b
}

=

∞⋂
n=1

{fn ≤ b} ,{
inf
n∈N

fn < b

}
=

∞⋃
n=1

{fn < b}

so the supremum and infimum are measurable Moreover, since

lim sup
n→∞

fn = inf
n∈N

sup
k≥n

fk,

lim inf
n→∞

fn = sup
n∈N

inf
k≥n

fk

it follows that the limsup and liminf are measurable. �

Perhaps the most important way in which new functions arise from old ones is
by pointwise convergence.

Definition 3.9. A sequence {fn : n ∈ N} of functions fn : X → R converges
pointwise to a function f : X → R if fn(x)→ f(x) as n→∞ for every x ∈ X.

Pointwise convergence preserves measurability (unlike continuity, for example).
This fact explains why the measurable functions form a sufficiently large class for
the needs of analysis.

Theorem 3.10. If {fn : n ∈ N} is a sequence of measurable functions fn : X → R
and fn → f pointwise as n→∞, then f : X → R is measurable.

Proof. If fn → f pointwise, then

f = lim sup
n→∞

fn = lim inf
n→∞

fn

so the result follows from the previous proposition. �

3.4. Simple functions

The characteristic function (or indicator function) of a subset E ⊂ X is the
function χE : X → R defined by

χE(x) =

{
1 if x ∈ E,
0 if x /∈ E.

The function χE is measurable if and only if E is a measurable set.

Definition 3.11. A simple function φ : X → R on a measurable space (X,A) is a
function of the form

(3.1) φ(x) =

N∑
n=1

cnχEn(x)

where c1, . . . , cN ∈ R and E1, . . . , EN ∈ A.

Note that, according to this definition, a simple function is measurable. The
representation of φ in (3.1) is not unique; we call it a standard representation if the
constants cn are distinct and the sets En are disjoint.
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Theorem 3.12. If f : X → [0,∞] is a positive measurable function, then there is
a monotone increasing sequence of positive simple functions φn : X → [0,∞) with
φ1 ≤ φ2 ≤ · · · ≤ φn ≤ . . . such that φn → f pointwise as n→∞. If f is bounded,
then φn → f uniformly.

Proof. For each n ∈ N, we divide the interval [0, 2n] in the range of f into
22n subintervals of width 2−n,

Ik,n = (k2−n, (k + 1)2−n], k = 0, 1, . . . , 22n − 1,

let Jn = (2n,∞] be the remaining part of the range, and define

Ek,n = f−1(Ik,n), Fn = f−1(Jn).

Then the sequence of simple functions given by

φn =

2n−1∑
k=0

k2−nχEk,n
+ 2nχFn

has the required properties. �

In defining the Lebesgue integral of a measurable function, we will approximate
it by simple functions. By contrast, in defining the Riemann integral of a function
f : [a, b]→ R, we partition the domain [a, b] into subintervals and approximate f by
step functions that are constant on these subintervals. This difference is sometime
expressed by saying that in the Lebesgue integral we partition the range, and in
the Riemann integral we partition the domain.

3.5. Properties that hold almost everywhere

Often, we want to consider functions or limits which are defined outside a set of
measure zero. In that case, it is convenient to deal with complete measure spaces.

Proposition 3.13. Let (X,A, µ) be a complete measure space and f, g : X → R.
If f = g pointwise µ-a.e. and f is measurable, then g is measurable.

Proof. Suppose that f = g on N c where N is a set of measure zero. Then

{g < b} = ({f < b} ∩N c) ∪ ({g < b} ∩N) .

Each of these sets is measurable: {f < b} is measurable since f is measurable; and
{g < b} ∩ N is measurable since it is a subset of a set of measure zero and X is
complete. �

The completeness of X is essential in this proposition. For example, if X is not
complete and E ⊂ N is a non-measurable subset of a set N of measure zero, then
the functions 0 and χE are equal almost everywhere, but 0 is measurable and χE
is not.

Proposition 3.14. Let (X,A, µ) be a complete measure space. If {fn : n ∈ N} is
a sequence of measurable functions fn : X → R and fn → f as n → ∞ pointwise
µ-a.e., then f is measurable.

Proof. Since fn is measurable, g = lim supn→∞ fn is measurable and f = g
pointwise a.e., so the result follows from the previous proposition. �



CHAPTER 4

Integration

In this Chapter, we define the integral of real-valued functions on an arbitrary
measure space and derive some of its basic properties. We refer to this integral as
the Lebesgue integral, whether or not the domain of the functions is subset of Rn
equipped with Lebesgue measure. The Lebesgue integral applies to a much wider
class of functions than the Riemann integral and is better behaved with respect to
pointwise convergence. We carry out the definition in three steps: first for positive
simple functions, then for positive measurable functions, and finally for extended
real-valued measurable functions.

4.1. Simple functions

Suppose that (X,A, µ) is a measure space.

Definition 4.1. If φ : X → [0,∞) is a positive simple function, given by

φ =

N∑
i=1

ciχEi

where ci ≥ 0 and Ei ∈ A, then the integral of φ with respect to µ is

(4.1)

∫
φdµ =

N∑
i=1

ciµ (Ei) .

In (4.1), we use the convention that if ci = 0 and µ(Ei) = ∞, then 0 · ∞ = 0,
meaning that the integral of 0 over a set of measure ∞ is equal to 0. The integral
may take the value ∞ (if ci > 0 and µ(Ei) = ∞ for some 1 ≤ i ≤ N). One
can verify that the value of the integral in (4.1) is independent of how the simple
function is represented as a linear combination of characteristic functions.

Example 4.2. The characteristic function χQ : R → R of the rationals is not
Riemann integrable on any compact interval of non-zero length, but it is Lebesgue
integrable with ∫

χQ dµ = 1 · µ(Q) = 0.

The integral of simple functions has the usual properties of an integral. In
particular, it is linear, positive, and monotone.

39
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Proposition 4.3. If φ, ψ : X → [0,∞) are positive simple functions on a measure
space X, then: ∫

kφ dµ = k

∫
φdµ if k ∈ [0,∞);∫

(φ+ ψ) dµ =

∫
φdµ+

∫
ψ dµ;

0 ≤
∫
φdµ ≤

∫
ψ dµ if 0 ≤ φ ≤ ψ.

Proof. These follow immediately from the definition. �

4.2. Positive functions

We define the integral of a measurable function by splitting it into positive and
negative parts, so we begin by defining the integral of a positive function.

Definition 4.4. If f : X → [0,∞] is a positive, measurable, extended real-valued
function on a measure space X, then∫

f dµ = sup

{∫
φdµ : 0 ≤ φ ≤ f , φ simple

}
.

A positive function f : X → [0,∞] is integrable if it is measurable and∫
f dµ <∞.

In this definition, we approximate the function f from below by simple func-
tions. In contrast with the definition of the Riemann integral, it is not necessary to
approximate a measurable function from both above and below in order to define
its integral.

If A ⊂ X is a measurable set and f : X → [0,∞] is measurable, we define∫
A

f dµ =

∫
fχA dµ.

Unlike the Riemann integral, where the definition of the integral over non-rectangular
subsets of R2 already presents problems, it is trivial to define the Lebesgue integral
over arbitrary measurable subsets of a set on which it is already defined.

The following properties are an immediate consequence of the definition and
the corresponding properties of simple functions.

Proposition 4.5. If f, g : X → [0,∞] are positive, measurable, extended real-
valued function on a measure space X, then:∫

kf dµ = k

∫
f dµ if k ∈ [0,∞);

0 ≤
∫
f dµ ≤

∫
g dµ if 0 ≤ f ≤ g.

The integral is also linear, but this is not immediately obvious from the defi-
nition and it depends on the measurability of the functions. To show the linearity,
we will first derive one of the fundamental convergence theorem for the Lebesgue
integral, the monotone convergence theorem. We discuss this theorem and its ap-
plications in greater detail in Section 4.5.
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Theorem 4.6 (Monotone Convergence Theorem). If {fn : n ∈ N} is a monotone
increasing sequence

0 ≤ f1 ≤ f2 ≤ · · · ≤ fn ≤ fn+1 ≤ . . .

of positive, measurable, extended real-valued functions fn : X → [0,∞] and

f = lim
n→∞

fn,

then

lim
n→∞

∫
fn dµ =

∫
f dµ.

Proof. The pointwise limit f : X → [0,∞] exists since the sequence {fn}
is increasing. Moreover, by the monotonicity of the integral, the integrals are
increasing, and ∫

fn dµ ≤
∫
fn+1 dµ ≤

∫
f dµ,

so the limit of the integrals exists, and

lim
n→∞

∫
fn dµ ≤

∫
f dµ.

To prove the reverse inequality, let φ : X → [0,∞) be a simple function with
0 ≤ φ ≤ f . Fix 0 < t < 1. Then

An = {x ∈ X : fn(x) ≥ tφ(x)}

is an increasing sequence of measurable sets A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ . . . whose
union is X. It follows that

(4.2)

∫
fn dµ ≥

∫
An

fn dµ ≥ t
∫
An

φdµ.

Moreover, if

φ =

N∑
i=1

ciχEi

we have from the monotonicity of µ in Proposition 1.12 that∫
An

φdµ =

N∑
i=1

ciµ(Ei ∩An)→
N∑
i=1

ciµ(Ei) =

∫
φdµ

as n→∞. Taking the limit as n→∞ in (4.2), we therefore get

lim
n→∞

∫
fn dµ ≥ t

∫
φdµ.

Since 0 < t < 1 is arbitrary, we conclude that

lim
n→∞

∫
fn dµ ≥

∫
φdµ,

and since φ ≤ f is an arbitrary simple function, we get by taking the supremum
over φ that

lim
n→∞

∫
fn dµ ≥

∫
f dµ.

This proves the theorem. �
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In particular, this theorem implies that we can obtain the integral of a positive
measurable function f as a limit of integrals of an increasing sequence of simple
functions, not just as a supremum over all simple functions dominated by f as in
Definition 4.4. As shown in Theorem 3.12, such a sequence of simple functions
always exists.

Proposition 4.7. If f, g : X → [0,∞] are positive, measurable functions on a
measure space X, then ∫

(f + g) dµ =

∫
f dµ+

∫
g dµ.

Proof. Let {φn : n ∈ N} and {ψn : n ∈ N} be increasing sequences of positive
simple functions such that φn → f and ψn → g pointwise as n→∞. Then φn+ψn
is an increasing sequence of positive simple functions such that φn + ψn → f + g.
It follows from the monotone convergence theorem (Theorem 4.6) and the linearity
of the integral on simple functions that∫

(f + g) dµ = lim
n→∞

∫
(φn + ψn) dµ

= lim
n→∞

(∫
φn dµ+

∫
ψn dµ

)
= lim
n→∞

∫
φn dµ+ lim

n→∞

∫
ψn dµ

=

∫
f dµ+

∫
g dµ,

which proves the result. �

4.3. Measurable functions

If f : X → R is an extended real-valued function, we define the positive and
negative parts f+, f− : X → [0,∞] of f by

(4.3) f = f+ − f−, f+ = max{f, 0}, f− = max{−f, 0}.
For this decomposition,

|f | = f+ + f−.

Note that f is measurable if and only if f+ and f− are measurable.

Definition 4.8. If f : X → R is a measurable function, then∫
f dµ =

∫
f+ dµ−

∫
f− dµ,

provided that at least one of the integrals
∫
f+ dµ,

∫
f− dµ is finite. The function

f is integrable if both
∫
f+ dµ,

∫
f− dµ are finite, which is the case if and only if∫
|f | dµ <∞.

Note that, according to Definition 4.8, the integral may take the values −∞ or
∞, but it is not defined if both

∫
f+ dµ,

∫
f− dµ are infinite. Thus, although the

integral of a positive measurable function always exists as an extended real number,
the integral of a general, non-integrable real-valued measurable function may not
exist.
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This Lebesgue integral has all the usual properties of an integral. We restrict
attention to integrable functions to avoid undefined expressions involving extended
real numbers such as ∞−∞.

Proposition 4.9. If f, g : X → R are integrable functions, then:∫
kf dµ = k

∫
f dµ if k ∈ R;∫

(f + g) dµ =

∫
f dµ+

∫
g dµ;∫

f dµ ≤
∫
g dµ if f ≤ g;∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ.
Proof. These results follow by writing functions into their positive and neg-

ative parts, as in (4.3), and using the results for positive functions.
If f = f+ − f− and k ≥ 0, then (kf)+ = kf+ and (kf)− = kf−, so∫

kf dµ =

∫
kf+ dµ−

∫
kf− dµ = k

∫
f+ dµ− k

∫
f− dµ = k

∫
f dµ.

Similarly, (−f)+ = f− and (−f)− = f+, so∫
(−f) dµ =

∫
f− dµ−

∫
f+ dµ = −

∫
f dµ.

If h = f + g and

f = f+ − f−, g = g+ − g−, h = h+ − h−

are the decompositions of f, g, h into their positive and negative parts, then

h+ − h− = f+ − f− + g+ − g−.

It need not be true that h+ = f+ + g+, but we have

f− + g− + h+ = f+ + g+ + h−.

The linearity of the integral on positive functions gives∫
f− dµ+

∫
g− dµ+

∫
h+ dµ =

∫
f+ dµ+

∫
g+ dµ+

∫
h− dµ,

which implies that∫
h+ dµ−

∫
h− dµ =

∫
f+ dµ−

∫
f− dµ+

∫
g+ dµ−

∫
g− dµ,

or
∫

(f + g) dµ =
∫
f dµ+

∫
g dµ.

It follows that if f ≤ g, then

0 ≤
∫

(g − f) dµ =

∫
g dµ−

∫
f dµ,

so
∫
f dµ ≤

∫
g dµ. The last result is then a consequence of the previous results

and −|f | ≤ f ≤ |f |. �

Let us give two basic examples of the Lebesgue integral.
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Example 4.10. Suppose that X = N and ν : P(N) → [0,∞] is counting measure
on N. If f : N→ R and f(n) = xn, then∫

N
f dν =

∞∑
n=1

xn,

where the integral is finite if and only if the series is absolutely convergent. Thus,
the theory of absolutely convergent series is a special case of the Lebesgue integral.
Note that a conditionally convergent series, such as the alternating harmonic series,
does not correspond to a Lebesgue integral, since both its positive and negative
parts diverge.

Example 4.11. Suppose that X = [a, b] is a compact interval and µ : L([a, b])→ R
is Lesbegue measure on [a, b]. We note in Section 4.8 that any Riemann integrable
function f : [a, b] → R is integrable with respect to Lebesgue measure µ, and its
Riemann integral is equal to the Lebesgue integral,∫ b

a

f(x) dx =

∫
[a,b]

f dµ.

Thus, all of the usual integrals from elementary calculus remain valid for the
Lebesgue integral on R. We will write an integral with respect to Lebesgue measure
on R, or Rn, as ∫

f dx.

Even though the class of Lebesgue integrable functions on an interval is wider
than the class of Riemann integrable functions, some improper Riemann integrals
may exist even though the Lebesegue integral does not.

Example 4.12. The integral∫ 1

0

(
1

x
sin

1

x
+ cos

1

x

)
dx

is not defined as a Lebesgue integral, although the improper Riemann integral

lim
ε→0+

∫ 1

ε

(
1

x
sin

1

x
+ cos

1

x

)
dx = lim

ε→0+

∫ 1

ε

d

dx

[
x cos

1

x

]
dx = cos 1

exists.

Example 4.13. The integral ∫ 1

−1

1

x
dx

is not defined as a Lebesgue integral, although the principal value integral

p.v.

∫ 1

−1

1

x
dx = lim

ε→0+

{∫ −ε
−1

1

x
dx+

∫ 1

ε

1

x
dx

}
= 0

exists. Note, however, that the Lebesgue integrals∫ 1

0

1

x
dx =∞,

∫ 0

−1

1

x
dx = −∞

are well-defined as extended real numbers.
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The inability of the Lebesgue integral to deal directly with the cancelation
between large positive and negative parts in oscillatory or singular integrals, such
as the ones in the previous examples, is sometimes viewed as a defect (although the
integrals above can still be defined as an appropriate limit of Lebesgue integrals).
Other definitions of the integral such as the Henstock-Kurzweil integral, which is a
generalization of the Riemann integral, avoid this defect but they have not proved
to be as useful as the Lebesgue integral. Similar issues arise in connection with
Feynman path integrals in quantum theory, where one would like to define the
integral of highly oscillatory functionals on an infinite-dimensional function-space.

4.4. Absolute continuity

The following results show that a function with finite integral is finite a.e. and
that the integral depends only on the pointwise a.e. values of a function.

Proposition 4.14. If f : X → R is an integrable function, meaning that
∫
|f | dµ <

∞, then f is finite µ-a.e. on X.

Proof. We may assume that f is positive without loss of generality. Suppose
that

E = {x ∈ X : f =∞}
has nonzero measure. Then for any t > 0, we have f > tχE , so∫

f dµ ≥
∫
tχE dµ = tµ(E),

which implies that
∫
f dµ =∞. �

Proposition 4.15. Suppose that f : X → R is an extended real-valued measurable
function. Then

∫
|f | dµ = 0 if and only if f = 0 µ-a.e.

Proof. By replacing f with |f |, we can assume that f is positive without loss
of generality. Suppose that f = 0 a.e. If 0 ≤ φ ≤ f is a simple function,

φ =

N∑
i=1

ciχEi
,

then φ = 0 a.e., so ci = 0 unless µ(Ei) = 0. It follows that∫
φdµ =

N∑
i=1

ciµ(Ei) = 0,

and Definition 4.4 implies that
∫
f dµ = 0.

Conversely, suppose that
∫
f dµ = 0. For n ∈ N, let

En = {x ∈ X : f(x) ≥ 1/n} .
Then 0 ≤ (1/n)χEn

≤ f , so that

0 ≤ 1

n
µ(En) =

∫
1

n
χEn

dµ ≤
∫
f dµ = 0,

and hence µ(En) = 0. Now observe that

{x ∈ X : f(x) > 0} =

∞⋃
n=1

En,

so it follows from the countable additivity of µ that f = 0 a.e. �
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In particular, it follows that if f : X → R is any measurable function, then

(4.4)

∫
A

f dµ = 0 if µ(A) = 0.

For integrable functions we can strengthen the previous result to get the fol-
lowing property, which is called the absolute continuity of the integral.

Proposition 4.16. Suppose that f : X → R is an integrable function, meaning
that

∫
|f | dµ <∞. Then, given any ε > 0, there exists δ > 0 such that

(4.5) 0 ≤
∫
A

|f | dµ < ε

whenever A is a measurable set with µ(A) < δ.

Proof. Again, we can assume that f is positive. For n ∈ N, define fn : X →
[0,∞] by

fn(x) =

{
n if f(x) ≥ n,
f(x) if 0 ≤ f(x) < n.

Then {fn} is an increasing sequence of positive measurable functions that converges
pointwise to f . We estimate the integral of f over A as follows:∫

A

f dµ =

∫
A

(f − fn) dµ+

∫
A

fn dµ

≤
∫
X

(f − fn) dµ+ nµ(A).

By the monotone convergence theorem,∫
X

fn dµ→
∫
X

f dµ <∞

as n→∞. Therefore, given ε > 0, we can choose n such that

0 ≤
∫
X

(f − fn) dµ <
ε

2
,

and then choose

δ =
ε

2n
.

If µ(A) < δ, we get (4.5), which proves the result. �

Proposition 4.16 may fail if f is not integrable.

Example 4.17. Define ν : B((0, 1))→ [0,∞] by

ν(A) =

∫
A

1

x
dx,

where the integral is taken with respect to Lebesgue measure µ. Then ν(A) = 0 if
µ(A) = 0, but (4.5) does not hold.

There is a converse to this theorem concerning the representation of absolutely
continuous measures as integrals (the Radon-Nikodym theorem, stated in Theo-
rem 6.27).
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4.5. Convergence theorems

One of the most basic questions in integration theory is the following: If fn → f
pointwise, when can one say that

(4.6)

∫
fn dµ→

∫
f dµ?

The Riemann integral is not sufficiently general to permit a satisfactory answer to
this question.

Perhaps the simplest condition that guarantees the convergence of the integrals
is that the functions fn : X → R converge uniformly to f : X → R and X has finite
measure. In that case∣∣∣∣∫ fn dµ−

∫
f dµ

∣∣∣∣ ≤ ∫ |fn − f | dµ ≤ µ(X) sup
X
|fn − f | → 0

as n→∞. The assumption of uniform convergence is too strong for many purposes,
and the Lebesgue integral allows the formulation of simple and widely applicable
theorems for the convergence of integrals. The most important of these are the
monotone convergence theorem (Theorem 4.6) and the Lebesgue dominated con-
vergence theorem (Theorem 4.24). The utility of these results accounts, in large
part, for the success of the Lebesgue integral.

Some conditions on the functions fn in (4.6) are, however, necessary to ensure
the convergence of the integrals, as can be seen from very simple examples. Roughly
speaking, the convergence may fail because ‘mass’ can leak out to infinity in the
limit.

Example 4.18. Define fn : R→ R by

fn(x) =

{
n if 0 < x < 1/n,
0 otherwise.

Then fn → 0 as n→∞ pointwise on R, but∫
fn dx = 1 for every n ∈ N.

By modifying this example, and the following ones, we can obtain a sequence fn that
converges pointwise to zero but whose integrals converge to infinity; for example

fn(x) =

{
n2 if 0 < x < 1/n,
0 otherwise.

Example 4.19. Define fn : R→ R by

fn(x) =

{
1/n if 0 < x < n,
0 otherwise.

Then fn → 0 as n→∞ pointwise on R, and even uniformly, but∫
fn dx = 1 for every n ∈ N.

Example 4.20. Define fn : R→ R by

fn(x) =

{
1 if n < x < n+ 1,
0 otherwise.
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Then fn → 0 as n→∞ pointwise on R, but∫
fn dx = 1 for every n ∈ N.

The monotone convergence theorem implies that a similar failure of convergence
of the integrals cannot occur in an increasing sequence of functions, even if the
convergence is not uniform or the domain space does not have finite measure. Note
that the monotone convergence theorem does not hold for the Riemann integral;
indeed, the pointwise limit of a monotone increasing, bounded sequence of Riemann
integrable functions need not even be Riemann integrable.

Example 4.21. Let {qi : i ∈ N} be an enumeration of the rational numbers in the
interval [0, 1], and define fn : [0, 1]→ [0,∞) by

fn(x) =

{
1 if x = qi for some 1 ≤ i ≤ n,
0 otherwise.

Then {fn} is a monotone increasing sequence of bounded, positive, Riemann in-
tegrable functions, each of which has zero integral. Nevertheless, as n → ∞ the
sequence converges pointwise to the characteristic function of the rationals in [0, 1],
which is not Riemann integrable.

A useful generalization of the monotone convergence theorem is the following
result, called Fatou’s lemma.

Theorem 4.22. Suppose that {fn : n ∈ N} is sequence of positive measurable
functions fn : X → [0,∞]. Then

(4.7)

∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

Proof. For each n ∈ N, let

gn = inf
k≥n

fk.

Then {gn} is a monotone increasing sequence which converges pointwise to lim inf fn
as n→∞, so by the monotone convergence theorem

(4.8) lim
n→∞

∫
gn dµ =

∫
lim inf
n→∞

fn dµ.

Moreover, since gn ≤ fk for every k ≥ n, we have∫
gn dµ ≤ inf

k≥n

∫
fk dµ,

so that

lim
n→∞

∫
gn dµ ≤ lim inf

n→∞

∫
fn dµ.

Using (4.8) in this inequality, we get the result. �

We may have strict inequality in (4.7), as in the previous examples. The mono-
tone convergence theorem and Fatou’s Lemma enable us to determine the integra-
bility of functions.
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Example 4.23. For α ∈ R, consider the function f : [0, 1]→ [0,∞] defined by

f(x) =

{
x−α if 0 < x ≤ 1,
∞ if x = 0.

For n ∈ N, let

fn(x) =

{
x−α if 1/n ≤ x ≤ 1,
nα if 0 ≤ x < 1/n.

Then {fn} is an increasing sequence of Lebesgue measurable functions (e.g since
fn is continuous) that converges pointwise to f . We denote the integral of f with

respect to Lebesgue measure on [0, 1] by
∫ 1

0
f(x) dx. Then, by the monotone con-

vergence theorem, ∫ 1

0

f(x) dx = lim
n→∞

∫ 1

0

fn(x) dx.

From elementary calculus, ∫ 1

0

fn(x) dx→ 1

1− α
as n→∞ if α < 1, and to ∞ if α ≥ 1. Thus, f is integrable on [0, 1] if and only if
α < 1.

Perhaps the most frequently used convergence result is the following dominated
convergence theorem, in which all the integrals are necessarily finite.

Theorem 4.24 (Lebesgue Dominated Convergence Theorem). If {fn : n ∈ N} is
a sequence of measurable functions fn : X → R such that fn → f pointwise, and
|fn| ≤ g where g : X → [0,∞] is an integrable function, meaning that

∫
g dµ <∞,

then ∫
fn dµ→

∫
f dµ as n→∞.

Proof. Since g + fn ≥ 0 for every n ∈ N, Fatou’s lemma implies that∫
(g + f) dµ ≤ lim inf

n→∞

∫
(g + fn) dµ ≤

∫
g dµ+ lim inf

n→∞

∫
fn dµ,

which gives ∫
f dµ ≤ lim inf

n→∞

∫
fn dµ.

Similarly, g − fn ≥ 0, so∫
(g − f) dµ ≤ lim inf

n→∞

∫
(g − fn) dµ ≤

∫
g dµ− lim sup

n→∞

∫
fn dµ,

which gives ∫
f dµ ≥ lim sup

n→∞

∫
fn dµ,

and the result follows. �

An alternative, and perhaps more illuminating, proof of the dominated conver-
gence theorem may be obtained from Egoroff’s theorem and the absolute continuity
of the integral. Egoroff’s theorem states that if a sequence {fn} of measurable func-
tions, defined on a finite measure space (X,A, µ), converges pointwise to a function
f , then for every ε > 0 there exists a measurable set A ⊂ X such that {fn} converges
uniformly to f on A and µ(X \ A) < ε. The uniform integrability of the functions
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and the absolute continuity of the integral imply that what happens off the set A
may be made to have arbitrarily small effect on the integrals. Thus, the convergence
theorems hold because of this ‘almost’ uniform convergence of pointwise-convergent
sequences of measurable functions.

4.6. Complex-valued functions and a.e. convergence

In this section, we briefly indicate the generalization of the above results to
complex-valued functions and sequences that converge pointwise almost every-
where. The required modifications are straightforward.

If f : X → C is a complex valued function f = g + ih, then we say that f is
measurable if and only if its real and imaginary parts g, h : X → R are measurable,
and integrable if and only if g, h are integrable. In that case, we define∫

f dµ =

∫
g dµ+ i

∫
h dµ.

Note that we do not allow extended real-valued functions or infinite integrals here.
It follows from the discussion of product measures that f : X → C, where C is
equipped with its Borel σ-algebra B(C), is measurable if and only if its real and
imaginary parts are measurable, so this definition is consistent with our previous
one.

The integral of complex-valued functions satisfies the properties given in Propo-
sition 4.9, where we allow k ∈ C and the condition f ≤ g is only relevant for
real-valued functions. For example, to show that |

∫
f dµ| ≤

∫
|f | dµ, we let∫

f dµ =

∣∣∣∣∫ f dµ

∣∣∣∣ eiθ
for a suitable argument θ, and then∣∣∣∣∫ f dµ

∣∣∣∣ = e−iθ
∫
f dµ =

∫
<[e−iθf ] dµ ≤

∫
|<[e−iθf ]| dµ ≤

∫
|f | dµ.

Complex-valued functions also satisfy the properties given in Section 4.4.
The monotone convergence theorem holds for extended real-valued functions

if fn ↑ f pointwise a.e., and the Lebesgue dominated convergence theorem holds
for complex-valued functions if fn → f pointwise a.e. and |fn| ≤ g pointwise a.e.
where g is an integrable extended real-valued function. If the measure space is not
complete, then we also need to assume that f is measurable. To prove these results,
we replace the functions fn, for example, by fnχNc where N is a null set off which
pointwise convergence holds, and apply the previous theorems; the values of any
integrals are unaffected.

4.7. L1 spaces

We introduce here the space L1(X) of integrable functions on a measure space
X; we will study its properties, and the properties of the closely related Lp spaces,
in more detail later on.

Definition 4.25. If (X,A, µ) is a measure space, then the space L1(X) consists
of the integrable functions f : X → R with norm

‖f‖L1 =

∫
|f | dµ <∞,
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where we identify functions that are equal a.e. A sequence of functions

{fn ∈ L1(X)}
converges in L1, or in mean, to f ∈ L1(X) if

‖f − fn‖L1 =

∫
|f − fn| dµ→ 0 as n→∞.

We also denote the space of integrable complex-valued functions f : X → C by
L1(X). For definiteness, we consider real-valued functions unless stated otherwise;
in most cases, the results generalize in an obvious way to complex-valued functions

Convergence in mean is not equivalent to pointwise a.e.-convergence. The se-
quences in Examples 4.18–4.20 converges to zero pointwise, but they do not con-
verge in mean. The following is an example of a sequence that converges in mean
but not pointwise a.e.

Example 4.26. Define fn : [0, 1]→ R by

f1(x) = 1, f2(x) =

{
1 if 0 ≤ x ≤ 1/2,
0 if 1/2 < x ≤ 1,

f3(x) =

{
0 if 0 ≤ x < 1/2,
1 if 1/2 ≤ x ≤ 1,

f4(x) =

{
1 if 0 ≤ x ≤ 1/4,
1 if 1/4 < x ≤ 1,

f5(x) =

 0 if 0 ≤ x < 1/4,
1 if 1/4 ≤ x ≤ 1/2,
0 if 1/2x < x ≤ 1,

and so on. That is, for 2m ≤ n ≤ 2m − 1, the function fn consists of a spike of
height one and width 2−m that sweeps across the interval [0, 1] as n increases from
2m to 2m − 1. This sequence converges to zero in mean, but it does not converge
pointwise as any point x ∈ [0, 1].

We will show, however, that a sequence which converges sufficiently rapidly in
mean does converge pointwise a.e.; as a result, every sequence that converges in
mean has a subsequence that converges pointwise a.e. (see Lemma 7.9 and Corol-
lary 7.11).

Let us consider the particular case of L1(Rn). As an application of the Borel
regularity of Lebesgue measure, we prove that integrable functions on Rn may be
approximated by continuous functions with compact support. This result means
that L1(Rn) is a concrete realization of the completion of Cc(Rn) with respect to the
L1(Rn)-norm, where Cc(Rn) denotes the space of continuous functions f : Rn → R
with compact support. The support of f is defined by

suppf = {x ∈ Rn : f(x) 6= 0}.
Thus, f has compact support if and only if it vanishes outside a bounded set.

Theorem 4.27. The space Cc(Rn) is dense in L1(Rn). Explicitly, if f ∈ L1(Rn),
then for any ε > 0 there exists a function g ∈ Cc(Rn) such that

‖f − g‖L1 < ε.

Proof. Note first that by the dominated convergence theorem∥∥f − fχBR(0)

∥∥
L1 → 0 as R→∞,

so we can assume that f ∈ L1(Rn) has compact support. Decomposing f = f+−f−
into positive and negative parts, we can also assume that f is positive. Then there
is an increasing sequence of compactly supported simple functions that converges
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to f pointwise and hence, by the monotone (or dominated) convergence theorem,
in mean. Since every simple function is a finite linear combination of characteristic
functions, it is sufficient to prove the result for the characteristic function χA of a
bounded, measurable set A ⊂ Rn.

Given ε > 0, by the Borel regularity of Lebesgue measure, there exists a
bounded open set G and a compact set K such that K ⊂ A ⊂ G and µ(G\K) < ε.
Let g ∈ Cc(Rn) be a Urysohn function such that g = 1 on K, g = 0 on Gc, and
0 ≤ g ≤ 1. For example, we can define g explicitly by

g(x) =
d(x,Gc)

d(x,K) + d(x,Gc)

where the distance function d(·, F ) : Rn → R from a subset F ⊂ Rn is defined by

d(x, F ) = inf {|x− y| : y ∈ F} .

If F is closed, then d(·, F ) is continuous, so g is continuous.
We then have that

‖χA − g‖L1 =

∫
G\K
|χA − g| dx ≤ µ(G \K) < ε,

which proves the result. �

4.8. Riemann integral

Any Riemann integrable function f : [a, b]→ R is Lebesgue measurable, and in
fact integrable since it must be bounded, but a Lebesgue integrable function need
not be Riemann integrable. Using Lebesgue measure, we can give a necessary and
sufficient condition for Riemann integrability.

Theorem 4.28. If f : [a, b] → R is Riemann integrable, then f is Lebesgue in-
tegrable on [a, b] and its Riemann integral is equal to its Lebesgue integral. A
Lebesgue measurable function f : [a, b] → R is Riemann integrable if and only
if it is bounded and the set of discontinuities {x ∈ [a, b] : f is discontinuous at x}
has Lebesgue measure zero.

For the proof, see e.g. Folland [4].

Example 4.29. The characteristic function of the rationals χQ∩[0,1] is discontin-
uous at every point and it is not Riemann integrable on [0, 1]. This function is,
however, equal a.e. to the zero function which is continuous at every point and is
Riemann integrable. (Note that being continuous a.e. is not the same thing as being
equal a.e. to a continuous function.) Any function that is bounded and continuous
except at countably many points is Riemann integrable, but these are not the only
Riemann integrable functions. For example, the characteristic function of a Cantor
set with zero measure is a Riemann integrable function that is discontinuous at
uncountable many points.

4.9. Integrals of vector-valued functions

In Definition 4.4, we use the ordering properties of R to define real-valued
integrals as a supremum of integrals of simple functions. Finite integrals of complex-
valued functions or vector-valued functions that take values in a finite-dimensional
vector space are then defined componentwise.



4.9. INTEGRALS OF VECTOR-VALUED FUNCTIONS 53

An alternative method is to define the integral of a vector-valued function
f : X → Y from a measure space X to a Banach space Y as a limit in norm of
integrals of vector-valued simple functions. The integral of vector-valued simple
functions is defined as in (4.1), assuming that µ(En) < ∞; linear combinations of
the values cn ∈ Y make sense since Y is a vector space. A function f : X → Y is
integrable if there is a sequence of integrable simple functions {φn : X → Y } such
that φn → f pointwise, where the convergence is with respect to the norm ‖ · ‖ on
Y , and ∫

‖f − φn‖ dµ→ 0 as n→∞.

Then we define ∫
f dµ = lim

n→∞

∫
φn dµ,

where the limit is the norm-limit in Y .
This definition of the integral agrees with the one used above for real-valued,

integrable functions, and amounts to defining the integral of an integrable function
by completion in the L1-norm. We will not develop this definition here (see [6],
for example, for a detailed account), but it is useful in defining the integral of
functions that take values in an infinite-dimensional Banach space, when it leads to
the Bochner integral. An alternative approach is to reduce vector-valued integrals
to scalar-valued integrals by the use of continuous linear functionals belonging to
the dual space of the Banach space.





CHAPTER 5

Product Measures

Given two measure spaces, we may construct a natural measure on their Carte-
sian product; the prototype is the construction of Lebesgue measure on R2 as the
product of Lebesgue measures on R. The integral of a measurable function on
the product space may be evaluated as iterated integrals on the individual spaces
provided that the function is positive or integrable (and the measure spaces are
σ-finite). This result, called Fubini’s theorem, is another one of the basic and most
useful properties of the Lebesgue integral. We will not give complete proofs of all
the results in this Chapter.

5.1. Product σ-algebras

We begin by describing product σ-algebras. If (X,A) and (Y,B) are measurable
spaces, then a measurable rectangle is a subset A×B of X × Y where A ∈ A and
B ∈ B are measurable subsets of X and Y , respectively. For example, if R is
equipped with its Borel σ-algebra, then Q×Q is a measurable rectangle in R×R.
(Note that the ‘sides’ A, B of a measurable rectangle A × B ⊂ R × R can be
arbitrary measurable sets; they are not required to be intervals.)

Definition 5.1. Suppose that (X,A) and (Y,B) are measurable spaces. The prod-
uct σ-algebra A ⊗ B is the σ-algebra on X × Y generated by the collection of all
measurable rectangles,

A⊗ B = σ ({A×B : A ∈ A, B ∈ B}) .
The product of (X,A) and (Y,B) is the measurable space (X × Y,A⊗ B).

Suppose that E ⊂ X × Y . For any x ∈ X and y ∈ Y , we define the x-section
Ex ⊂ Y and the y-section Ey ⊂ X of E by

Ex = {y ∈ Y : (x, y) ∈ E} , Ey = {x ∈ X : (x, y) ∈ E} .
As stated in the next proposition, all sections of a measurable set are measurable.

Proposition 5.2. If (X,A) and (Y,B) are measurable spaces and E ∈ A⊗B, then
Ex ∈ B for every x ∈ X and Ey ∈ A for every y ∈ Y .

Proof. Let

M = {E ⊂ X × Y : Ex ∈ B for every x ∈ X and Ey ∈ A for every y ∈ Y } .
ThenM contains all measurable rectangles, since the x-sections of A×B are either
∅ or B and the y-sections are either ∅ or A. Moreover,M is a σ-algebra since, for
example, if E,Ei ⊂ X × Y and x ∈ X, then

(Ec)x = (Ex)c,

( ∞⋃
i=1

Ei

)
x

=

∞⋃
i=1

(Ei)x .

55
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It follows that M⊃ A⊗B, which proves the proposition. �

As an example, we consider the product of Borel σ-algebras on Rn.

Proposition 5.3. Suppose that Rm, Rn are equipped with their Borel σ-algebras
B(Rm), B(Rn) and let Rm+n = Rm × Rn. Then

B(Rm+n) = B(Rm)⊗ B(Rn).

Proof. Every (m+n)-dimensional rectangle, in the sense of Definition 2.1, is
a product of an m-dimensional and an n-dimensional rectangle. Therefore

B(Rm)⊗ B(Rn) ⊃ R(Rm+n)

where R(Rm+n) denotes the collection of rectangles in Rm+n. From Proposi-
tion 2.21, the rectangles generate the Borel σ-algebra, and therefore

B(Rm)⊗ B(Rn) ⊃ B(Rm+n).

To prove the the reverse inclusion, let

M = {A ⊂ Rm : A× Rn ∈ B(Rm+n)} .
Then M is a σ-algebra, since B(Rm+n) is a σ-algebra and

Ac × Rn = (A× Rn)
c
,

( ∞⋃
i=1

Ai

)
× Rn =

∞⋃
i=1

(Ai × Rn) .

Moreover, M contains all open sets, since G × Rn is open in Rm+n if G is open
in Rm. It follows that M ⊃ B(Rm), so A × Rn ∈ B(Rm+n) for every A ∈ B(Rm),
meaning that

B(Rm+n) ⊃ {A× Rn : A ∈ B(Rm)} .
Similarly, we have

B(Rm+n) ⊃ {Rn ×B : B ∈ B(Rn)} .
Therefore, since B(Rm+n) is closed under intersections,

B(Rm+n) ⊃ {A×B : A ∈ B(Rm), B ∈ B(Rn)} ,
which implies that

B(Rm+n) ⊃ B(Rm)⊗ B(Rn).

�

By the repeated application of this result, we see that the Borel σ-algebra on
Rn is the n-fold product of the Borel σ-algebra on R. This leads to an alternative
method of constructing Lebesgue measure on Rn as a product of Lebesgue measures
on R, instead of the direct construction we gave earlier.

5.2. Premeasures

Premeasures provide a useful way to generate outer measures and measures,
and we will use them to construct product measures. In this section, we derive
some general results about premeasures and their associated measures that we use
below. Premeasures are defined on algebras, rather than σ-algebras, but they are
consistent with countable additivity.

Definition 5.4. An algebra on a set X is a collection of subsets of X that contains
∅ and X and is closed under complements, finite unions, and finite intersections.
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If F ⊂ P(X) is a family of subsets of a set X, then the algebra generated by F is
the smallest algebra that contains F . It is much easier to give an explicit description
of the algebra generated by a family of sets F than the σ-algebra generated by F .
For example, if F has the property that for A,B ∈ F , the intersection A ∩ B ∈ F
and the complement Ac is a finite union of sets belonging to F , then the algebra
generated by F is the collection of all finite unions of sets in F .

Definition 5.5. Suppose that E is an algebra of subsets of a set X. A premeasure
λ on E , or on X if the algebra is understood, is a function λ : E → [0,∞] such that:

(a) λ(∅) = 0;
(b) if {Ai ∈ E : i ∈ N} is a countable collection of disjoint sets in E such that

∞⋃
i=1

Ai ∈ E ,

then

λ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

λ (Ai) .

Note that a premeasure is finitely additive, since we may take Ai = ∅ for
i ≥ N , and monotone, since if A ⊃ B, then λ(A) = λ(A \B) + λ(B) ≥ λ(B).

To define the outer measure associated with a premeasure, we use countable
coverings by sets in the algebra.

Definition 5.6. Suppose that E is an algebra on a set X and λ : E → [0,∞] is a
premeasure. The outer measure λ∗ : P(X) → [0,∞] associated with λ is defined
for E ⊂ X by

λ∗(E) = inf

{ ∞∑
i=1

λ(Ai) : E ⊂
⋃∞
i=1Ai where Ai ∈ E

}
.

As we observe next, the set-function λ∗ is an outer measure. Moreover, every
set belonging to E is λ∗-measurable and its outer measure is equal to its premeasure.

Proposition 5.7. The set function λ∗ : P(X) → [0,∞] given by Definition 5.6.
is an outer measure on X. Every set A ∈ E is Carathéodory measurable and
λ∗(A) = λ(A).

Proof. The proof that λ∗ is an outer measure is identical to the proof of
Theorem 2.4 for outer Lebesgue measure.

If A ∈ E , then λ∗(A) ≤ λ(A) since A covers itself. To prove the reverse
inequality, suppose that {Ai : i ∈ N} is a countable cover of A by sets Ai ∈ E . Let
B1 = A ∩A1 and

Bj = A ∩

(
Aj \

j−1⋃
i=1

Ai

)
for j ≥ 2.

Then Bj ∈ A and A is the disjoint union of {Bj : j ∈ N}. Since Bj ⊂ Aj , it follows
that

λ(A) =

∞∑
j=1

λ(Bj) ≤
∞∑
j=1

λ(Aj),

which implies that λ(A) ≤ λ∗(A). Hence, λ∗(A) = λ(A).
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If E ⊂ X, A ∈ E , and ε > 0, then there is a cover {Bi ∈ E : i ∈ N} of E such
that

λ∗(E) + ε ≥
∞∑
i=1

λ(Bi).

Since λ is countably additive on E ,

λ∗(E) + ε ≥
∞∑
i=1

λ(Bi ∩A) +

∞∑
i=1

λ(Bi ∩Ac) ≥ λ∗(E ∩A) + λ∗(E ∩Ac),

and since ε > 0 is arbitrary, it follows that λ∗(E) ≥ λ∗(E ∩A) +λ∗(E ∩Ac), which
implies that A is measurable. �

Using Theorem 2.9, we see from the preceding results that every premeasure on
an algebra E may be extended to a measure on σ(E). A natural question is whether
such an extension is unique. In general, the answer is no, but if the measure space
is not ‘too big,’ in the following sense, then we do have uniqueness.

Definition 5.8. Let X be a set and λ a premeasure on an algebra E ⊂ P(X).
Then λ is σ-finite if X =

⋃∞
i=1Ai where Ai ∈ E and λ(Ai) <∞.

Theorem 5.9. If λ : E → [0,∞] is a σ-finite premeasure on an algebra E and A is
the σ-algebra generated by E, then there is a unique measure µ : A → [0,∞] such
that µ(A) = λ(A) for every A ∈ E.

5.3. Product measures

Next, we construct a product measure on the product of measure spaces that
satisfies the natural condition that the measure of a measurable rectangle is the
product of the measures of its ‘sides.’ To do this, we will use the Carathéodory
method and first define an outer measure on the product of the measure spaces in
terms of the natural premeasure defined on measurable rectangles. The procedure
is essentially the same as the one we used to construct Lebesgue measure on Rn.

Suppose that (X,A) and (Y,B) are measurable spaces. The intersection of
measurable rectangles is a measurable rectangle

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D),

and the complement of a measurable rectangle is a finite union of measurable rect-
angles

(A×B)c = (Ac ×B) ∪ (A×Bc) ∪ (Ac ×Bc).
Thus, the collection of finite unions of measurable rectangles in X × Y forms an
algebra, which we denote by E . This algebra is not, in general, a σ-algebra, but
obviously it generates the same product σ-algebra as the measurable rectangles.

Every set E ∈ E may be represented as a finite disjoint union of measurable
rectangles, though not necessarily in a unique way. To define a premeasure on E ,
we first define the premeasure of measurable rectangles.

Definition 5.10. If (X,A, µ) and (Y,B, ν) are measure spaces, then the product
premeasure λ(A×B) of a measurable rectangle A×B ⊂ X × Y is given by

λ(A×B) = µ(A)ν(B)

where 0 · ∞ = 0.
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The premeasure λ is countably additive on rectangles. The simplest way to
show this is to integrate the characteristic functions of the rectangles, which allows
us to use the monotone convergence theorem.

Proposition 5.11. If a measurable rectangle A× B is a countable disjoint union
of measurable rectangles {Ai ×Bi : i ∈ N}, then

λ(A×B) =

∞∑
i=1

λ(Ai ×Bi).

Proof. If

A×B =

∞⋃
i=1

(Ai ×Bi)

is a disjoint union, then the characteristic function χA×B : X×Y → [0,∞) satisfies

χA×B(x, y) =

∞∑
i=1

χAi×Bi
(x, y).

Therefore, since χA×B(x, y) = χA(x)χB(y),

χA(x)χB(y) =

∞∑
i=1

χAi
(x)χBi

(y).

Integrating this equation over Y for fixed x ∈ X and using the monotone conver-
gence theorem, we get

χA(x)ν(B) =

∞∑
i=1

χAi(x)ν(Bi).

Integrating again with respect to x, we get

µ(A)ν(B) =

∞∑
i=1

µ(Ai)ν(Bi),

which proves the result. �

In particular, it follows that λ is finitely additive on rectangles and therefore
may be extended to a well-defined function on E . To see this, note that any two
representations of the same set as a finite disjoint union of rectangles may be de-
composed into a common refinement such that each of the original rectangles is a
disjoint union of rectangles in the refinement. The following definition therefore
makes sense.

Definition 5.12. Suppose that (X,A, µ) and (Y,B, ν) are measure spaces and E
is the algebra generated by the measurable rectangles. The product premeasure
λ : E → [0,∞] is given by

λ (E) =

N∑
i=1

µ(Ai)ν(Bi), E =

N⋃
i=1

Ai ×Bi

where E =
⋃N
i=1Ai × Bi is any representation of E ∈ E as a disjoint union of

measurable rectangles.
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Proposition 5.11 implies that λ is countably additive on E , since we may de-
compose any countable disjoint union of sets in E into a countable common disjoint
refinement of rectangles, so λ is a premeasure as claimed. The outer product mea-
sure associated with λ, which we write as (µ⊗ ν)∗, is defined in terms of countable
coverings by measurable rectangles. This gives the following.

Definition 5.13. Suppose that (X,A, µ) and (Y,B, ν) are measure spaces. Then
the product outer measure

(µ⊗ ν)∗ : P(X × Y )→ [0,∞]

on X × Y is defined for E ⊂ X × Y by

(µ⊗ ν)∗(E) = inf

{ ∞∑
i=1

µ(Ai)ν(Bi) : E ⊂
⋃∞
i=1(Ai ×Bi) where Ai ∈ A, Bi ∈ B

}
.

The product measure

(µ⊗ ν) : A⊗ B → [0,∞], (µ⊗ ν) = (µ⊗ ν)∗|A⊗B
is the restriction of the product outer measure to the product σ-algebra.

It follows from Proposition 5.7 that (µ ⊗ ν)∗ is an outer measure and every
measurable rectangle is (µ ⊗ ν)∗-measurable with measure equal to its product
premeasure. We summarize the conclusions of the Carátheodory theorem and The-
orem 5.9 in the case of product measures as the following result.

Theorem 5.14. If (X,A, µ) and (Y,B, ν) are measure spaces, then

(µ⊗ ν) : A⊗ B → [0,∞]

is a measure on X × Y such that

(µ⊗ ν)(A×B) = µ(A)ν(B) for every A ∈ A, B ∈ B.
Moreover, if (X,A, µ) and (Y,B, ν) are σ-finite measure spaces, then (µ⊗ ν) is the
unique measure on A⊗ B with this property.

Note that, in general, the σ-algebra of Carathéodory measurable sets associated
with (µ⊗ ν)∗ is strictly larger than the product σ-algebra. For example, if Rm and
Rn are equipped with Lebesgue measure defined on their Borel σ-algebras, then the
Carathéodory σ-algebra on the product Rm+n = Rm×Rn is the Lebesgue σ-algebra
L(Rm+n), whereas the product σ-algebra is the Borel σ-algebra B(Rm+n).

5.4. Measurable functions

If f : X×Y → C is a function of (x, y) ∈ X×Y , then for each x ∈ X we define
the x-section fx : Y → C and for each y ∈ Y we define the y-section fy : Y → C
by

fx(y) = f(x, y), fy(x) = f(x, y).

Theorem 5.15. If (X,A, µ), (Y,B, ν) are measure spaces and f : X × Y → C is
a measurable function, then fx : Y → C, fy : X → C are measurable for every
x ∈ X, y ∈ Y . Moreover, if (X,A, µ), (Y,B, ν) are σ-finite, then the functions
g : X → C, h : Y → C defined by

g(x) =

∫
fx dν, h(y) =

∫
fy dµ

are measurable.
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5.5. Monotone class theorem

We prove a general result about σ-algebras, called the monotone class theorem,
which we will use in proving Fubini’s theorem. A collection of subsets of a set
is called a monotone class if it is closed under countable increasing unions and
countable decreasing intersections.

Definition 5.16. A monotone class on a set X is a collection C ⊂ P(X) of subsets
of X such that if Ei, Fi ∈ C and

E1 ⊂ E2 ⊂ · · · ⊂ Ei ⊂ . . . , F1 ⊃ F2 ⊃ · · · ⊃ Fi ⊃ . . . ,

then
∞⋃
i=1

Ei ∈ C,
∞⋂
i=1

Fi ∈ C.

Obviously, every σ-algebra is a monotone class, but not conversely. As with
σ-algebras, every family F ⊂ P(X) of subsets of a set X is contained in a smallest
monotone class, called the monotone class generated by F , which is the intersection
of all monotone classes on X that contain F . As stated in the next theorem, if F
is an algebra, then this monotone class is, in fact, a σ-algebra.

Theorem 5.17 (Monotone Class Theorem). If F is an algebra of sets, the mono-
tone class generated by F coincides with the σ-algebra generated by F .

5.6. Fubini’s theorem

Theorem 5.18 (Fubini’s Theorem). Suppose that (X,A, µ) and (Y,B, ν) are σ-
finite measure spaces. A measurable function f : X × Y → C is integrable if and
only if either one of the iterated integrals∫ (∫

|fy| dµ
)
dν,

∫ (∫
|fx| dν

)
dµ

is finite. In that case∫
f dµ⊗ dν =

∫ (∫
fy dµ

)
dν =

∫ (∫
fx dν

)
dµ.

Example 5.19. An application of Fubini’s theorem to counting measure on N ×
N implies that if {amn ∈ C | m,n ∈ N} is a doubly-indexed sequence of complex
numbers such that

∞∑
m=1

( ∞∑
n=1

|amn|

)
<∞

then
∞∑
m=1

( ∞∑
n=1

amn

)
=

∞∑
n=1

( ∞∑
m=1

amn

)
.

5.7. Completion of product measures

The product of complete measure spaces is not necessarily complete.
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Example 5.20. If N ⊂ R is a non-Lebesgue measurable subset of R, then {0}×N
does not belong to the product σ-algebra L(R)⊗L(R) on R2 = R×R, since every
section of a set in the product σ-algebra is measurable. It does, however, belong to
L(R2), since it is a subset of the set {0} ×R of two-dimensional Lebesgue measure
zero, and Lebesgue measure is complete. Instead one can show that the Lebesgue
σ-algebra on Rm+n is the completion with respect to Lebesgue measure of the
product of the Lebesgue σ-algebras on Rm and Rn:

L(Rm+n) = L(Rm)⊗ L(Rn).

We state a version of Fubini’s theorem for Lebesgue measurable functions on
Rn.

Theorem 5.21. A Lebesgue measurable function f : Rm+n → C is integrable,
meaning that ∫

Rm+n

|f(x, y)| dxdy <∞,

if and only if either one of the iterated integrals∫
Rn

(∫
Rm

|f(x, y)| dx
)
dy,

∫
Rm

(∫
Rn

|f(x, y)| dy
)
dx

is finite. In that case,∫
Rm+n

f(x, y) dxdy =

∫
Rn

(∫
Rm

f(x, y) dx

)
dy =

∫
Rm

(∫
Rn

f(x, y) dy

)
dx,

where all of the integrals are well-defined and finite a.e.



CHAPTER 6

Differentiation

The generalization from elementary calculus of differentiation in measure theory
is less obvious than that of integration, and the methods of treating it are somewhat
involved.

Consider the fundamental theorem of calculus (FTC) for smooth functions of
a single variable. In one direction (FTC-I, say) it states that the derivative of the
integral is the original function, meaning that

(6.1) f(x) =
d

dx

∫ x

a

f(y) dy.

In the other direction (FTC-II, say) it states that we recover the original function
by integrating its derivative

(6.2) F (x) = F (a) +

∫ x

a

f(y) dy, f = F ′.

As we will see, (6.1) holds pointwise a.e. provided that f is locally integrable, which
is needed to ensure that the right-hand side is well-defined. Equation (6.2), however,
does not hold for all continuous functions F whose pointwise derivative is defined
a.e. and integrable; we also need to require that F is absolutely continuous. The
Cantor function is a counter-example.

First, we consider a generalization of (6.1) to locally integrable functions on
Rn, which leads to the Lebesgue differentiation theorem. We say that a function
f : Rn → R is locally integrable if it is Lebesgue measurable and∫

K

|f | dx <∞

for every compact subset K ⊂ Rn; we denote the space of locally integrable func-
tions by L1

loc(Rn).
Let

(6.3) Br(x) = {y ∈ Rn : |y − x| < r}

denote the open ball of radius r and center x ∈ Rn. We denote Lebesgue measure
on Rn by µ and the Lebesgue measure of a ball B by µ(B) = |B|.

To motivate the statement of the Lebesgue differentiation theorem, observe
that (6.1) may be written in terms of symmetric differences as

(6.4) f(x) = lim
r→0+

1

2r

∫ x+r

x−r
f(y) dy.

In other words, the value of f at a point x is the limit of local averages of f over
intervals centered at x as their lengths approach zero. An n-dimensional version of

63
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(6.4) is

(6.5) f(x) = lim
r→0+

1

|Br(x)|

∫
Br(x)

f(y) dy

where the integral is with respect n-dimensional Lebesgue measure. The Lebesgue
differentiation theorem states that (6.5) holds pointwise µ-a.e. for any locally inte-
grable function f .

To prove the theorem, we will introduce the maximal function of an integrable
function, whose key property is that it is weak-L1, as stated in the Hardy-Littlewood
theorem. This property may be shown by the use of a simple covering lemma, which
we begin by proving.

Second, we consider a generalization of (6.2) on the representation of a function
as an integral. In defining integrals on a general measure space, it is natural to
think of them as defined on sets rather than real numbers. For example, in (6.2),
we would write F (x) = ν([a, x]) where ν : B([a, b]) → R is a signed measure. This
interpretation leads to the following question: if µ, ν are measures on a measurable
space X is there a function f : X → [0,∞] such that

ν(A) =

∫
A

f dµ.

If so, we regard f = dν/dµ as the (Radon-Nikodym) derivative of ν with respect to
µ. More generally, we may consider signed (or complex) measures, whose values are
not restricted to positive numbers. The Radon-Nikodym theorem gives a necessary
and sufficient condition for the differentiability of ν with respect to µ, subject to a
σ-finiteness assumption: namely, that ν is absolutely continuous with respect to µ.

6.1. A covering lemma

We need only the following simple form of a covering lemma; there are many
more sophisticated versions, such as the Vitali and Besicovitch covering theorems,
which we do not consider here.

Lemma 6.1. Let {B1, B2, . . . , BN} be a finite collection of open balls in Rn. There
is a disjoint subcollection {B′1, B′2, . . . , B′M} where B′j = Bij , such that

µ

(
N⋃
i=1

Bi

)
≤ 3n

M∑
i=1

∣∣B′j∣∣ .
Proof. If B is an open ball, let B̂ denote the open ball with the same center

as B and three times the radius. Then

|B̂| = 3n|B|.

Moreover, if B1, B2 are nondisjoint open balls and the radius of B1 is greater than

or equal to the radius of B2, then B̂1 ⊃ B2.
We obtain the subfamily {B′j} by an iterative procedure. Choose B′1 to be a

ball with the largest radius from the collection {B1, B2, . . . , BN}. Delete from the
collection all balls Bi that intersect B′1, and choose B′2 to be a ball with the largest
radius from the remaining balls. Repeat this process until the balls are exhausted,
which gives M ≤ N balls, say.
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By construction, the balls {B′1, B′2, . . . , B′M} are disjoint and

N⋃
i=1

Bi ⊂
M⋃
j=1

B̂′j .

It follows that

µ

(
N⋃
i=1

Bi

)
≤

M∑
i=1

∣∣∣B̂′j∣∣∣ = 3n
M∑
i=1

∣∣B′j∣∣ ,
which proves the result. �

6.2. Maximal functions

The maximal function of a locally integrable function is obtained by taking the
supremum of averages of the absolute value of the function about a point. Maximal
functions were introduced by Hardy and Littlewood (1930), and they are the key
to proving pointwise properties of integrable functions. They also play a central
role in harmonic analysis.

Definition 6.2. If f ∈ L1
loc(Rn), then the maximal function Mf of f is defined by

Mf(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)| dy.

The use of centered open balls to define the maximal function is for convenience.
We could use non-centered balls or other sets, such as cubes, to define the maximal
function. Some restriction on the shapes on the sets is, however, required; for
example, we cannot use arbitrary rectangles, since averages over progressively longer
and thinner rectangles about a point whose volumes shrink to zero do not, in
general, converge to the value of the function at the point, even if the function is
continuous.

Note that any two functions that are equal a.e. have the same maximal function.

Example 6.3. If f : R→ R is the step function

f(x) =

{
1 if x ≥ 0,
0 if x < 0,

then

Mf(x) =

{
1 if x > 0,
1/2 if x ≤ 0.

This example illustrates the following result.

Proposition 6.4. If f ∈ L1
loc(Rn), then the maximal function Mf is lower semi-

continuous and therefore Borel measurable.

Proof. The function Mf ≥ 0 is lower semi-continuous if

Et = {x : Mf(x) > t}

is open for every 0 < t < ∞. To prove that Et is open, let x ∈ Et. Then there
exists r > 0 such that

1

|Br(x)|

∫
Br(x)

|f(y)| dy > t.
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Choose r′ > r such that we still have

1

|Br′(x)|

∫
Br(x)

|f(y)| dy > t.

If |x′ − x| < r′ − r, then Br(x) ⊂ Br′(x′), so

t <
1

|Br′(x)|

∫
Br(x)

|f(y)| dy ≤ 1

|Br′(x′)|

∫
Br′ (x

′)

|f(y)| dy ≤Mf(x′),

It follows that x′ ∈ Et, which proves that Et is open. �

The maximal function of a non-zero function f ∈ L1(Rn) is not in L1(Rn)
because it decays too slowly at infinity for its integral to converge. To show this,
let a > 0 and suppose that |x| ≥ a. Then, by considering the average of |f | at x
over a ball of radius r = 2|x| and using the fact that B2|x|(x) ⊃ Ba(0), we see that

Mf(x) ≥ 1

|B2|x|(x)|

∫
B2|x|(x)

|f(y)| dy

≥ C

|x|n

∫
Ba(0)

|f(y)| dy,

where C > 0. The function 1/|x|n is not integrable on Rn \ Ba(0), so if Mf is
integrable then we must have ∫

Ba(0)

|f(y)| dy = 0

for every a > 0, which implies that f = 0 a.e. in Rn.
Moreover, as the following example shows, the maximal function of an inte-

grable function need not even be locally integrable.

Example 6.5. Define f : R→ R by

f(x) =

{
1/(x log2 x) if 0 < x < 1/2,
0 otherwise.

The change of variable u = log x implies that∫ 1/2

0

1

x| log x|n
dx

is finite if and only if n > 1. Thus f ∈ L1(R) and for 0 < x < 1/2

Mf(x) ≥ 1

2x

∫ 2x

0

|f(y)| dy

≥ 1

2x

∫ x

0

1

y log2 y
dy

≥ 1

2x| log x|

so Mf /∈ L1
loc(R).
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6.3. Weak-L1 spaces

Although the maximal function of an integrable function is not integrable, it
is not much worse than an integrable function. As we show in the next section, it
belongs to the space weak-L1, which is defined as follows

Definition 6.6. The space weak-L1(Rn) consists of measurable functions

f : Rn → R

such that there exists a constant C, depending on f but not on t, with the property
that for every 0 < t <∞

µ {x ∈ Rn : |f(x)| > t} ≤ C

t
.

An estimate of this form arises for integrable function from the following, almost
trivial, Chebyshev inequality.

Theorem 6.7 (Chebyshev’s inequality). Suppose that (X,A, µ) is a measure space.
If f : X → R is integrable and 0 < t <∞, then

(6.6) µ ({x ∈ X : |f(x)| > t}) ≤ 1

t
‖f‖L1 .

Proof. Let Et = {x ∈ X : |f(x)| > t}. Then∫
|f | dµ ≥

∫
Et

|f | dµ ≥ tµ(Et),

which proves the result. �

Chebyshev’s inequality implies immediately that if f belongs to L1(Rn), then
f belongs to weak-L1(Rn). The converse statement is, however, false.

Example 6.8. The function f : R→ R defined by

f(x) =
1

x

for x 6= 0 satisfies

µ {x ∈ R : |f(x)| > t} =
2

t
,

so f belongs to weak-L1(R), but f is not integrable or even locally integrable.

6.4. Hardy-Littlewood theorem

The following Hardy-Littlewood theorem states that the maximal function of
an integrable function is weak-L1.

Theorem 6.9 (Hardy-Littlewood). If f ∈ L1(Rn), there is a constant C such that
for every 0 < t <∞

µ ({x ∈ Rn : Mf(x) > t}) ≤ C

t
‖f‖L1

where C = 3n depends only on n.
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Proof. Fix t > 0 and let

Et = {x ∈ Rn : Mf(x) > t} .
By the inner regularity of Lebesgue measure

µ(Et) = sup {µ(K) : K ⊂ Et is compact}
so it is enough to prove that

µ (K) ≤ C

t

∫
Rn

|f(y)| dy.

for every compact subset K of Et.
If x ∈ K, then there is an open ball Bx centered at x such that

1

|Bx|

∫
Bx

|f(y)| dy > t.

Since K is compact, we may extract a finite subcover {B1, B2, . . . , BN} from the
open cover {Bx : x ∈ K}. By Lemma 6.1, there is a finite subfamily of disjoint
balls {B′1, B′2, . . . , B′M} such that

µ(K) ≤
N∑
i=1

|Bi|

≤ 3n
M∑
j=1

|B′j |

≤ 3n

t

M∑
j=1

∫
B′j

|f | dx

≤ 3n

t

∫
|f | dx,

which proves the result with C = 3n. �

6.5. Lebesgue differentiation theorem

The maximal function provides the crucial estimate in the following proof.

Theorem 6.10. If f ∈ L1
loc(Rn), then for a.e. x ∈ Rn

lim
r→0+

[
1

|Br(x)|

∫
Br(x)

f(y) dy

]
= f(x).

Moreover, for a.e. x ∈ Rn

lim
r→0+

[
1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy

]
= 0.

Proof. Since∣∣∣∣∣ 1

|Br(x)|

∫
Br(x)

f(y)− f(x) dy

∣∣∣∣∣ ≤ 1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy,

we just need to prove the second result. We define f∗ : Rn → [0,∞] by

f∗(x) = lim sup
r→0+

[
1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy

]
.
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We want to show that f∗ = 0 pointwise a.e.
If g ∈ Cc(Rn) is continuous, then given any ε > 0 there exists δ > 0 such that

|g(x)− g(y)| < ε whenever |x− y| < δ. Hence if r < δ

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy < ε,

which implies that g∗ = 0. We prove the result for general f by approximation
with a continuous function.

First, note that we can assume that f ∈ L1(Rn) is integrable without loss of
generality; for example, if the result holds for fχBk(0) ∈ L1(Rn) for each k ∈ N
except on a set Ek of measure zero, then it holds for f ∈ L1

loc(Rn) except on⋃∞
k=1Ek, which has measure zero.

Next, observe that since

|f(y) + g(y)− [f(x) + g(x)]| ≤ |f(y)− f(x)|+ |g(y)− g(x)|

and lim sup(A+B) ≤ lim supA+ lim supB, we have

(f + g)∗ ≤ f∗ + g∗.

Thus, if f ∈ L1(Rn) and g ∈ Cc(Rn), we have

(f − g)∗ ≤ f∗ + g∗ = f∗,

f∗ = (f − g + g)∗ ≤ (f − g)∗ + g∗ = (f − g)∗,

which shows that (f − g)∗ = f∗.
If f ∈ L1(Rn), then we claim that there is a constant C, depending only on n,

such that for every 0 < t <∞

(6.7) µ ({x ∈ Rn : f∗(x) > t}) ≤ C

t
‖f‖L1 .

To show this, we estimate

f∗(x) ≤ sup
r>0

[
1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy

]

≤ sup
r>0

[
1

|Br(x)|

∫
Br(x)

|f(y)| dy

]
+ |f(x)|

≤Mf(x) + |f(x)|.

It follows that

{f∗ > t} ⊂ {Mf + |f | > t} ⊂ {Mf > t/2} ∪ {|f | > t/2} .

By the Hardy-Littlewood theorem,

µ ({x ∈ Rn : Mf(x) > t/2}) ≤ 2 · 3n

t
‖f‖L1 ,

and by the Chebyshev inequality

µ ({x ∈ Rn : |f(x)| > t/2}) ≤ 2

t
‖f‖L1 .

Combining these estimates, we conclude that (6.7) holds with C = 2 (3n + 1).
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Finally suppose that f ∈ L1(Rn) and 0 < t <∞. From Theorem 4.27, for any
ε > 0, there exists g ∈ Cc(Rn) such that ‖f − g||L1 < ε. Then

µ ({x ∈ Rn : f∗(x) > t}) = µ ({x ∈ Rn : (f − g)∗(x) > t})

≤ C

t
‖f − g‖L1

≤ Cε

t
.

Since ε > 0 is arbitrary, it follows that

µ ({x ∈ Rn : f∗(x) > t}) = 0,

and hence since

{x ∈ Rn : f∗(x) > 0} =

∞⋃
k=1

{x ∈ Rn : f∗(x) > 1/k}

that

µ ({x ∈ Rn : f∗(x) > 0}) = 0.

This proves the result. �

The set of points x for which the limits in Theorem 6.10 exist for a suitable
definition of f(x) is called the Lebesgue set of f .

Definition 6.11. If f ∈ L1
loc(Rn), then a point x ∈ Rn belongs to the Lebesgue

set of f if there exists a constant c ∈ R such that

lim
r→0+

[
1

|Br(x)|

∫
Br(x)

|f(y)− c| dy

]
= 0.

If such a constant c exists, then it is unique. Moreover, its value depends only
on the equivalence class of f with respect to pointwise a.e. equality. Thus, we can
use this definition to give a canonical pointwise a.e. representative of a function
f ∈ L1

loc(Rn) that is defined on its Lebesgue set.

Example 6.12. The Lebesgue set of the step function f in Example 6.3 is R\{0}.
The point 0 does not belong to the Lebesgue set, since

lim
r→0+

[
1

2r

∫ r

−r
|f(y)− c| dy

]
=

1

2
(|c|+ |1− c|)

is nonzero for every c ∈ R. Note that the existence of the limit

lim
r→0+

[
1

2r

∫ r

−r
f(y) dy

]
=

1

2

is not sufficient to imply that 0 belongs to the Lebesgue set of f .

6.6. Signed measures

A signed measure is a countably additive, extended real-valued set function
whose values are not required to be positive. Measures may be thought of as a
generalization of volume or mass, and signed measures may be thought of as a
generalization of charge, or a similar quantity. We allow a signed measure to take
infinite values, but to avoid undefined expressions of the form∞−∞, it should not
take both positive and negative infinite values.
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Definition 6.13. Let (X,A) be a measurable space. A signed measure ν on X is
a function ν : A → R such that:

(a) ν(∅) = 0;
(b) ν attains at most one of the values ∞, −∞;
(c) if {Ai ∈ A : i ∈ N} is a disjoint collection of measurable sets, then

ν

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

ν(Ai).

We say that a signed measure is finite if it takes only finite values. Note that
since ν (

⋃∞
i=1Ai) does not depend on the order of the Ai, the sum

∑∞
i=1 ν(Ai)

converges unconditionally if it is finite, and therefore it is absolutely convergent.
Signed measures have the same monotonicity property (1.1) as measures, with
essentially the same proof. We will always refer to signed measures explicitly, and
‘measure’ will always refer to a positive measure.

Example 6.14. If (X,A, µ) is a measure space and ν+, ν− : A → [0,∞] are
measures, one of which is finite, then ν = ν+ − ν− is a signed measure.

Example 6.15. If (X,A, µ) is a measure space and f : X → R is an A-measurable
function whose integral with respect to µ is defined as an extended real number,
then ν : A → R defined by

(6.8) ν(A) =

∫
A

f dµ

is a signed measure on X. As we describe below, we interpret f as the derivative
dν/dµ of ν with respect to µ. If f = f+−f− is the decomposition of f into positive
and negative parts then ν = ν+ − ν−, where the measures ν+, ν− : A → [0,∞] are
defined by

ν+(A) =

∫
A

f+ dµ, ν−(A) =

∫
A

f− dµ.

We will show that any signed measure can be decomposed into a difference of
singular measures, called its Jordan decomposition. Thus, Example 6.14 includes all
signed measures. Not all signed measures have the form given in Example 6.15. As
we discuss this further in connection with the Radon-Nikodym theorem, a signed
measure ν of the form (6.8) must be absolutely continuous with respect to the
measure µ.

6.7. Hahn and Jordan decompositions

To prove the Jordan decomposition of a signed measure, we first show that a
measure space can be decomposed into disjoint subsets on which a signed measure
is positive or negative, respectively. This is called the Hahn decomposition.

Definition 6.16. Suppose that ν is a signed measure on a measurable space X. A
set A ⊂ X is positive for ν if it is measurable and ν(B) ≥ 0 for every measurable
subset B ⊂ A. Similarly, A is negative for ν if it is measurable and ν(B) ≤ 0 for
every measurable subset B ⊂ A, and null for ν if it is measurable and ν(B) = 0 for
every measurable subset B ⊂ A.
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Because of the possible cancelation between the positive and negative signed
measure of subsets, ν(A) > 0 does not imply that A is positive for ν, nor does
ν(A) = 0 imply that A is null for ν. Nevertheless, as we show in the next result, if
ν(A) > 0, then A contains a subset that is positive for ν. The idea of the (slightly
tricky) proof is to remove subsets of A with negative signed measure until only a
positive subset is left.

Lemma 6.17. Suppose that ν is a signed measure on a measurable space (X,A).
If A ∈ A and 0 < ν(A) < ∞, then there exists a positive subset P ⊂ A such that
ν(P ) > 0.

Proof. First, we show that if A ∈ A is a measurable set with |ν(A)| < ∞,
then |ν(B)| < ∞ for every measurable subset B ⊂ A. This is because ν takes
at most one infinite value, so there is no possibility of canceling an infinite signed
measure to give a finite measure. In more detail, we may suppose without loss of
generality that ν : A → [−∞,∞) does not take the value ∞. (Otherwise, consider
−ν.) Then ν(B) 6=∞; and if B ⊂ A, then the additivity of ν implies that

ν(B) = ν(A)− ν(A \B) 6= −∞

since ν(A) is finite and ν(A \B) 6=∞.
Now suppose that 0 < ν(A) <∞. Let

δ1 = inf {ν(E) : E ∈ A and E ⊂ A} .

Then −∞ ≤ δ1 ≤ 0, since ∅ ⊂ A. Choose A1 ⊂ A such that δ1 ≤ ν(A1) ≤ δ1/2
if δ1 is finite, or µ(A1) ≤ −1 if δ1 = −∞. Define a disjoint sequence of subsets
{Ai ⊂ A : i ∈ N} inductively by setting

δi = inf
{
ν(E) : E ∈ A and E ⊂ A \

(⋃i−1
j=1Aj

)}
and choosing Ai ⊂ A \

(⋃i−1
j=1Aj

)
such that

δi ≤ ν(Ai) ≤
1

2
δi

if −∞ < δi ≤ 0, or ν(Ai) ≤ −1 if δi = −∞.
Let

B =

∞⋃
i=1

Ai, P = A \B.

Then, since the Ai are disjoint, we have

ν(B) =

∞∑
i=1

ν(Ai).

As proved above, ν(B) is finite, so this negative sum must converge. It follows that
ν(Ai) ≤ −1 for only finitely many i, and therefore δi is infinite for at most finitely
many i. For the remaining i, we have∑

ν(Ai) ≤
1

2

∑
δi ≤ 0,

so
∑
δi converges and therefore δi → 0 as i→∞.
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If E ⊂ P , then by construction ν(E) ≥ δi for every sufficiently large i ∈ N.
Hence, taking the limit as i → ∞, we see that ν(E) ≥ 0, which implies that P is
positive. The proof also shows that, since ν(B) ≤ 0, we have

ν(P ) = ν(A)− ν(B) ≥ ν(A) > 0,

which proves that P has strictly positive signed measure. �

The Hahn decomposition follows from this result in a straightforward way.

Theorem 6.18 (Hahn decomposition). If ν is a signed measure on a measurable
space (X,A), then there is a positive set P and a negative set N for ν such that
P ∪N = X and P ∩N = ∅. These sets are unique up to ν-null sets.

Proof. Suppose, without loss of generality, that ν(A) < ∞ for every A ∈ A.
(Otherwise, consider −ν.) Let

m = sup{ν(A) : A ∈ A such that A is positive for ν},

and choose a sequence {Ai : i ∈ N} of positive sets such that ν(Ai)→ m as i→∞.
Then, since the union of positive sets is positive,

P =

∞⋃
i=1

Ai

is a positive set. Moreover, by the monotonicity of of ν, we have ν(P ) = m. Since
ν(P ) 6=∞, it follows that m ≥ 0 is finite.

Let N = X \P . Then we claim that N is negative for ν. If not, there is a subset
A′ ⊂ N such that ν(A′) > 0, so by Lemma 6.17 there is a positive set P ′ ⊂ A′ with
ν(P ′) > 0. But then P ∪P ′ is a positive set with ν(P ∪P ′) > m, which contradicts
the definition of m.

Finally, if P ′, N ′ is another such pair of positive and negative sets, then

P \ P ′ ⊂ P ∩N ′,

so P \ P ′ is both positive and negative for ν and therefore null, and similarly for
P ′ \ P . Thus, the decomposition is unique up to ν-null sets. �

To describe the corresponding decomposition of the signed measure ν into the
difference of measures, we introduce the notion of singular measures, which are
measures that are supported on disjoint sets.

Definition 6.19. Two measures µ, ν on a measurable space (X,A) are singular,
written µ ⊥ ν, if there exist sets M,N ∈ A such that M ∩ N = ∅, M ∪ N = X
and µ(M) = 0, ν(N) = 0.

Example 6.20. The δ-measure in Example 2.36 and the Cantor measure in Ex-
ample 2.37 are singular with respect to Lebesgue measure on R (and conversely,
since the relation is symmetric).

Theorem 6.21 (Jordan decomposition). If ν is a signed measure on a measurable
space (X,A), then there exist unique measures ν+, ν− : A → [0,∞], one of which
is finite, such that

ν = ν+ − ν− and ν+ ⊥ ν−.
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Proof. Let X = P ∪N where P , N are positive, negative sets for ν. Then

ν+(A) = ν(A ∩ P ), ν−(A) = −ν(A ∩N)

is the required decomposition. The values of ν± are independent of the choice of
P , N up to a ν-null set, so the decomposition is unique. �

We call ν+ and ν− the positive and negative parts of ν, respectively. The total
variation |ν| of ν is the measure

|ν| = ν+ + ν−.

We say that the signed measure ν is σ-finite if |ν| is σ-finite.

6.8. Radon-Nikodym theorem

The absolute continuity of measures is in some sense the opposite relationship
to the singularity of measures. If a measure ν singular with respect to a measure
µ, then it is supported on different sets from µ, while if ν is absolutely continuous
with respect to µ, then it supported on on the same sets as µ.

Definition 6.22. Let ν be a signed measure and µ a measure on a measurable
space (X,A). Then ν is absolutely continuous with respect to µ, written ν � µ, if
ν(A) = 0 for every set A ∈ A such that µ(A) = 0.

Equivalently, ν � µ if every µ-null set is a ν-null set. Unlike singularity,
absolute continuity is not symmetric.

Example 6.23. If µ is Lebesgue measure and ν is counting measure on B(R), then
µ� ν, but ν 6� µ.

Example 6.24. If f : X → R is a measurable function on a measure space (X,A, µ)
whose integral with respect µ is well-defined as an extended real number and the
signed measure ν : A → R is defined by

ν(A) =

∫
A

f dµ,

then (4.4) shows that ν is absolutely continuous with respect to µ.

The next result clarifies the relation between Definition 6.22 and the absolute
continuity property of integrable functions proved in Proposition 4.16.

Proposition 6.25. If ν is a finite signed measure and µ is a measure, then ν � µ
if and only if for every ε > 0, there exists δ > 0 such that |ν(A)| < ε whenever
µ(A) < δ.

Proof. Suppose that the given condition holds. If µ(A) = 0, then |ν(A)| < ε
for every ε > 0, so ν(A) = 0, which shows that ν � µ.

Conversely, suppose that the given condition does not hold. Then there exists
ε > 0 such that for every k ∈ N there exists a measurable set Ak with |ν|(Ak) ≥ ε
and µ(Ak) < 1/2k. Defining

B =

∞⋂
k=1

∞⋃
j=k

Aj ,

we see that µ(B) = 0 but |ν|(B) ≥ ε, so ν is not absolutely continuous with respect
to µ. �
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The Radon-Nikodym theorem provides a converse to Example 6.24 for abso-
lutely continuous, σ-finite measures. As part of the proof, from [4], we also show
that any signed measure ν can be decomposed into an absolutely continuous and
singular part with respect to a measure µ (the Lebesgue decomposition of ν). In
the proof of the theorem, we will use the following lemma.

Lemma 6.26. Suppose that µ, ν are finite measures on a measurable space (X,A).
Then either µ ⊥ ν, or there exists ε > 0 and a set P such that µ(P ) > 0 and P is
a positive set for the signed measure ν − εµ.

Proof. For each n ∈ N, let X = Pn ∪Nn be a Hahn decomposition of X for
the signed measure ν − 1

nµ. If

P =

∞⋃
n=1

Pn N =

∞⋂
n=1

Nn,

then X = P ∪N is a disjoint union, and

0 ≤ ν(N) ≤ 1

n
µ(N)

for every n ∈ N, so ν(N) = 0. Thus, either µ(P ) = 0, when ν ⊥ µ, or µ(Pn) > 0
for some n ∈ N, which proves the result with ε = 1/n. �

Theorem 6.27 (Lebesgue-Radon-Nikodym theorem). Let ν be a σ-finite signed
measure and µ a σ-finite measure on a measurable space (X,A). Then there exist
unique σ-finite signed measures νa, νs such that

ν = νa + νs where νa � µ and νs ⊥ µ.

Moreover, there exists a measurable function f : X → R, uniquely defined up to
µ-a.e. equivalence, such that

νa(A) =

∫
A

f dµ

for every A ∈ A, where the integral is well-defined as an extended real number.

Proof. It is enough to prove the result when ν is a measure, since we may
decompose a signed measure into its positive and negative parts and apply the
result to each part.

First, we assume that µ, ν are finite. We will construct a function f and an
absolutely continuous signed measure νa � µ such that

νa(A) =

∫
A

f dµ for all A ∈ A.

We write this equation as dνa = f dµ for short. The remainder νs = ν − νa is the
singular part of ν.

Let F be the set of all A-measurable functions g : X → [0,∞] such that∫
A

g dµ ≤ ν(A) for every A ∈ A.

We obtain f by taking a supremum of functions from F . If g, h ∈ F , then
max{g, h} ∈ F . To see this, note that if A ∈ A, then we may write A = B ∪ C
where

B = A ∩ {x ∈ X : g(x) > h(x)} , C = A ∩ {x ∈ X : g(x) ≤ h(x)} ,
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and therefore∫
A

max {g, h} dµ =

∫
B

g dµ+

∫
C

h dµ ≤ ν(B) + ν(C) = ν(A).

Let

m = sup

{∫
X

g dµ : g ∈ F
}
≤ ν(X).

Choose a sequence {gn ∈ F : n ∈ N} such that

lim
n→∞

∫
X

gn dµ = m.

By replacing gn with max{g1, g2, . . . , gn}, we may assume that {gn} is an increasing
sequence of functions in F . Let

f = lim
n→∞

gn.

Then, by the monotone convergence theorem, for every A ∈ A we have∫
A

f dµ = lim
n→∞

∫
A

gn dµ ≤ ν(A),

so f ∈ F and ∫
X

f dµ = m.

Define νs : A → [0,∞) by

νs(A) = ν(A)−
∫
A

f dµ.

Then νs is a positive measure on X. We claim that νs ⊥ µ, which proves the result
in this case. Suppose not. Then, by Lemma 6.26, there exists ε > 0 and a set P
with µ(P ) > 0 such that νs ≥ εµ on P . It follows that for any A ∈ A

ν(A) =

∫
A

f dµ+ νs(A)

≥
∫
A

f dµ+ νs(A ∩ P )

≥
∫
A

f dµ+ εµ(A ∩ P )

≥
∫
A

(f + εχP ) dµ.

It follows that f + εχP ∈ F but∫
X

(f + εχP ) dµ = m+ εµ(P ) > m,

which contradicts the definition of m. Hence νs ⊥ µ.
If ν = νa+νs and ν = ν′a+ν′s are two such decompositions, then νa−ν′a = ν′s−νs

is both absolutely continuous and singular with respect to µ which implies that it
is zero. Moreover, f is determined uniquely by νa up to pointwise a.e. equivalence.

Finally, if µ, ν are σ-finite measures, then we may decompose

X =

∞⋃
i=1

Ai
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into a countable disjoint union of sets with µ(Ai) < ∞ and ν(Ai) < ∞. We
decompose the finite measure νi = ν|Ai

as

νi = νia + νis where νia � µi and νis ⊥ µi.

Then ν = νa + νs is the required decomposition with

νa =

∞∑
i=1

νia, νs =

∞∑
i=1

νia

is the required decomposition. �

The decomposition ν = νa + νs is called the Lebesgue decomposition of ν, and
the representation of an absolutely continuous signed measure ν � µ as dν = f dµ
is the Radon-Nikodym theorem. We call the function f here the Radon-Nikodym
derivative of ν with respect to µ, and denote it by

f =
dν

dµ
.

Some hypothesis of σ-finiteness is essential in the theorem, as the following
example shows.

Example 6.28. Let B be the Borel σ-algebra on [0, 1], µ Lebesgue measure, and
ν counting measure on B. Then µ is finite and µ� ν, but ν is not σ-finite. There
is no function f : [0, 1]→ [0,∞] such that

µ(A) =

∫
A

f dν =
∑
x∈A

f(x).

There are generalizations of the Radon-Nikodym theorem which apply to mea-
sures that are not σ-finite, but we will not consider them here.

6.9. Complex measures

Complex measures are defined analogously to signed measures, except that they
are only permitted to take finite complex values.

Definition 6.29. Let (X,A) be a measurable space. A complex measure ν on X
is a function ν : A → C such that:

(a) ν(∅) = 0;
(b) if {Ai ∈ A : i ∈ N} is a disjoint collection of measurable sets, then

ν

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

ν(Ai).

There is an analogous Radon-Nikodym theorems for complex measures. The
Radon-Nikodym derivative of a complex measure is necessarily integrable, since the
measure is finite.

Theorem 6.30 (Lebesgue-Radon-Nikodym theorem). Let ν be a complex measure
and µ a σ-finite measure on a measurable space (X,A). Then there exist unique
complex measures νa, νs such that

ν = νa + νs where νa � µ and νs ⊥ µ.
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Moreover, there exists an integrable function f : X → C, uniquely defined up to
µ-a.e. equivalence, such that

νa(A) =

∫
A

f dµ

for every A ∈ A.

To prove the result, we decompose a complex measure into its real and imagi-
nary parts, which are finite signed measures, and apply the corresponding theorem
for signed measures.



CHAPTER 7

Lp spaces

In this Chapter we consider Lp-spaces of functions whose pth powers are inte-
grable. We will not develop the full theory of such spaces here, but consider only
those properties that are directly related to measure theory — in particular, den-
sity, completeness, and duality results. The fact that spaces of Lebesgue integrable
functions are complete, and therefore Banach spaces, is another crucial reason for
the success of the Lebesgue integral. The Lp-spaces are perhaps the most useful
and important examples of Banach spaces.

7.1. Lp spaces

For definiteness, we consider real-valued functions. Analogous results apply to
complex-valued functions.

Definition 7.1. Let (X,A, µ) be a measure space and 1 ≤ p < ∞. The space
Lp(X) consists of equivalence classes of measurable functions f : X → R such that∫

|f |p dµ <∞,

where two measurable functions are equivalent if they are equal µ-a.e. The Lp-norm
of f ∈ Lp(X) is defined by

‖f‖Lp =

(∫
|f |p dµ

)1/p

.

The notation Lp(X) assumes that the measure µ on X is understood. We say
that fn → f in Lp if ‖f − fn‖Lp → 0. The reason to regard functions that are
equal a.e. as equivalent is so that ‖f‖Lp = 0 implies that f = 0. For example, the
characteristic function χQ of the rationals on R is equivalent to 0 in Lp(R). We will
not worry about the distinction between a function and its equivalence class, except
when the precise pointwise values of a representative function are significant.

Example 7.2. If N is equipped with counting measure, then Lp(N) consists of all
sequences {xn ∈ R : n ∈ N} such that

∞∑
n=1

|xn|p <∞.

We write this sequence space as `p(N), with norm

‖{xn}‖`p =

( ∞∑
n=1

|xn|p
)1/p

.

The space L∞(X) is defined in a slightly different way. First, we introduce the
notion of esssential supremum.

79



80 7. Lp SPACES

Definition 7.3. Let f : X → R be a measurable function on a measure space
(X,A, µ). The essential supremum of f on X is

ess sup
X

f = inf {a ∈ R : µ{x ∈ X : f(x) > a} = 0} .

Equivalently,

ess sup
X

f = inf

{
sup
X
g : g = f pointwise a.e.

}
.

Thus, the essential supremum of a function depends only on its µ-a.e. equivalence
class. We say that f is essentially bounded on X if

ess sup
X
|f | <∞.

Definition 7.4. Let (X,A, µ) be a measure space. The space L∞(X) consists
of pointwise a.e.-equivalence classes of essentially bounded measurable functions
f : X → R with norm

‖f‖L∞ = ess sup
X
|f |.

In future, we will write
ess sup f = sup f.

We rarely want to use the supremum instead of the essential supremum when the
two have different values, so this notation should not lead to any confusion.

7.2. Minkowski and Hölder inequalities

We state without proof two fundamental inequalities.

Theorem 7.5 (Minkowski inequality). If f, g ∈ Lp(X), where 1 ≤ p ≤ ∞, then
f + g ∈ Lp(X) and

‖f + g‖Lp ≤ ‖f‖Lp + ‖f‖Lp .

This inequality means, as stated previously, that ‖ · ‖Lp is a norm on Lp(X)
for 1 ≤ p ≤ ∞. If 0 < p < 1, then the reverse inequality holds

‖f‖Lp + ‖g‖Lp ≤ ‖f + g‖Lp ,

so ‖ · ‖Lp is not a norm in that case. Nevertheless, for 0 < p < 1 we have

|f + g|p ≤ |f |p + |g|p,
so Lp(X) is a linear space in that case also.

To state the second inequality, we define the Hölder conjugate of an exponent.

Definition 7.6. Let 1 ≤ p ≤ ∞. The Hölder conjugate p′ of p is defined by

1

p
+

1

p′
= 1 if 1 < p <∞,

and 1′ =∞, ∞′ = 1.

Note that 1 ≤ p′ ≤ ∞, and the Hölder conjugate of p′ is p.

Theorem 7.7 (Hölder’s inequality). Suppose that (X,A, µ) is a measure space and

1 ≤ p ≤ ∞. If f ∈ Lp(X) and g ∈ Lp′(X), then fg ∈ L1(X) and∫
|fg| dµ ≤ ‖f‖Lp ‖g‖Lp′ .

For p = p′ = 2, this is the Cauchy-Schwartz inequality.
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7.3. Density

Density theorems enable us to prove properties of Lp functions by proving them
for functions in a dense subspace and then extending the result by continuity. For
general measure spaces, the simple functions are dense in Lp.

Theorem 7.8. Suppose that (X,A, ν) is a measure space and 1 ≤ p ≤ ∞. Then
the simple functions that belong to Lp(X) are dense in Lp(X).

Proof. It is sufficient to prove that we can approximate a positive function
f : X → [0,∞) by simple functions, since a general function may be decomposed
into its positive and negative parts.

First suppose that f ∈ Lp(X) where 1 ≤ p < ∞. Then, from Theorem 3.12,
there is an increasing sequence of simple functions {φn} such that φn ↑ f pointwise.
These simple functions belong to Lp, and

|f − φn|p ≤ |f |p ∈ L1(X).

Hence, the dominated convergence theorem implies that∫
|f − φn|p dµ→ 0 as n→∞,

which proves the result in this case.
If f ∈ L∞(X), then we may choose a representative of f that is bounded.

According to Theorem 3.12, there is a sequence of simple functions that converges
uniformly to f , and therefore in L∞(X). �

Note that a simple function

φ =

n∑
i=1

ciχAi

belongs to Lp for 1 ≤ p < ∞ if and only if µ(Ai) < ∞ for every Ai such that
ci 6= 0, meaning that its support has finite measure. On the other hand, every
simple function belongs to L∞.

For suitable measures defined on topological spaces, Theorem 7.8 can be used to
prove the density of continuous functions in Lp for 1 ≤ p <∞, as in Theorem 4.27
for Lebesgue measure on Rn. We will not consider extensions of that result to more
general measures or topological spaces here.

7.4. Completeness

In proving the completeness of Lp(X), we will use the following Lemma.

Lemma 7.9. Suppose that X is a measure space and 1 ≤ p <∞. If

{gk ∈ Lp(X) : k ∈ N}
is a sequence of Lp-functions such that

∞∑
k=1

‖gk‖Lp <∞,

then there exists a function f ∈ Lp(X) such that
∞∑
k=1

gk = f
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where the sum converges pointwise a.e. and in Lp.

Proof. Define hn, h : X → [0,∞] by

hn =

n∑
k=1

|gk| , h =

∞∑
k=1

|gk| .

Then {hn} is an increasing sequence of functions that converges pointwise to h, so
the monotone convergence theorem implies that∫

hp dµ = lim
n→∞

∫
hpn dµ.

By Minkowski’s inequality, we have for each n ∈ N that

‖hn‖Lp ≤
n∑
k=1

‖gk‖Lp ≤M

where
∑∞
k=1 ‖gk‖Lp = M . It follows that h ∈ Lp(X) with ‖h‖Lp ≤ M , and in

particular that h is finite pointwise a.e. Moreover, the sum
∑∞
k=1 gk is absolutely

convergent pointwise a.e., so it converges pointwise a.e. to a function f ∈ Lp(X)
with |f | ≤ h. Since∣∣∣∣∣f −

n∑
k=1

gk

∣∣∣∣∣
p

≤

(
|f |+

n∑
k=1

|gk|

)p
≤ (2h)p ∈ L1(X),

the dominated convergence theorem implies that∫ ∣∣∣∣∣f −
n∑
k=1

gk

∣∣∣∣∣
p

dµ→ 0 as n→∞,

meaning that
∑∞
k=1 gk converges to f in Lp. �

The following theorem implies that Lp(X) equipped with the Lp-norm is a
Banach space.

Theorem 7.10 (Riesz-Fischer theorem). If X is a measure space and 1 ≤ p ≤ ∞,
then Lp(X) is complete.

Proof. First, suppose that 1 ≤ p < ∞. If {fk : k ∈ N} is a Cauchy sequence
in Lp(X), then we can choose a subsequence {fkj : j ∈ N} such that∥∥fkj+1

− fkj
∥∥
Lp ≤

1

2j
.

Writing gj = fkj+1
− fkj , we have

∞∑
j=1

‖gj‖Lp <∞,

so by Lemma 7.9, the sum

fk1 +

∞∑
j=1

gj
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converges pointwise a.e. and in Lp to a function f ∈ Lp. Hence, the limit of the
subsequence

lim
j→∞

fkj = lim
j→∞

(
fk1 +

j−1∑
i=1

gi

)
= fk1 +

∞∑
j=1

gj = f

exists in Lp. Since the original sequence is Cauchy, it follows that

lim
k→∞

fk = f

in Lp. Therefore every Cauchy sequence converges, and Lp(X) is complete when
1 ≤ p <∞.

Second, suppose that p = ∞. If {fk} is Cauchy in L∞, then for every m ∈ N
there exists an integer n ∈ N such that we have

(7.1) |fj(x)− fk(x)| < 1

m
for all j, k ≥ n and x ∈ N c

j,k,m

where Nj,k,m is a null set. Let

N =
⋃

j,k,m∈N
Nj,k,m.

Then N is a null set, and for every x ∈ N c the sequence {fk(x) : k ∈ N} is Cauchy
in R. We define a measurable function f : X → R, unique up to pointwise a.e.
equivalence, by

f(x) = lim
k→∞

fk(x) for x ∈ N c.

Letting k →∞ in (7.1), we find that for every m ∈ N there exists an integer n ∈ N
such that

|fj(x)− f(x)| ≤ 1

m
for j ≥ n and x ∈ N c.

It follows that f is essentially bounded and fj → f in L∞ as j →∞. This proves
that L∞ is complete. �

One useful consequence of this proof is worth stating explicitly.

Corollary 7.11. Suppose that X is a measure space and 1 ≤ p < ∞. If {fk} is
a sequence in Lp(X) that converges in Lp to f , then there is a subsequence {fkj}
that converges pointwise a.e. to f .

As Example 4.26 shows, the full sequence need not converge pointwise a.e.

7.5. Duality

The dual space of a Banach space consists of all bounded linear functionals on
the space.

Definition 7.12. If X is a real Banach space, the dual space of X∗ consists of all
bounded linear functionals F : X → R, with norm

‖F‖X∗ = sup
x∈X\{0}

[
|F (x)|
‖x‖X

]
<∞.
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A linear functional is bounded if and only if it is continuous. For Lp spaces,
we will use the Radon-Nikodym theorem to show that Lp(X)∗ may be identified

with Lp
′
(X) for 1 < p < ∞. Under a σ-finiteness assumption, it is also true that

L1(X)∗ = L∞(X), but in general L∞(X)∗ 6= L1(X).

Hölder’s inequality implies that functions in Lp
′

define bounded linear func-
tionals on Lp with the same norm, as stated in the following proposition.

Proposition 7.13. Suppose that (X,A, µ) is a measure space and 1 < p ≤ ∞. If

f ∈ Lp′(X), then

F (g) =

∫
fg dµ

defines a bounded linear functional F : Lp(X)→ R, and

‖F‖Lp∗ = ‖f‖Lp′ .

If X is σ-finite, then the same result holds for p = 1.

Proof. From Hölder’s inequality, we have for 1 ≤ p ≤ ∞ that

|F (g)| ≤ ‖f‖Lp′‖g‖Lp ,

which implies that F is a bounded linear functional on Lp with

‖F‖Lp∗ ≤ ‖f‖Lp′ .

In proving the reverse inequality, we may assume that f 6= 0 (otherwise the result
is trivial).

First, suppose that 1 < p <∞. Let

g = (sgn f)

(
|f |
‖f‖Lp′

)p′/p
.

Then g ∈ Lp, since f ∈ Lp′ , and ‖g‖Lp = 1. Also, since p′/p = p′ − 1,

F (g) =

∫
(sgn f)f

(
|f |
‖f‖Lp′

)p′−1

dµ

= ‖f‖Lp′ .

Since ‖g‖Lp = 1, we have ‖F‖Lp∗ ≥ |F (g)|, so that

‖F‖Lp∗ ≥ ‖f‖Lp′ .

If p = ∞, we get the same conclusion by taking g = sgn f ∈ L∞. Thus, in these
cases the supremum defining ‖F‖Lp∗ is actually attained for a suitable function g.

Second, suppose that p = 1 and X is σ-finite. For ε > 0, let

A = {x ∈ X : |f(x)| > ‖f‖L∞ − ε} .
Then 0 < µ(A) ≤ ∞. Moreover, since X is σ-finite, there is an increasing sequence
of sets An of finite measure whose union is A such that µ(An) → µ(A), so we can
find a subset B ⊂ A such that 0 < µ(B) <∞. Let

g = (sgn f)
χB
µ(B)

.

Then g ∈ L1(X) with ‖g‖L1 = 1, and

F (g) =
1

µ(B)

∫
B

|f | dµ ≥ ‖f‖L∞ − ε.
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It follows that

‖F‖L1∗ ≥ ‖f‖L∞ − ε,
and therefore ‖F‖L1∗ ≥ ‖f‖L∞ since ε > 0 is arbitrary. �

This proposition shows that the map F = J(f) defined by

(7.2) J : Lp
′
(X)→ Lp(X)∗, J(f) : g 7→

∫
fg dµ,

is an isometry from Lp
′

into Lp∗. The main part of the following result is that J is
onto when 1 < p <∞, meaning that every bounded linear functional on Lp arises
in this way from an Lp

′
-function.

The proof is based on the idea that if F : Lp(X) → R is a bounded linear
functional on Lp(X), then ν(E) = F (χE) defines an absolutely continuous measure

on (X,A, µ), and its Radon-Nikodym derivative f = dν/dµ is the element of Lp
′

corresponding to F .

Theorem 7.14 (Dual space of Lp). Let (X,A, µ) be a measure space. If 1 < p <

∞, then (7.2) defines an isometric isomorphism of Lp
′
(X) onto the dual space of

Lp(X).

Proof. We just have to show that the map J defined in (7.2) is onto, meaning

that every F ∈ Lp(X)∗ is given by J(f) for some f ∈ Lp′(X).
First, suppose that X has finite measure, and let

F : Lp(X)→ R

be a bounded linear functional on Lp(X). If A ∈ A, then χA ∈ Lp(X), since X has
finite measure, and we may define ν : A → R by

ν(A) = F (χA) .

If A =
⋃∞
i=1Ai is a disjoint union of measurable sets, then

χA =

∞∑
i=1

χAi
,

and the dominated convergence theorem implies that∥∥∥∥∥χA −
n∑
i=1

χAi

∥∥∥∥∥
Lp

→ 0

as n→∞. Hence, since F is a continuous linear functional on Lp,

ν(A) = F (χA) = F

( ∞∑
i=1

χAi

)
=

∞∑
i=1

F (χAi
) =

∞∑
i=1

ν(Ai),

meaning that ν is a signed measure on (X,A).
If µ(A) = 0, then χA is equivalent to 0 in Lp and therefore ν(A) = 0 by

the linearity of F . Thus, ν is absolutely continuous with respect to µ. By the
Radon-Nikodym theorem, there is a function f : X → R such that dν = fdµ and

F (χA) =

∫
fχA dµ for everyA ∈ A.
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Hence, by the linearity and boundedness of F ,

F (φ) =

∫
fφ dµ

for all simple functions φ, and ∣∣∣∣∫ fφ dµ

∣∣∣∣ ≤M‖φ‖Lp

where M = ‖F‖Lp∗ .
Taking φ = sgn f , which is a simple function, we see that f ∈ L1(X). We may

then extend the integral of f against bounded functions by continuity. Explicitly,
if g ∈ L∞(X), then from Theorem 7.8 there is a sequence of simple functions {φn}
with |φn| ≤ |g| such that φn → g in L∞, and therefore also in Lp. Since

|fφn| ≤ ‖g‖L∞ |f | ∈ L1(X),

the dominated convergence theorem and the continuity of F imply that

F (g) = lim
n→∞

F (φn) = lim
n→∞

∫
fφn dµ =

∫
fg dµ,

and that

(7.3)

∣∣∣∣∫ fg dµ

∣∣∣∣ ≤M‖g‖Lp for every g ∈ L∞(X).

Next we prove that f ∈ Lp
′
(X). We will estimate the Lp

′
norm of f by a

similar argument to the one used in the proof of Proposition 7.13. However, we
need to apply the argument to a suitable approximation of f , since we do not know
a priori that f ∈ Lp′ .

Let {φn} be a sequence of simple functions such that

φn → f pointwise a.e. as n→∞

and |φn| ≤ |f |. Define

gn = (sgn f)

(
|φn|
‖φn‖Lp′

)p′/p
.

Then gn ∈ L∞(X) and ‖gn‖Lp = 1. Moreover, fgn = |fgn| and∫
|φngn| dµ = ‖φn‖Lp′ .

It follows from these equalities, Fatou’s lemma, the inequality |φn| ≤ |f |, and (7.3)
that

‖f‖Lp′ ≤ lim inf
n→∞

‖φn‖Lp′

≤ lim inf
n→∞

∫
|φngn| dµ

≤ lim inf
n→∞

∫
|fgn| dµ

≤M.
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Thus, f ∈ Lp′ . Since the simple functions are dense in Lp and g 7→
∫
fg dµ is a

continuous functional on Lp when f ∈ Lp′ , it follows that F (g) =
∫
fg dµ for every

g ∈ Lp(X). Proposition 7.13 then implies that

‖F‖Lp∗ = ‖f‖Lp′ ,

which proves the result when X has finite measure.
The extension to non-finite measure spaces is straightforward, and we only

outline the proof. If X is σ-finite, then there is an increasing sequence {An} of sets
with finite measure whose union is X. By the previous result, there is a unique
function fn ∈ Lp

′
(An) such that

F (g) =

∫
An

fng dµ for all g ∈ Lp(An).

If m ≥ n, the functions fm, fn are equal pointwise a.e. on An, and the dominated
convergence theorem implies that f = limn→∞ fn ∈ Lp

′
(X) is the required function.

Finally, if X is not σ-finite, then for each σ-finite subset A ⊂ X, let fA ∈ Lp
′
(A)

be the function such that F (g) =
∫
A
fAg dµ for every g ∈ Lp(A). Define

M ′ = sup
{
‖fA‖Lp′ (A) : A ⊂ X is σ-finite

}
≤ ‖F‖Lp(X)∗ ,

and choose an increasing sequence of sets An such that

‖fAn
‖Lp′ (An) →M ′ as n→∞.

Defining B =
⋃∞
n=1An, one may verify that fB is the required function. �

A Banach space X is reflexive if its bi-dual X∗∗ is equal to the original space
X under the natural identification

ι : X → X∗∗ where ι(x)(F ) = F (x) for every F ∈ X∗,

meaning that x acting on F is equal to F acting on x. Reflexive Banach spaces
are generally better-behaved than non-reflexive ones, and an immediate corollary
of Theorem 7.14 is the following.

Corollary 7.15. If X is a measure space and 1 < p <∞, then Lp(X) is reflexive.

Theorem 7.14 also holds if p = 1 provided that X is σ-finite, but we omit a
detailed proof. On the other hand, the theorem does not hold if p = ∞. Thus L1

and L∞ are not reflexive Banach spaces, except in trivial cases.
The following example illustrates a bounded linear functional on an L∞-space

that does not arise from an element of L1.

Example 7.16. Consider the sequence space `∞(N). For

x = {xi : i ∈ N} ∈ `∞(N), ‖x‖`∞ = sup
i∈N
|xi| <∞,

define Fn ∈ `∞(N)∗ by

Fn (x) =
1

n

n∑
i=1

xi,

meaning that Fn maps a sequence to the mean of its first n terms. Then

‖Fn‖`∞∗ = 1
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for every n ∈ N, so by the Alaoglu theorem on the weak-∗ compactness of the unit
ball, there exists a subsequence {Fnj : j ∈ N} and an element F ∈ `∞(N)∗ with

‖F‖`∞∗ ≤ 1 such that Fnj

∗
⇀ F in the weak-∗ topology on `∞∗.

If u ∈ `∞ is the unit sequence with ui = 1 for every i ∈ N, then Fn(u) = 1 for
every n ∈ N, and hence

F (u) = lim
j→∞

Fnj
(u) = 1,

so F 6= 0; in fact, ‖F‖`∞ = 1. Now suppose that there were y = {yi} ∈ `1(N) such
that

F (x) =

∞∑
i=1

xiyi for every x ∈ `∞.

Then, denoting by ek ∈ `∞ the sequence with kth component equal to 1 and all
other components equal to 0, we have

yk = F (ek) = lim
j→∞

Fnj
(ek) = lim

j→∞

1

nj
= 0

so y = 0, which is a contradiction. Thus, `∞(N)∗ is strictly larger than `1(N).
We remark that if a sequence x = {xi} ∈ `∞ has a limit L = limi→∞ xi, then

F (x) = L, so F defines a generalized limit of arbitrary bounded sequences in terms
of their Cesàro sums. Such bounded linear functionals on `∞(N) are called Banach
limits.

It is possible to characterize the dual of L∞(X) as a space ba(X) of bounded,
finitely additive, signed measures that are absolutely continuous with respect to
the measure µ on X. This result is rarely useful, however, since finitely additive
measures are not easy to work with. Thus, for example, instead of using the weak
topology on L∞(X), we can regard L∞(X) as the dual space of L1(X) and use the
corresponding weak-∗ topology.
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PREFACE

These are lecture notes on integration theory for a eight-week course at the
Chalmers University of Technology and the Göteborg University. The parts
de�ning the course essentially lead to the same results as the �rst three
chapters in the Folland book [F ] ; which is used as a text book on the course.
The proofs in the lecture notes sometimes di¤er from those given in [F ] : Here
is a brief description of the di¤erences to simplify for the reader.
In Chapter 1 we introduce so called �-systems and �-additive classes,

which are substitutes for monotone classes of sets [F ]. Besides we prefer to
emphasize metric outer measures instead of so called premeasures. Through-
out the course, a variety of important measures are obtained as image mea-
sures of the linear measure on the real line. In Section 1.6 positive measures
inR induced by increasing right continuous mappings are constructed in this
way.
Chapter 2 deals with integration and is very similar to [F ] and most

other texts.
Chapter 3 starts with some standard facts about metric spaces and relates

the concepts to measure theory. For example Ulam�s Theorem is included.
The existence of product measures is based on properties of �-systems and
�-additive classes.
Chapter 4 deals with di¤erent modes of convergence and is mostly close

to [F ] : Here we include a section about orthogonality since many students
have seen parts of this theory before.
The Lebesgue Decomposition Theorem and Radon-Nikodym Theorem

in Chapter 5 are proved using the von Neumann beautiful L2-proof.
To illustrate the power of abstract integration these notes contain several

sections, which do not belong to the course but may help the student to a
better understanding of measure theory. The corresponding parts are set
between the symbols

###

and
"""

respectively.
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Finally I would like to express my deep gratitude to the students in
my classes for suggesting a variety of improvements and a special thank
to Jonatan Vasilis who has provided numerous comments and corrections in
my original text.

Göteborg 2006
Christer Borell
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CHAPTER 1

MEASURES

Introduction

The Riemann integral, dealt with in calculus courses, is well suited for com-
putations but less suited for dealing with limit processes. In this course we
will introduce the so called Lebesgue integral, which keeps the advantages of
the Riemann integral and eliminates its drawbacks. At the same time we will
develop a general measure theory which serves as the basis of contemporary
analysis and probability.
In this introductory chapter we set forth some basic concepts of measure

theory, which will open for abstract Lebesgue integration.

1.1. �-Algebras and Measures

Throughout this course

N = f0; 1; 2; :::g (the set of natural numbers)
Z = f:::;�2;�1; 0; 1; ; 2; :::g (the set of integers)
Q = the set of rational numbers
R = the set of real numbers
C = the set of complex numbers.

If A � R; A+ is the set of all strictly positive elements in A:
If f is a function from a set A into a set B; this means that to every x 2 A

there corresponds a point f(x) 2 B and we write f : A ! B: A function is
often called a map or a mapping. The function f is injective if

(x 6= y)) (f(x) 6= f(y))
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and surjective if to each y 2 B; there exists an x 2 A such that f(x) = y:
An injective and surjective function is said to be bijective.
A set A is �nite if either A is empty or there exist an n 2 N+ and a

bijection f : f1; :::; ng ! A: The empty set is denoted by �: A set A is said
to be denumerable if there exists a bijection f : N+ ! A: A subset of a
denumerable set is said to be at most denumerable.
Let X be a set. For any A � X; the indicator function �A of A relative

to X is de�ned by the equation

�A(x) =

�
1 if x 2 A
0 if x 2 Ac:

The indicator function �A is sometimes written 1A: We have the following
relations:

�Ac = 1� �A

�A\B = min(�A; �B) = �A�B

and
�A[B = max(�A; �B) = �A + �B � �A�B:

De�nition 1.1.1. Let X be a set.
a) A collection A of subsets of X is said to be an algebra in X if A has

the following properties:

(i) X 2 A:
(ii) A 2 A )Ac 2 A; where Ac is the complement of A relative to X:
(iii) If A;B 2 A then A [B 2 A:

(b) A collectionM of subsets of X is said to be a �-algebra in X ifM
is an algebra with the following property:

If An 2 M for all n 2 N+, then [1n=1An 2 M:
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If M is a �-algebra in X; (X;M) is called a measurable space and the
members of M are called measurable sets. The so called power set P(X),
that is the collection of all subsets of X, is a �-algebra in X: It is simple to
prove that the intersection of any family of �-algebras in X is a �-algebra. It
follows that if E is any subset of P(X); there is a unique smallest �-algebra
�(E) containing E ; namely the intersection of all �-algebras containing E :
The �-algebra �(E) is called the �-algebra generated by E : The �-algebra

generated by all open intervals in R is denoted by R. It is readily seen that
the �-algebra R contains every subinterval of R. Before we proceed, recall
that a subset E of R is open if to each x 2 E there exists an open subinterval
of R contained in E and containing x; the complement of an open set is said
to be closed. We claim that R contains every open subset U of R: To see
this suppose x 2 U and let x 2 ]a; b[ � U; where �1 < a < b < 1: Now
pick r; s 2 Q such that a < r < x < s < b: Then x 2 ]r; s[ � U and it follows
that U is the union of all bounded open intervals with rational boundary
points contained in U: Since this family of intervals is at most denumberable
we conclude that U 2 R: In addition, any closed set belongs to R since its
complements is open. It is by no means simple to grasp the de�nition of R at
this stage but the reader will successively see that the �-algebra R has very
nice properties. At the very end of Section 1.3, using the so called Axiom of
Choice, we will exemplify a subset of the real line which does not belong to
R. In fact, an example of this type can be constructed without the Axiom
of Choice (see Dudley�s book [D]).
In measure theory, inevitably one encounters 1: For example the real

line has in�nite length. Below [0;1] = [0;1[[f1g : The inequalities x � y
and x < y have their usual meanings if x; y 2 [0;1[. Furthermore, x � 1
if x 2 [0;1] and x < 1 if x 2 [0;1[ : We de�ne x +1 = 1 + x = 1 if
x; y 2 [0;1] ; and

x � 1 =1 � x =
�
0 if x = 0
1 if 0 < x � 1:

Sums and multiplications of real numbers are de�ned in the usual way.
If An � X; n 2 N+, and Ak \An = � if k 6= n, the sequence (An)n2N+ is

called a disjoint denumerable collection. If (X;M) is a measurable space, the
collection is called a denumerable measurable partition of A if A = [1n=1An
and An 2 M for every n 2 N+: Some authors call a denumerable collection
of sets a countable collection of sets.
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De�nition 1.1.2. (a) Let A be an algebra of subsets of X: A function
� : A ! [0;1] is called a content if

(i) �(�) = 0
(ii) �(A [B) = �(A) + �(B) if A;B 2 A and A \B = �:

(b) If (X;M) is a measurable space a content � de�ned on the �-algebraM
is called a positive measure if it has the following property:

For any disjoint denumerable collection (An)n2N+
of members ofM

�([1n=1An) = �1n=1�(An):

If (X;M) is a measurable space and the function � : M ! [0;1] is a
positive measure, (X;M; �) is called a positive measure space. The quantity
�(A) is called the �-measure of A or simply the measure of A if there is
no ambiguity. Here (X;M; �) is called a probability space if �(X) = 1; a
�nite positive measure space if �(X) < 1; and a �-�nite positive measure
space if X is a denumerable union of measurable sets with �nite �-measure.
The measure � is called a probability measure, �nite measure, and �-�nite
measure, if (X;M; �) is a probability space, a �nite positive measure space,
and a �-�nite positive measure space, respectively. A probability space is
often denoted by (
;F ; P ): A member A of F is called an event.
As soon as we have a positive measure space (X;M; �), it turns out to

be a fairly simple task to de�ne a so called �-integralZ
X

f(x)d�(x)

as will be seen in Chapter 2.
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The class of all �nite unions of subintervals of R is an algebra which is
denoted by R0: If A 2 R0 we denote by l(A) the Riemann integralZ 1

�1
�A(x)dx

and it follows from courses in calculus that the function l : R0 ! [0;1] is a
content. The algebra R0 is called the Riemann algebra and l the Riemann
content. If I is a subinterval of R, l(I) is called the length of I: Below we
follow the convention that the empty set is an interval.
If A 2 P(X), cX(A) equals the number of elements in A, when A is a

�nite set, and cX(A) =1 otherwise. Clearly, cX is a positive measure. The
measure cX is called the counting measure on X:
Given a 2 X; the probability measure �a de�ned by the equation �a(A) =

�A(a); if A 2 P(X); is called the Dirac measure at the point a: Sometimes
we write �a = �X;a to emphasize the set X:
If � and � are positive measures de�ned on the same �-algebraM, the

sum � + � is a positive measure onM:More generally, �� + �� is a positive
measure for all real �; � � 0: Furthermore, if E 2 M; the function �(A) =
�(A \ E); A 2 M; is a positive measure. Below this measure � will be
denoted by �E and we say that �E is concentrated on E: If E 2M; the class
ME = fA 2M; A � Eg is a �-algebra of subsets of E and the function
�(A) = �(A), A 2 ME; is a positive measure. Below this measure � will be
denoted by �jE and is called the restriction of � toME:
Let I1; :::; In be subintervals of the real line. The set

I1 � :::� In = f(x1; :::; xn) 2 Rn; xk 2 Ik; k = 1; :::; ng

is called an n-cell in Rn; its volume vol(I1 � :::� In) is, by de�nition, equal
to

vol(I1 � :::� In) = �
n
k=1l(Ik):

If I1; :::; In are open subintervals of the real line, the n-cell I1 � :::� In is
called an open n-cell. The �-algebra generated by all open n-cells in Rn is
denoted by Rn: In particular, R1 = R. A basic theorem in measure theory
states that there exists a unique positive measure vn de�ned on Rn such that
the measure of any n-cell is equal to its volume. The measure vn is called the
volume measure on Rn or the volume measure on Rn: Clearly, vn is �-�nite.
The measure v2 is called the area measure on R2 and v1 the linear measure
on R:
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Theorem 1.1.1. The volume measure on Rn exists.

Theorem 1.1.1 will be proved in Section 1.5 in the special case n = 1. The
general case then follows from the existence of product measures in Section
3.4. An alternative proof of Theorem 1.1.1 will be given in Section 3.2. As
soon as the existence of volume measure is established a variety of interesting
measures can be introduced.
Next we prove some results of general interest for positive measures.

Theorem 1.1.2. Let A be an algebra of subsets of X and � a content
de�ned on A. Then,
(a) � is �nitely additive, that is

�(A1 [ ::: [ An) = �(A1) + :::+ �(An)

if A1; :::; An are pairwise disjoint members of A:
(b) if A;B 2 A;

�(A) = �(A nB) + �(A \B):

Moreover, if �(A \B) <1; then

�(A [B) = �(A) + �(B)� �(A \B)

(c) A � B implies �(A) � �(B) if A;B 2 A:
(d) � �nitely sub-additive, that is

�(A1 [ ::: [ An) � �(A1) + :::+ �(An)

if A1; :::; An are members of A:

If (X;M; �) is a positive measure space
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(e) �(An)! �(A) if A = [n2N+An; An 2M; and

A1 � A2 � A3 � ::: :

(f) �(An)! �(A) if A = \n2N+An; An 2M;

A1 � A2 � A3 � :::

and �(A1) <1:
(g) � is sub-additive, that is for any denumerable collection (An)n2N+

of
members of M,

�([1n=1An) � �1n=1�(An):

PROOF (a) If A1; :::; An are pairwise disjoint members of A;

�([nk=1Ak) = �(A1 [ ([nk=2Ak))

= �(A1) + �([nk=2Ak)
and, by induction, we conclude that � is �nitely additive.

(b) Recall that
A nB = A \Bc:

Now A = (A nB) [ (A \B) and we get

�(A) = �(A nB) + �(A \B):

Moreover, since A [B = (A nB) [B;

�(A [B) = �(A nB) + �(B)

and, if �(A \B) <1; we have

�(A [B) = �(A) + �(B)� �(A \B).

(c) Part (b) yields �(B) = �(B n A) + �(A \ B) = �(B n A) + �(A); where
the last member does not fall below �(A):
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(d) If (Ai)ni=1is a sequence of members of A de�ne the so called disjunction
(Bk)

n
k=1 of the sequence (Ai)

n
i=1 as

B1 = A1 and Bk = Ak n [k�1i=1Ai for 2 � k � n:

Then Bk � Ak; [ki=1Ai = [ki=1Bi; k = 1; ::; n; and Bi\Bj = � if i 6= j: Hence,
by Parts (a) and (c),

�([nk=1Ak) = �nk=1�(Bk) � �nk=1�(Ak):

(e) Set B1 = A1 and Bn = An n An�1 for n � 2: Then An = B1 [ :::: [ Bn;
Bi \Bj = � if i 6= j and A = [1k=1Bk: Hence

�(An) = �
n
k=1�(Bk)

and
�(A) = �1k=1�(Bk):

Now e) follows, by the de�nition of the sum of an in�nite series.

(f) Put Cn = A1 n An; n � 1: Then C1 � C2 � C3 � :::;

A1 n A = [1n=1Cn

and �(A) � �(An) � �(A1) <1: Thus

�(Cn) = �(A1)� �(An)

and Part (e) shows that

�(A1)� �(A) = �(A1 n A) = lim
n!1

�(Cn) = �(A1)� lim
n!1

�(An):

This proves (f).

(g) The result follows from Parts d) and e).
This completes the proof of Theorem 1.1.2.
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The hypothesis ��(A1) <1 �in Theorem 1.1.2 ( f) is not super�uous. If
cN+ is the counting measure onN+ and An = fn; n+ 1; :::g ; then cN+(An) =
1 for all n but A1 � A2 � :::: and cN+(\1n=1An) = 0 since \1n=1An = �:
If A;B � X; the symmetric di¤erence A�B is de�ned by the equation

A�B =def (A nB) [ (B n A):

Note that
�A�B =j �A � �B j :

Moreover, we have
A�B = Ac�Bc

and
([1i=1Ai)�([1i=1Bi) � [1i=1(Ai�Bi):

Example 1.1.1. Let � be a �nite positive measure on R: We claim that
to each set E 2 R and " > 0; there exists a set A; which is �nite union of
intervals (that is, A belongs to the Riemann algebra R0), such that

�(E�A) < ":

To see this let S be the class of all sets E 2 R for which the conclusion
is true. Clearly � 2 S and, moreover, R0 � S: If A 2 R0, Ac 2 R0 and
therefore Ec 2 S if E 2 S: Now suppose Ei 2 S; i 2 N+: Then to each " > 0
and i there is a set Ai 2 R0 such that �(Ei�Ai) < 2�i": If we set

E = [1i=1Ei

then
�(E�([1i=1Ai)) � �1i=1�(Ei�Ai) < ":

Here
E�([1i=1Ai) = fE \ (\1i=1Aci)g [ fEc \ ([1i=1Ai)g

and Theorem 1.1.2 (f) gives that

�(fE \ (\ni=1Aci)g [ f(Ec \ ([1i=1Ai)g) < "

if n is large enough (hint: \i2I(Di [ F ) = (\i2IDi) [ F ): But then

�(E� [ni=1 Ai) = �(fE \ (\ni=1Aci)g [ fEc \ ([ni=1Ai)g) < "
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if n is large enough we conclude that the set E 2 S: Thus S is a �-algebra
and since R0 � S � R it follows that S = R:

Exercises

1. Prove that the sets N�N = f(i; j); i; j 2 Ng and Q are denumerable.

2. Suppose A is an algebra of subsets of X and � and � two contents on A
such that � � � and �(X) = �(X) <1: Prove that � = �:

3. Suppose A is an algebra of subsets of X and � a content on A with
�(X) <1: Show that

�(A [B [ C) = �(A) + �(B) + �(C)

��(A \B)� �(A \ C)� �(B \ C) + �(A \B \ C):

4. (a) A collection C of subsets ofX is an algebra with the following property:
If An 2 C; n 2 N+ and Ak \ An = � if k 6= n, then [1n=1An 2 C.
Prove that C is a �-algebra.

(b) A collection C of subsets ofX is an algebra with the following property:
If En 2 C and En � En+1; n 2 N+; then [11 En 2 C .
Prove that C is a �-algebra.

5. Let (X;M) be a measurable space and (�k)
1
k=1 a sequence of positive

measures onM such that �1 � �2 � �3 � ::: . Prove that the set function

�(A) = lim
k!1

�k(A); A 2M

is a positive measure.
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6. Let (X;M; �) be a positive measure space. Show that

�(\nk=1Ak) � n

q
�nk=1�(Ak)

for all A1; :::; An 2M:

7. Let (X;M; �) be a �-�nite positive measure space with �(X) =1: Show
that for any r 2 [0;1[ there is some A 2M with r < �(A) <1:

8. Show that the symmetric di¤erence of sets is associative:

A�(B�C) = (A�B)�C:

9. (X;M; �) is a �nite positive measure space. Prove that

j �(A)� �(B) j� �(A�B):

10. Let E = 2N: Prove that

cN(E�A) =1

if A is a �nite union of intervals.

11. Suppose (X;P(X); �) is a �nite positive measure space such that �(fxg) >
0 for every x 2 X: Set

d(A;B) = �(A�B); A;B 2 P(X):

Prove that
d(A;B) = 0 , A = B;

d(A;B) = d(B;A)
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and
d(A;B) � d(A;C) + d(C;B):

12. Let (X;M; �) be a �nite positive measure space. Prove that

�([ni=1Ai) � �ni=1�(Ai)� �1�i<j�n�(Ai \ Aj)

for all A1; :::; An 2M and integers n � 2:

13. Let (X;M; �) be a probability space and suppose the sets A1; :::; An 2M
satisfy the inequality

Pn
1 �(Ai) > n� 1: Show that �(\n1Ai) > 0:

1.2. Measure Determining Classes

Suppose � and � are probability measures de�ned on the same �-algebraM,
which is generated by a class E : If � and � agree on E ; is it then true that �
and � agree onM? The answer is in general no. To show this, let

X = f1; 2; 3; 4g

and
E = ff1; 2g ; f1; 3gg :

Then �(E) = P(X): If � = 1
4
cX and

� =
1

6
�X;1 +

1

3
�X;2 +

1

3
�X;3 +

1

6
�X;4

then � = � on E and � 6= �:
In this section we will prove a basic result on measure determining classes

for �-�nite measures. In this context we will introduce so called �-systems
and �-additive classes, which will also be of great value later in connection
with the construction of so called product measures in Chapter 3.
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De�nition 1.2.1. A class G of subsets of X is a �-system if A \ B 2 G
for all A;B 2 G:

The class of all open n-cells in Rn is a �-system.

De�nition 1.2.2. A class D of subsets of X is called a �-additive class if
the following properties hold:
(a) X 2 D:
(b) If A;B 2 D and A � B; then B n A 2 D:
(c) If (An)n2N+ is a disjoint denumerable collection of members of the
class D; then [1n=1An 2 D:

Theorem 1.2.1. If a �-additive class M is a �-system, then M is a �-
algebra.

PROOF. If A 2 M; then Ac = X n A 2 M since X 2 M and M is a �-
additive class. Moreover, if (An)n2N+ is a denumerable collection of members
ofM;

A1 [ ::: [ An = (Ac1 \ ::: \ Acn)c 2M
for each n; sinceM is a �-additive class and a �-system. Let (Bn)1n=1 be the
disjunction of (An)1n=1: Then (Bn)n2N+ is a disjoint denumerable collection of
members ofM and De�nition 1.2.2(c) implies that [1n=1An = [1n=1Bn 2M:

Theorem 1.2.2. Let G be a �-system and D a �-additive class such that
G � D: Then �(G) � D:

PROOF. Let M be the intersection of all �-additive classes containing G:
The classM is a �-additive class and G �M � D. In view of Theorem 1.2.1
M is a �-algebra, ifM is a �-system and in that case �(G) �M: Thus the
theorem follows if we show thatM is a �-system.
Given C � X; denote by DC be the class of all D � X such that D\C 2

M.
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CLAIM 1. If C 2M; then DC is a �-additive class.

PROOF OF CLAIM 1. First X 2 DC since X \ C = C 2 M: Moreover, if
A;B 2 DC and A � B; then A \ C;B \ C 2M and

(B n A) \ C = (B \ C) n (A \ C) 2M:

Accordingly from this, BnA 2 DC : Finally, if (An)n2N+ is a disjoint denumer-
able collection of members of DC , then (An\C)n2N+ is disjoint denumerable
collection of members ofM and

([n2N+An) \ C = [n2N+(An \ C) 2M:

Thus [n2N+An 2 DC :

CLAIM 2. If A 2 G; thenM� DA:

PROOF OF CLAIM 2. If B 2 G; A \ B 2 G �M: Thus B 2 DA: We
have proved that G � DA and remembering thatM is the intersection of all
�-additive classes containing G Claim 2 follows since DA is a �-additive class.

To complete the proof of Theorem 1.2.2, observe that B 2 DA if and only
if A 2 DB: By Claim 2, if A 2 G and B 2M; then B 2 DA that is A 2 DB:
Thus G � DB if B 2 M. Now the de�nition ofM implies thatM� DB if
B 2 M: The proof is almost �nished. In fact, if A;B 2 M then A 2 DB
that is A \B 2M: Theorem 1.2.2 now follows from Theorem 1.2.1.

Theorem 1.2.3. Let � and � be positive measures on M = �(G), where
G is a �-system, and suppose �(A) = �(A) for every A 2 G:
(a) If � and � are probability measures, then � = �:
(b) Suppose there exist En 2 G; n 2 N+; such that X = [1n=1En;



20

E1 � E2 � :::; and

�(En) = �(En) <1; all n 2 N+:

Then � = �:

PROOF. (a) Let
D = fA 2M; �(A) = �(A)g :

It is immediate that D is a �-additive class and Theorem 1.2.2 implies that
M = �(G) � D since G � D and G is a �-system.

(b) If �(En) = �(En) = 0 for all all n 2 N+, then

�(X) = lim
n!1

�(En) = 0

and, in a similar way, �(X) = 0: Thus � = �: If �(En) = �(En) > 0; set

�n(A) =
1

�(En)
�(A \ En) and �n(A) =

1

�(En)
�(A \ En)

for each A 2M: By Part (a) �n = �n and we get

�(A \ En) = �(A \ En)

for each A 2M: Theorem 1.1.2(e) now proves that � = �:

Theorem 1.2.3 implies that there is at most one positive measure de�ned
on Rn such that the measure of any open n-cell in Rn equals its volume.
Next suppose f : X ! Y and let A � X and B � Y: The image of A

and the inverse image of B are

f(A) = fy; y = f(x) for some x 2 Ag

and
f�1(B) = fx; f(x) 2 Bg
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respectively. Note that
f�1(Y ) = X

and
f�1(Y nB) = X n f�1(B):

Moreover, if (Ai)i2I is a collection of subsets of X and (Bi)i2I is a collection
of subsets of Y

f([i2IAi) = [i2If(Ai)
and

f�1([i2IBi) = [i2If�1(Bi):
Given a class E of subsets of Y; set

f�1(E) =
�
f�1(B); B 2 E

	
:

If (Y;N ) is a measurable space, it follows that the class f�1(N ) is a �-algebra
in X: If (X;M) is a measurable space�

B 2 P(Y ); f�1(B) 2M
	

is a �-algebra in Y . Thus, given a class E of subsets of Y;

�(f�1(E)) = f�1(�(E)):

De�nition 1.2.3. Let (X;M) and (Y;N ) be measurable spaces. The func-
tion f : X ! Y is said to be (M;N )-measurable if f�1(N ) �M. If we say
that f : (X;M) ! (Y;N ) is measurable this means that f : X ! Y is an
(M;N )-measurable function.

Theorem 1.2.4. Let (X;M) and (Y;N ) be measurable spaces and suppose
E generates N : The function f : X ! Y is (M;N )-measurable if

f�1(E)�M:

PROOF. The assumptions yield

�(f�1(E))�M:
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Since
�(f�1(E)) = f�1(�(E)) = f�1(N )

we are done.

Corollary 1.2.1. A function f : X ! R is (M;R)-measurable if and only
if the set f�1(]�;1[) 2M for all � 2 R:

If f : X ! Y is (M;N )-measurable and � is a positive measure onM,
the equation

�(B) = �(f�1(B)), B 2 N
de�nes a positive measure � on N : We will write � = �f�1; � = f(�) or
� = �f : The measure � is called the image measure of � under f and f is
said to transport � to �: Two (M;N )-measurable functions f : X ! Y and
g : X ! Y are said to be �-equimeasurable if f(�) = g(�):
As an example, let a 2 Rn and de�ne f(x) = x+a if x 2 Rn: If B � Rn;

f�1(B) = fx; x+ a 2 Bg = B � a:

Thus f�1(B) is an open n-cell if B is, and Theorem 1.2.4 proves that f is
(Rn;Rn)-measurable. Now, granted the existence of volume measure vn; for
every B 2 Rn de�ne

�(B) = f(vn)(B) = vn(B � a):

Then �(B) = vn(B) if B is an open n-cell and Theorem 1.2.3 implies that
� = vn: We have thus proved the following

Theorem 1.2.5. For any A 2 Rn and x 2 Rn

A+ x 2 Rn

and
vn(A+ x) = vn(A):
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Suppose (
;F ; P ) is a probability space. A measurable function � de�ned
on 
 is called a random variable and the image measure P� is called the
probability law of �: We sometimes write

L(�) = P�:

Here are two simple examples.
If the range of a random variable � consists of n points S = fs1; :::; sng

(n � 1) and P� = 1
n
cS; � is said to have a uniform distribution in S. Note

that

P� =
1

n
�nk=1�sk :

Suppose � > 0 is a constant. If a random variable � has its range in N
and

P� = �
1
n=0

�n

n!
e���n

then � is said to have a Poisson distribution with parameter �:

Exercises

1. Let f : X ! Y , A � X; and B � Y: Show that

f(f�1(B)) � B and f�1(f(A)) � A:

2. Let (X;M) be a measurable space and suppose A � X: Show that the
function �A is (M;R)-measurable if and only if A 2M:

3. Suppose (X;M) is a measurable space and fn : X ! R; n 2 N; a
sequence of (M;R)-measurable functions such that

lim
n!1

fn(x) exists and = f(x) 2 R

for each x 2 X: Prove that f is (M;R)-measurable.
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4. Suppose f : (X;M) ! (Y;N ) and g : (Y;N ) ! (Z;S) are measurable.
Prove that g � f is (M;S)-measurable.

5. Granted the existence of volume measure vn, show that vn(rA) = rnvn(A)
if r � 0 and A 2 Rn:

6. Let � be the counting measure on Z2 and f(x; y) = x; (x; y) 2 Z2: The
positive measure � is �-�nite. Prove that the image measure f(�) is not a
�-�nite positive measure.

7. Let �; � : R! [0;1] be two positive measures such that �(I) = �(I) <1
for each open subinterval of R: Prove that � = �:

8. Let f : Rn ! Rk be continuous. Prove that f is (Rn;Rk)-measurable.

9. Suppose � has a Poisson distribution with parameter �: Show that P� [2N] =
e�� cosh�:

9. Find a �-additive class which is not a �-algebra.

1.3. Lebesgue Measure

Once the problem about the existence of volume measure is solved the exis-
tence of the so called Lebesgue measure is simple to establish as will be seen
in this section. We start with some concepts of general interest.
If (X;M; �) is a positive measure space, the zero set Z� of � is, by

de�nition, the set at all A 2 M such that �(A) = 0: An element of Z� is
called a null set or �-null set. If

(A 2 Z� and B � A)) B 2M
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the measure space (X;M; �) is said to be complete. In this case the measure
� is also said to be complete. The positive measure space (X; f�;Xg ; �);
whereX = f0; 1g and � = 0; is not complete sinceX 2 Z� and f0g =2 f�;Xg :

Theorem 1.3.1 If (En)1n=1 is a denumerable collection of members of Z�
then [1n=1En 2 Z�:

PROOF We have

0 � �([1n=1En) � �1n=1�(En) = 0

which proves the result.

Granted the existence of linear measure v1 it follows from Theorem 1.3.1
that Q 2 Zv1 since Q is countable and fag 2 Zv1 for each real number a.
Suppose (X;M; �) is an arbitrary positive measure space. It turns out

that � is the restriction to M of a complete measure. To see this suppose
M� is the class of all E � X is such that there exist sets A;B 2M such that
A � E � B and B nA 2 Z�: It is obvious that X 2M� sinceM�M�: If
E 2 M�; choose A;B 2 M such that A � E � B and B n A 2 Z�: Then
Bc � Ec � Ac and Ac nBc = B nA 2 Z� and we conclude that Ec 2M�: If
(Ei)

1
i=1 is a denumerable collection of members ofM�; for each i there exist

sets Ai; Bi 2M such that Ai � E � Bi and Bi n Ai 2 Z�: But then

[1i=1Ai � [1i=1Ei � [1i=1Bi

where [1i=1Ai;[1i=1Bi 2M. Moreover, ([1i=1Bi) n ([1i=1Ai) 2 Z� since

([1i=1Bi) n ([1i=1Ai) � [1i=1(Bi n Ai):

Thus [1i=1Ei 2M� andM� is a �-algebra.
If E 2M; suppose Ai; Bi 2M are such that Ai � E � Bi and Bi nAi 2

Z� for i = 1; 2: Then for each i; (B1 \B2) n Ai 2 Z� and

�(B1 \B2) = �((B1 \B2) n Ai) + �(Ai) = �(Ai):

Thus the real numbers �(A1) and �(A2) are the same and we de�ne ��(E) to
be equal to this common number. Note also that �(B1) = ��(E): It is plain
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that ��(�) = 0: If (Ei)1i=1 is a disjoint denumerable collection of members
of M; for each i there exist sets Ai; Bi 2 M such that Ai � Ei � Bi and
Bi n Ai 2 Z�: From the above it follows that

��([1i=1Ei) = �([1i=1Ai) = �1n=1�(Ai) = �1n=1��(Ei):

We have proved that �� is a positive measure on M�. If E 2 Z�� the
de�nition of �� shows that any set A � E belongs to the �-algebra M�: It
follows that the measure �� is complete and its restriction toM equals �:
The measure �� is called the completion of � andM� is called the com-

pletion ofM with respect to �:

De�nition 1.3.1 The completion of volume measure vn on Rn is called
Lebesgue measure on Rn and is denoted by mn: The completion of Rn with
respect to vn is called the Lebesgue �-algebra in Rn and is denoted by R�

n :
A member of the class R�

n is called a Lebesgue measurable set in R
n or a

Lebesgue set inRn: A function f : Rn ! R is said to be Lebesgue measurable
if it is (R�

n ;R)-measurable. Below, m1 is written m if this notation will not
lead to misunderstanding. Furthermore, R�

1 is written R�.

Theorem 1.3.2. Suppose E 2 R�
n and x 2Rn: Then E + x 2 R�

n and
mn(E + x) = mn(E):

PROOF. Choose A;B 2 Rn such that A � E � B and B n A 2 Zvn : Then,
by Theorem 1.2.5, A + x;B + x 2 Rn; vn(A + x) = vn(A) = mn(E); and
(B + x) n (A + x) = (B n A) + x 2 Zvn : Since A + x � E + x � B + x the
theorem is proved.

The Lebesgue �-algebra in Rn is very large and contains each set of
interest in analysis and probability. In fact, in most cases, the �-algebraRn is
su¢ ciently large but there are some exceptions. For example, if f : Rn ! Rn

is continuous and A 2 Rn, the image set f(A) need not belong to the class
Rn (see e.g. the Dudley book [D]). To prove the existence of a subset of the
real line, which is not Lebesgue measurable we will use the so called Axiom
of Choice.
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Axiom of Choice. If (Ai)i2I is a non-empty collection of non-empty sets,
there exists a function f : I ! [i2IAi such that f(i) 2 Ai for every i 2 I:

Let X and Y be sets. The set of all ordered pairs (x; y); where x 2 X
and y 2 Y is denoted by X � Y: An arbitrary subset R of X � Y is called a
relation. If (x; y) 2 R , we write x s y: A relation is said to be an equivalence
relation on X if X = Y and

(i) x s x (re�exivity)
(ii) x s y ) y s x (symmetry)
(iii) (x s y and y s z) ) x s z (transitivity)

The equivalence class R(x) =def fy; y s xg : The de�nition of the equiv-
alence relation s implies the following:

(a) x 2 R(x)
(b) R(x) \R(y) 6= �) R(x) = R(y)
(c) [x2XR(x) = X:

An equivalence relation leads to a partition of X into a disjoint collection
of subsets of X:
Let X =

�
�1
2
; 1
2

�
and de�ne an equivalence relation for numbers x; y in X

by stating that x s y if x� y is a rational number. By the Axiom of Choice
it is possible to pick exactly one element from each equivalence class. Thus
there exists a subset NL of X which contains exactly one element from each
equivalence class.
If we assume that NL 2 R� we get a contradiction as follows. Let (ri)1i=1

be an enumeration of the rational numbers in [�1; 1]. Then

X � [1i=1(ri +NL)

and it follows from Theorem 1.3.1 that ri + NL =2 Zm for some i: Thus, by
Theorem 1.3.2, NL =2 Zm:
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Now assume (ri + NL) \ (rj + NL) 6= �: Then there exist a0; a00 2 NL
such that ri + a0 = rj + a00 or a0 � a00 = rj � ri: Hence a0 s a00 and it follows
that a0 and a00 belong to the same equivalence class. But then a0 = a00: Thus
ri = rj and we conclude that (ri + NL)i2N+ is a disjoint enumeration of
Lebesgue sets. Now, since

[1i=1(ri +NL) �
�
�3
2
;
3

2

�
it follows that

3 � m([1i=1(ri +NL)) = �1n=1m(NL):

But then NL 2 Zm; which is a contradiction. Thus NL =2 R�:

In the early 1970�Solovay [S] proved that it is consistent with the usual
axioms of Set Theory, excluding the Axiom of Choice, that every subset of
R is Lebesgue measurable.
From the above we conclude that the Axiom of Choice implies the exis-

tence of a subset of the set of real numbers which does not belong to the class
R: Interestingly enough, such an example can be given without any use of
the Axiom of Choice and follows naturally from the theory of analytic sets.
The interested reader may consult the Dudley book [D] :

Exercises

1. (X;M; �) is a positive measure space. Prove or disprove: If A � E � B
and �(A) = �(B) then E belongs to the domain of the completion ��:

2. Prove or disprove: If A and B are not Lebesgue measurable subsets of
R; then A [B is not Lebesgue measurable.

3. Let (X;M; �) be a complete positive measure space and suppose A;B 2
M, where B n A is a �-null set. Prove that E 2 M if A � E � B (stated
otherwiseM� =M).
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4. Suppose E � R and E =2 R�. Show there is an " > 0 such that

m(B n A) � "

for all A;B 2 R� such that A � E � B:

5. Suppose (X;M; �) is a positive measure space and (Y;N ) a measurable
space. Furthermore, suppose f : X ! Y is (M;N )-measurable and let
� = �f�1; that is �(B) = �(f�1(B)); B 2 N : Show that f is (M�;N�)-
measurable, whereM� denotes the completion ofM with respect to � and
N� the completion of N with respect to �:

1.4. Carathéodory�s Theorem

In these notes we exhibit two famous approaches to Lebesgue measure: One
is based on the Carathéodory Theorem, which we present in this section, and
the other one, due to F. Riesz, is a representation theorem of positive linear
functionals on spaces of continuous functions in terms of positive measures.
The latter approach, is presented in Chapter 3. Both methods depend on
topological concepts such as compactness.

De�nition 1.4.1. A function � : P(X) ! [0;1] is said to be an outer
measure if the following properties are satis�ed:

(i) �(�) = 0:
(ii) �(A) � �(B) if A � B:
(iii) for any denumerable collection (An)1n=1 of subsets of X

�([1n=1An) � �1n=1�(An):
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Since
E = (E \ A) [ (E \ Ac)

an outer measure � satis�es the inequality

�(E) � �(E \ A) + �(E \ Ac):

If � is an outer measure on X we de�ne M(�) as the set of all A � X
such that

�(E) = �(E \ A) + �(E \ Ac) for all E � X

or, what amounts to the same thing,

�(E) � �(E \ A) + �(E \ Ac) for all E � X:

The next theorem is one of the most important in measure theory.

Theorem 1.4.1. (Carathéodory�s Theorem) Suppose � is an outer
measure. The class M(�) is a �-algebra and the restriction of � toM(�) is
a complete measure.

PROOF. Clearly, � 2 M(�) and Ac 2 M(�) if A 2 M(�): Moreover, if
A;B 2M(�) and E � X;

�(E) = �(E \ A) + �(E \ Ac)

= �(E \ A \B) + �(E \ A \Bc)

+�(E \ Ac \B) + �(E \ Ac \Bc):

But
A [B = (A \B) [ (A \Bc) [ (Ac \B)

and
Ac \Bc = (A [B)c

and we get
�(E) � �(E \ (A [B)) + �(E \ (A [B)c):

It follows that A[B 2M(�) and we have proved that the classM(�) is an
algebra. Now if A;B 2M(�) are disjoint

�(A [B) = �((A [B) \ A) + �((A [B) \ Ac) = �(A) + �(B)
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and therefore the restriction of � toM(�) is a content.
Next we prove thatM(�) is a �-algebra. Let (Ai)1i=1 be a disjoint denu-

merable collection of members ofM(�) and set for each n 2 N

Bn = [1�i�nAi and B = [1i=1Ai

(here B0 = �). Then for any E � X;

�(E \Bn) = �(E \Bn \ An) + �(E \Bn \ Acn)

= �(E \ An) + �(E \Bn�1)
and, by induction,

�(E \Bn) = �ni=1�(E \ Ai):
But then

�(E) = �(E \Bn) + �(E \Bc
n)

� �ni=1�(E \ Ai) + �(E \Bc)

and letting n!1;

�(E) � �1i=1�(E \ Ai) + �(E \Bc)

� �([1i=1(E \ Ai)) + �(E \Bc)

= �(E \B) + �(E \Bc) � �(E):

All the inequalities in the last calculation must be equalities and we conclude
that B 2M(�) and, choosing E = B; results in

�(B) = �1i=1�(Ai):

Thus M(�) is a �-algebra and the restriction of � to M(�) is a positive
measure.
Finally we prove that the the restriction of � to M(�) is a complete

measure. Suppose B � A 2M(�) and �(A) = 0: If E � X;

�(E) � �(E \B) + �(E \Bc) � �(E \Bc) � �(E)

and so B 2M(�): The theorem is proved.
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Exercises

1. Suppose �i : P(X) ! [0;1] ; i = 1; 2; are outer measures. Prove that
� = max(�1; �2) is an outer measure.

2. Suppose a; b 2 R and a 6= b: Set � = max(�a; �b): Prove that

fag ; fbg =2M(�):

1.5. Existence of Linear Measure

The purpose of this section is to show the existence of linear measure on R
using the Carathéodory Theorem and a minimum of topology.
First let us recall the de�nition of in�mum and supremum of a non-

empty subset of the extended real line. Suppose A is a non-empty subset
of [�1;1] = R[f�1;1g : We de�ne �1 � x and x � 1 for all x 2
[�1;1] : An element b 2 [�1;1] is called a majorant of A if x � b for all
x 2 A and a minorant if x � b for all x 2 A: The Supremum Axiom states
that A possesses a least majorant, which is denoted by supA. From this
follows that if A is non-empty, then A possesses a greatest minorant, which
is denoted by inf A. (Actually, the Supremum Axiom is a theorem in courses
where time is spent on the de�nition of real numbers.)

Theorem 1.5.1. (The Heine-Borel Theorem; weak form) Let [a; b] be
a closed bounded interval and (Ui)i2I a collection of open sets such that

[i2IUi � [a; b] :

Then
[i2JUi � [a; b]

for some �nite subset J of I:
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PROOF. Let A be the set of all x 2 [a; b] such that

[i2JUi � [a; x]

for some �nite subset J of I: Clearly, a 2 A since a 2 Ui for some i: Let
c = supA: There exists an i0 such that c 2 Ui0 : Let c 2 ]a0; b0[ � Ui0 ; where
a0 < b0: Furthermore, by the very de�nition of least upper bound, there
exists a �nite set J such that

[i2JUi � [a; (a0 + c)=2] :

Hence
[i2J[fi0gUk � [a; (c+ b0)=2]

and it follows that c 2 A and c = b. The lemma is proved.

A subset K of R is called compact if for every family of open subsets Ui;
i 2 I; with [i2IUi � K we have [i2JUi � K for some �nite subset J of I:
The Heine-Borel Theorem shows that a closed bounded interval is compact.
If x; y 2 R and E; F � R; let

d(x; y) =j x� y j

be the distance between x and y; let

d(x;E) = inf
u2E

d(x; u)

be the distance from x to E; and let

d(E;F ) = inf
u2E;v2F

d(u; v)

be the distance between E and F (here the in�mum of the emty set equals
1): Note that for any u 2 E;

d(x; u) � d(x; y) + d(y; u)

and, hence
d(x;E) � d(x; y) + d(y; u)
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and
d(x;E) � d(x; y) + d(y; E):

By interchanging the roles of x and y and assuming that E 6= �; we get

j d(x;E)� d(y; E) j� d(x; y):

Note that if F � R is closed and x =2 F; then d(x; F ) > 0:
An outer measure � : P(R)! [0;1] is called a metric outer measure if

�(A [B) = �(A) + �(B)

for all A;B 2 P(R) such that d(A;B) > 0:

Theorem 1.5.2. If � : P(R)! [0;1] is a metric outer measure, then
R �M(�):

PROOF. Let F 2 P(R) be closed. It is enough to show that F 2M(�): To
this end we choose E � X with �(E) <1 and prove that

�(E) � �(E \ F ) + �(E \ F c):

Let n � 1 be an integer and de�ne

An =

�
x 2 E \ F c; d(x; F ) � 1

n

�
:

Note that An � An+1 and

E \ F c = [1n=1An:

Moreover, since � is a metric outer measure

�(E) � �((E \ F ) [ An) = �(E \ F ) + �(An)

and, hence, proving
�(E \ F c) = lim

n!1
�(An)

we are done.
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Let Bn = An+1 \ Acn: It is readily seen that

d(Bn+1; An) �
1

n(n+ 1)

since if x 2 Bn+1 and
d(x; y) <

1

n(n+ 1)

then
d(y; F ) � d(y; x) + d(x; F ) <

1

n(n+ 1)
+

1

n+ 1
=
1

n
:

Now
�(A2k+1) � �(B2k [ A2k�1) = �(B2k) + �(A2k�1)

� ::: � �ki=1�(B2i)
and in a similar way

�(A2k) � �ki=1�(B2i�1):
But �(An) � �(E) <1 and we conclude that

�1i=1�(Bi) <1:

We now use that
E \ F c = An [ ([1i=nBi)

to obtain
�(E \ F c) � �(An) + �

1
i=n�(Bi):

Now, since �(E \ F c) � �(An),

�(E \ F c) = lim
n!1

�(An)

and the theorem is proved.

PROOF OF THEOREM 1.1.1 IN ONE DIMENSION. Suppose � > 0: If
A � R; de�ne

��(A) = inf �
1
k=1l(Ik)

the in�mum being taken over all open intervals Ik with l(Ik) < � such that

A � [1k=1Ik:
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Obviously, ��(�) = 0 and ��(A) � ��(B) if A � B: Suppose (An)1n=1 is a
denumerable collection of subsets of R and let " > 0: For each n there exist
open intervals Ikn; k 2 N+; such that l(Ikn) < �;

An � [1k=1Ikn

and
�1k=1l(Ikn) � ��(An) + "2�n:

Then
A =def [1n=1An � [1k;n=1Ikn

and
�1k;n=1l(Ikn) � �1n=1��(An) + ":

Thus
��(A) � �1n=1��(An) + "

and, since " > 0 is arbitrary,

��(A) � �1n=1��(An):

It follows that �� is an outer measure.
If I is an open interval it is simple to see that

��(I) � l(I):

To prove the reverse inequality, choose a closed bounded interval J � I: Now,
if

I � [1k=1Ik
where each Ik is an open interval of l(Ik) < �; it follows from the Heine-Borel
Theorem that

J � [nk=1Ik
for some n: Hence

l(J) � �nk=1l(Ik) � �1k=1l(Ik)

and it follows that
l(J) � ��(I)

and, accordingly from this,
l(I) � ��(I):
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Thus, if I is an open interval, then

��(I) = l(I).

Note that ��1 � ��2 if 0 < �1 � �2: We de�ne

�0(A) = lim
�!0

��(A) if A � R:

It obvious that �0 is an outer measure such that �0(I) =l(I); if I is an open
interval.
To complete the proof we show that �0 is a metric outer measure. To this

end let A;B � R and d(A;B) > 0: Suppose 0 < � < d(A;B) and

A [B � [1k=1Ik

where each Ik is an open interval with l(Ik) < �: Let

� = fk; Ik \ A 6= �g

and
� = fk; Ik \B 6= �g :

Then � \ � = �;
A � [k2�Ik

and
B � [k2�Ik

and it follows that

�1k=1l(Ik) � �k2�l(Ik) + �k2�l(Ik)

� ��(A) + ��(B):

Thus
��(A [B) � ��(A) + ��(B)

and by letting � ! 0 we have

�0(A [B) � �0(A) + �0(B)

and
�0(A [B) = �0(A) + �0(B):
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Finally by applying the Carathéodory Theorem and Theorem 1.5.2 it
follows that the restriction of �0 to R equals v1.

We end this section with some additional results of great interest.

Theorem 1.5.3. For any � > 0; �� = �0: Moreover, if A � R

�0(A) = inf �
1
k=1l(Ik)

the in�mum being taken over all open intervals Ik; k 2 N+; such that
[1k=1Ik � A:

PROOF. It follows from the de�nition of �0 that �� � �0: To prove the
reverse inequality let A � R and choose open intervals Ik; k 2 N+; such that
[1k=1Ik � A: Then

�0(A) � �0([1k=1Ik) � �1k=1�0(Ik)

= �1k=1l(Ik):

Hence
�0(A) � inf �1k=1l(Ik)

the in�mum being taken over all open intervals Ik; k 2 N+; such that
[1k=1Ik � A: Thus �0(A) � ��(A); which completes the proof of Theorem
1.5.3.

Theorem 1.5.4. If A � R;

�0(A) = inf
U�A
U open

�0(U):

Moreover, if A 2M(�0);

�0(A) = sup
K�A

K closed bounded

�0(K):
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PROOF. If A � U , �0(A) � �0(U): Hence

�0(A) � inf
U�A
U open

�0(U):

Next let " > 0 be �xed and choose open intervals Ik; k 2 N+; such that
[1k=1Ik � A and

�1k=1l(Ik) � �0(A) + "

(here observe that it may happen that �0(A) = 1). Then the set U =def
[1k=1Ik is open and

�0(U) � �1k=1�0(Ik) = �1k=1l(Ik) � �0(A) + ":

Thus
inf
U�A
U open

�0(U) � �0(A)

and we have proved that

�0(A) = inf
U�A
U open

�0(U):

If K � A; �0(K) � �0(A) and, accordingly from this,

sup
K�A

K closed bounded

�0(K) � �0(A):

To prove the reverse inequality we �rst assume that A 2M(�0) is bounded.
Let " > 0 be �xed and suppose J is a closed bounded interval containing A:
Then we know from the �rst part of Theorem 1.5.4 already proved that there
exists an open set U � J r A such that

�0(U) < �0(J r A) + ":

But then

�0(J) � �0(J r U) + �0(U) < �0(J r U) + �0(J r A) + "

and it follows that
�0(A)� " < �0(J n U):
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Since J r U is a closed bounded set contained in A we conclude that

�0(A) � sup
K�A

K closed bounded

�0(K):

If A 2 M(�0) let An = A \ [�n; n] ; n 2 N+: Then given " > 0 and n 2
N+; let Kn be a closed bounded subset of An such that �0(Kn) > �0(An)�":
Clearly, there is no loss of generality to assume that K1 � K2 � K3 � :::
and by letting n tend to plus in�nity we get

lim
n!1

�0(Kn) � �0(A)� ":

Hence
�0(A) = sup

K�A
K compact

�0(K):

and Theorem 1.5.4 is completely proved.

Theorem 1.5.5. Lebesgue measure m1 equals the restriction of �0 toM(�0):

PROOF. Recall that linear measure v1 equals the restriction of �0 to R and
m1 = �v1: First suppose E 2 R� and choose A;B 2 R such that A � E � B
and BrA 2 Zv1 : But then �0(ErA) = 0 and E = A[(ErA) 2M(�0) since
the Carathéodory Theorem gives us a complete measure. Hence m1(E) =
v1(A) = �0(E).
Conversely suppose E 2M(�0):We will prove that E 2 R� andm1(E) =

�0(E). First assume thatE is bounded. Then for each positive integer n there
exist open Un � E and closed bounded Kn � E such that

�0(Un) < �0(E) + 2
�n

and

�0(Kn) > �0(E)� 2�n:
The de�nitions yield A = [11 Kn; B = \11 Un 2 R and

�0(E) = �0(A) = �0(B) = v1(A) = v1(B) = m1(E):
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It follows that E 2 R� and �0(E) = m1(E):
In the general case set En = E \ [�n; n] ; n 2 N+: Then from the above

En 2 R� and �0(En) = m1(En) for each n and Theorem 1.5.5 follows by
letting n go to in�nity.

The Carathéodory Theorem can be used to show the existence of volume
measure on Rn but we do not go into this here since its existence follows by
several other means below. By passing, let us note that the Carathéodory
Theorem is very e¢ cient to prove the existence of so called Haussdor¤ mea-
sures (see e.g. [F ]); which are of great interest in Geometric Measure Theory.

Exercises

1. Prove that a subset K of R is compact if and only if K is closed and
bounded.

2. Suppose A 2 R� and m(A) < 1: Set f(x) = m(A \ ]�1; x]); x 2 R:
Prove that f is continuous.

3. Suppose A 2 Zm and B = fx3;x 2 Ag : Prove that B 2 Zm:

4. Let A be the set of all real numbers x such that

j x� p

q
j� 1

q3

for in�nitely many pairs of positive integers p and q: Prove that A 2 Zm:

5. Let I1; :::; In be open subintervals of R such that

Q\ [0; 1] � [nk=1Ik:

Prove that �nk=1m(Ik) � 1:
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6. If E 2 R� and m(E) > 0; for every � 2 ]0; 1[ there is an interval I such
that m(E \ I) > �m(I). (Hint: m(E) = inf �1k=1m(Ik), where the in�mum
is taken over all intervals such that [1k=1Ik � E:)

7. If E 2 R� andm(E) > 0; then the set E�E = fx� y;x; y 2 Eg contains
an open non-empty interval centred at 0:(Hint: Take an interval I with
m(E\I) � 3

4
m(I): Set " = 1

2
m(I): If j x j� "; then (E\I)\(x+(E\I)) 6= �:)

8. Let � be the restriction of the positive measure �1k=1�R; 1
k
to R: Prove that

inf
U �A
U open

�(U) > �(A)

if A = f0g :

1.6. Positive Measures Induced by Increasing Right Continuous
Functions

Suppose F : R ! [0;1[ is a right continuous increasing function such that

lim
x!�1

F (x) = 0:

Set
L = lim

x!1
F (x):

We will prove that there exists a unique positive measure � : R! [0; L] such
that

�(]�1; x]) = F (x); x 2 R:
This measure will often be denoted by �F :
The special case L = 0 is trivial so let us assume L > 0 and introduce

H(y) = inf fx 2 R;F (x) � yg ; 0 < y < L:

The de�nition implies that the function H increases.



43

Suppose a is a �xed real number. We claim that

fy 2 ]0; L[ ; H(y) � ag = ]0; F (a)] \ ]0; L[ :

To prove this �rst suppose that y 2 ]0; L[ and H(y) � a: Then to each
positive integer n; there is an xn 2 [H(y); H(y) + 2�n[ such that F (xn) � y:
Then xn ! H(y) as n!1 and we obtain that F (H(y)) � y since F is right
continuous. Thus, remembering that F increases, F (a) � y: On the other
hand, if 0 < y < L and 0 < y � F (a); then, by the very de�nition of H(y);
H(y) � a:
We now de�ne

� = H(v1j]0;L[)

and get
�(]�1; x]) = F (x); x 2 R:

The uniqueness follows at once from Theorem 1.2.3. Note that the measure
� is a probability measure if L = 1:

Example 1.1.1. If

F (x) =

�
0 if x < 0
1 if x � 0

then �F is the Dirac measure at the point 0 restricted to R.

Example 1.1.2. If

F (x) =

Z x

�1
e�

t2

2
dtp
2�

(a Riemann integral)

then �F is called the standard Gaussian measure on R:

Exercises

1. Suppose F : R ! R is a right continuous increasing function. Prove that
there is a unique positive measure � on R such that

�(]a; x]) = F (x)� F (a); if a; x 2 R and a < x:
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2. Suppose F : R ! R is an increasing function. Prove that the set of
all discontinuity points of F is at most denumerable. (Hint: Assume �rst
that F is bounded and prove that the set of all points x 2 R such that
F (x+)� F (x�) > " is �nite for every " > 0.)

3. Suppose � is a �-�nite positive measure on R: Prove that the set of all
x 2 R such that �(fxg) > 0 is at most denumerable.

4. Suppose � is a �-�nite positive measure on Rn: Prove that there is an at
most denumerable set of hyperplanes of the type

xk = c (k = 1; :::; n; c 2 R)

with positive �-measure.

5. Construct an increasing function f : R! R such that the set of discon-
tinuity points of f equals Q.
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CHAPTER 2

INTEGRATION

Introduction

In this chapter Lebesgue integration in abstract positive measure spaces is
introduced. A series of famous theorems and lemmas will be proved.

2.1. Integration of Functions with Values in [0;1]

Recall that [0;1] = [0;1[ [ f1g : A subinterval of [0;1] is de�ned in the
natural way. We denote by R0;1 the �-algebra generated by all subintervals
of [0;1] : The class of all intervals of the type ]�;1] ; 0 � � < 1; (or of
the type [�;1] ; 0 � � < 1) generates the �-algebra R0;1 and we get the
following

Theorem 2.1.1. Let (X;M) be a measurable space and suppose f : X !
[0;1] :
(a) The function f is (M;R0;1)-measurable if f�1(]�;1]) 2 M for

every 0 � � <1:
(b) The function f is (M;R0;1)-measurable if f�1([�;1]) 2 M for

every 0 � � <1:

Note that the set ff > �g 2M for all real � if f is (M;R0;1)-measurable.
If f; g : X ! [0;1] are (M;R0;1)-measurable, thenmin(f; g); max(f; g),

and f + g are (M;R0;1)-measurable, since, for each � 2 [0;1[ ;

min(f; g) � �, (f � � and g � �)

max(f; g) � �, (f � � or g � �)
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and
ff + g > �g =

[
q2Q

(ff > �� qg \ fg > qg):

Given functions fn : X ! [0;1] ; n = 1; 2; :::; f = supn�1 fn is de�ned
by the equation

f(x) = sup ffn(x); n = 1; 2; :::g :

Note that
f�1(]�;1]) = [1n=1f�1n (]�;1])

for every real � � 0 and, accordingly from this, the function supn�1 fn is
(M;R0;1)-measurable if each fn is (M;R0;1)-measurable. Moreover, f =
infn�1 fn is given by

f(x) = inf ffn(x); n = 1; 2; :::g :

Since
f�1([0; �[) = [1n=1f�1n ([0; �[)

for every real � � 0 we conclude that the function f = infn�1 fn is (M;R0;1)-
measurable if each fn is (M;R0;1)-measurable.
Below we write

fn " f

if fn; n = 1; 2; :::; and f are functions from X into [0;1] such that fn � fn+1
for each n and fn(x)! f(x) for each x 2 X as n!1:
An (M;R0;1)-measurable function ' : X ! [0;1] is called a simple

measurable function if '(X) is a �nite subset of [0;1[ : If it is neccessary to
be more precise, we say that ' is a simpleM-measurable function.

Theorem 2.1.2. Let f : X ! [0;1] be (M;R0;1)-measurable. There exist
simple measurable functions 'n; n 2 N+; on X such that 'n " f :

PROOF. Given n 2 N+, set

Ein = f�1(

�
i� 1
2n

;
i

2n

�
); i 2 N+
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and

�n =
1X
i=1

i� 1
2n

�Ein +1�f�1(f1g):

It is obvious that �n � f and that �n � �n+1: Now set 'n = min(n; �n) and
we are done.

Let (X;M; �) be a positive measure space and ' : X ! [0;1[ a simple
measurable function: If �1; :::; �n are the distinct values of the simple function
', and if Ei = '�1(f�ig); i = 1; :::; n; then

' = �ni=1�i�Ei :

Furthermore, if A 2M we de�ne

�(A) =

Z
A

'd� = �ni=1�i�(Ei \ A) = �nk=1�i�Ei(A):

Note that this formula still holds if (Ei)n1 is a measurable partition of X and
' = �i on Ei for each i = 1; :::; n: Clearly, � is a positive measure since each
term in the right side is a positive measure as a function of A. Note thatZ

A

�'d� = �

Z
A

'd� if 0 � � <1

and Z
A

'd� = a�(A)

if a 2 [0;1[ and ' is a simple measurable function such that ' = a on A:
If  is another simple measurable function and ' �  ;Z

A

'd� �
Z
A

 d�:

To see this, let �1; :::; �p be the distinct values of  and Fj =  �1(
�
�j
	
);

j = 1; :::; p: Now, putting Bij = Ei \ Fj;Z
A

'd� = �([ij(A \Bij))

= �ij�(A \Bij) = �ij
Z
A\Bij

'd� = �ij

Z
A\Bij

�id�
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� �ij
Z
A\Bij

�jd� =

Z
A

 d�:

In a similar way one proves thatZ
A

('+  )d� =

Z
A

'd�+

Z
A

 d�:

From the above it follows thatZ
A

'�Ad� =

Z
A

�ni=1�i�Ei\Ad�

= �ni=1�i

Z
A

�Ei\Ad� = �
n
i=1�i�(Ei \ A)

and Z
A

'�Ad� =

Z
A

'd�:

If f : X ! [0;1] is an (M;R0;1)-measurable function and A 2 M, we
de�ne Z

A

fd� = sup

�Z
A

'd�; 0 � ' � f; ' simple measurable
�

= sup

�Z
A

'd�; 0 � ' � f; ' simple measurable and ' = 0 on Ac
�
:

The left member in this equation is called the Lebesgue integral of f over A
with respect to the measure �: Sometimes we also speek of the �-integral of f
over A: The two de�nitions of the �-integral of a simple measurable function
' : X ! [0;1[ over A agree.
From now on in this section, an (M;R0;1)-measurable function f : X !

[0;1] is simply called measurable.
The following properties are immediate consequences of the de�nitions.

The functions and sets occurring in the equations are assumed to be mea-
surable.

(a) If f; g � 0 and f � g on A; then
R
A
fd� �

R
A
gd�:
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(b)
R
A
fd� =

R
X
�Afd�:

(c) If f � 0 and � 2 [0;1[, then
R
A
�fd� = �

R
A
fd�:

(d)
R
A
fd� = 0 if f = 0 and �(A) =1:

(e)
R
A
fd� = 0 if f =1 and �(A) = 0:

If f : X ! [0;1] is measurable and 0 < � <1; then f � ��f�1([�;1]) =
��ff��gand Z

X

fd� �
Z
X

��ff��gd� = �

Z
X

�ff��gd�:

This proves the so called Markov Inequality

�(f � �) � 1

�

Z
X

fd�

where we write �(f � �) instead of the more precise expression �(ff � �g):

Example 2.1.1. Suppose f : X ! [0;1] is measurable andZ
X

fd� <1:

We claim that
ff =1g = f�1(f1g) 2 Z�:

To prove this we use the Markov Inequality and have

�(f =1) � �(f � �) � 1

�

Z
X

fd�



50

for each � 2 ]0;1[ : Thus �(f =1) = 0:

Example 2.1.2. Suppose f : X ! [0;1] is measurable andZ
X

fd� = 0:

We claim that
ff > 0g = f�1(]0;1]) 2 Z�:

To see this, note that

f�1(]0;1]) = [1n=1f�1(
�
1

n
;1
�
)

Furthermore, for every �xed n 2 N+; the Markov Inequality yields

�(f >
1

n
) � n

Z
X

fd� = 0

and we get ff > 0g 2 Z� since a countable union of null sets is a null set.

We now come to one of the most important results in the theory.

Theorem 2.1.3. (Monotone Convergence Theorem) Let fn : X !
[0;1] , n = 1; 2; 3; ::::; be a sequence of measurable functions and suppose
that fn " f; that is 0 � f1 � f2 � ::: and

fn(x)! f(x) as n!1, for every x 2 X:

Then f is measurable andZ
X

fnd�!
Z
X

fd� as n!1:

PROOF. The function f is measurable since f = supn�1 fn:
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The inequalities fn � fn+1 � f yield
R
X
fnd� �

R
X
fn+1d� �

R
X
fd� and

we conclude that there exists an � 2 [0;1] such thatZ
X

fnd�! � as n!1

and

� �
Z
X

fd�:

To prove the reverse inequality, let ' be any simple measurable function
such that 0 � ' � f , let 0 < � < 1 be a constant, and de�ne, for �xed
n 2 N+;

An = fx 2 X; fn(x) � �'(x)g :
If �1; :::; �p are the distinct values of ';

An = [pk=1(fx 2 X; fn(x) � ��kg \ f' = �kg)

and it follows that An is measurable. Clearly, A1 � A2 � ::: . Moreover, if
f(x) = 0; then x 2 A1 and if f(x) > 0; then �'(x) < f(x) and x 2 An for
all su¢ ciently large n. Thus [1n=1An = X: Now

� �
Z
An

fnd� � �

Z
An

'd�

and we get

� � �

Z
X

'd�

since the map A!
R
A
'd� is a positive measure onM: By letting � " 1,

� �
Z
X

'd�

and, hence

� �
Z
X

fd�:

The theorem follows.

Theorem 2.1.4. (a) Let f; g : X ! [0;1] be measurable functions. ThenZ
X

(f + g)d� =

Z
X

fd�+

Z
X

gd�:
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(b) (Beppo Levi�s Theorem) If fk : X ! [0;1] , k = 1; 2; ::: are mea-
surable, Z

X

�1k=1fkd� = �
1
k=1

Z
X

fkd�

PROOF. (a) Let ('n)
1
n=1 and ( n)

1
n=1 be sequences of simple and measurable

functions such that 0 � 'n " f and 0 �  n " g: We proved above thatZ
X

('n +  n)d� =

Z
X

'nd�+

Z
X

 nd�

and, by letting n ! 1; Part (a) follows from the Monotone Convergence
Theorem.

(b) Part (a) and induction imply thatZ
X

�nk=1fkd� = �
n
k=1

Z
X

fkd�

and the result follows from monotone convergence.

Theorem 2.1.5. Suppose w : X ! [0;1] is a measurable function and
de�ne

�(A) =

Z
A

wd�; A 2M:

Then � is a positive measure andZ
A

fd� =

Z
A

fwd�; A 2M

for every measurable function f : X ! [0;1] :

PROOF. Clearly, �(�) = 0. Suppose (Ek)1k=1 is a disjoint denumerable col-
lection of members ofM and set E = [1k=1Ek: Then

�([1k=1Ek) =
Z
E

wd� =

Z
X

�Ewd� =

Z
X

�1k=1�Ekwd�
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where, by the Beppo Levi Theorem, the right member equals

�1k=1

Z
X

�Ekwd� = �
1
k=1

Z
Ek

wd� = �1k=1�(Ek):

This proves that � is a positive measure.
Let A 2 M. To prove the last part in Theorem 2.1.5 we introduce the

class C of all measurable functions f : X ! [0;1] such thatZ
A

fd� =

Z
A

fwd�:

The indicator function of a measurable set belongs to C and from this we
conclude that every simple measurable function belongs to C: Furthermore, if
fn 2 C; n 2 N; and fn " f ; the Monotone Convergence Theorem proves that
f 2 C: Thus in view of Theorem 2.1.2 the class C contains every measurable
function f : X ! [0;1] : This completes the proof of Theorem 2.1.5.

The measure � in Theorem 2.1.5 is written

� = w�

or
d� = wd�:

Let (�n)1n=1 be a sequence in [�1;1] : First put �k = inf f�k; �k+1; �k+2; :::g
and 
 = sup f�1; �2; �3; ::g = limn!1 �n:We call 
 the lower limit of (�n)

1
n=1

and write

 = lim inf

n!1
�n:

Note that

 = lim

n!1
�n

if the limit exists. Now put �k = sup f�k; �k+1; �k+2; :::g and 
 = inf f�1; �2; �3; ::g =
limn!1 �n: We call 
 the upper limit of (�n)

1
n=1 and write


 = lim sup
n!1

�n:

Note that

 = lim

n!1
�n
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if the limit exists.
Given measurable functions fn : X ! [0;1] ; n = 1; 2; :::; the function

lim infn!1 fn is measurable. In particular, if

f(x) = lim
n!1

fn(x)

exists for every x 2 X; then f is measurable.

Theorem 2.1.6. (Fatou�s Lemma) If fn : X ! [0;1] ; n = 1; 2; :::; are
measurable Z

X

lim inf
n!1

fnd� � lim inf
n!1

Z
X

fnd�:

PROOF. Introduce
gk = inf

n�k
fn:

The de�nition gives that gk " lim infn!1 fn and, moreover,Z
X

gkd� �
Z
X

fnd�; n � k

and Z
X

gkd� � inf
n�k

Z
X

fnd�:

The Fatou Lemma now follows by monotone convergence.

Below we often write Z
E

f(x)d�(x)

instead of Z
E

fd�:

Example 2.1.3. Suppose a 2 R and f : (R;R�) ! ([0;1] ;R0;1) is
measurable. We claim thatZ

R

f(x+ a)dm(x) =

Z
R

f(x)dm(x):
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First if f = �A; where A 2 R�,Z
R

f(x+ a)dm(x) =

Z
R

�A�a(x)dm(x) = m(A� a) =

m(A) =

Z
R

f(x)dm(x):

Next it is clear that the relation we want to prove is true for simple mea-
surable functions and �nally, we use the Monotone Convergence Theorem to
deduce the general case.

Example 2.1.3, Suppose �11 an is a positive convergent series and let E be
the set of all x 2 [0; 1] such that

min
p2f0;:::;ng

j x� p

n
j< an

n

for in�nitely many n 2 N+: We claim that E is a Lebesgue null set.
To prove this claim for �xed n 2 N+; let En be the set of all x 2 [0; 1]

such that
min
p2N+

j x� p

n
j< an

n
:

Then if B(x; r) = ]x� r; x+ r[ ; x 2 [0; 1] ; r > 0; we have

En �
n[
p=0

B(
p

n
;
an
n
)

and

m(En) � (n+ 1)
2an
n
� 4an:

Hence
1X
1

m(En) <1

and by the Beppo Levi theoremZ 1

0

1X
1

�Endm <1:
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Accordingly from this the set

F =

(
x 2 [0; 1] ;

1X
1

�En(x) <1
)

is of Lebesgue measure 1. Since E � [0; 1] n F we have m(E) = 0:

Exercises

1. Suppose fn : X ! [0;1] ; n = 1; 2; :::; are measurable and

�1n=1�(fn > 1) <1:

Prove that �
lim sup
n!1

fn > 1

�
2 Z� .

2. Set fn = n2�[0; 1n ]
; n 2 N+: Prove thatZ

R

lim inf
n!1

fndm = 0 <1 = lim inf
n!1

Z
R

fndm

(the inequality in the Fatou Lemma may be strict).

3. Suppose f : (R;R�)! ([0;1] ;R0;1) is measurable and set

g(x) = �1k=1f(x+ k); x 2 R:

Show that Z
R

gdm <1 if and only if ff > 0g 2 Zm:

4. Let (X;M; �) be a positive measure space and f : X ! [0;1] an
(M;R0;1)-measurable function such that

f(X) � N
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and Z
X

fd� <1:

For every t � 0, set

F (t) = �(f > t) and G(t) = �(f � t):

Prove that Z
X

fd� = �1n=0F (n) = �
1
n=1G(n):

2.2. Integration of Functions with Arbitrary Sign

As usual suppose (X;M; �) is a positive measure space. In this section when
we speak of a measurable function f : X ! R it is understood that f is an
(M;R)-measurable function, if not otherwise stated. If f; g : X ! R are
measurable, the sum f + g is measurable since

ff + g > �g =
[
q2Q

(ff > �� qg \ fg > qg)

for each real �: Besides the function �f and the di¤erence f � g are mea-
surable. It follows that a function f : X ! R is measurable if and only if
the functions f+ = max(0; f) and f� = max(0;�f) are measurable since
f = f+ � f�:
We write f 2 L1(�) if f : X ! R is measurable andZ

X

j f j d� <1

and in this case we de�neZ
X

fd� =

Z
X

f+d��
Z
X

f�d�:

Note that

j
Z
X

fd� j�
Z
X

j f j d�
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since j f j= f+ + f�: Moreover, if E 2M we de�neZ
E

fd� =

Z
E

f+d��
Z
E

f�d�

and it follows that Z
E

fd� =

Z
X

�Efd�:

Note that Z
E

fd� = 0 if �(E) = 0:

Sometimes we write Z
E

f(x)d�(x)

instead of Z
E

fd�:

If f; g 2 L1(�); setting h = f + g;Z
X

j h j d� �
Z
X

j f j d�+
Z
X

j g j d� <1

and it follows that h+ g 2 L1(�): Moreover,

h+ � h� = f+ � f� + g+ � g�

and the equation
h+ + f� + g� = f+ + g+ + h�

givesZ
X

h+d�+

Z
X

f�d�+

Z
X

g�d� =

Z
X

f+d�+

Z
X

g+d�+

Z
X

h�d�:

Thus Z
X

hd� =

Z
X

fd�+

Z
X

gd�:

Moreover, Z
X

�fd� = �

Z
X

fd�
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for each real �: The case � � 0 follows from (c) in Section 2.1. The case
� = �1 is also simple since (�f)+ = f� and (�f)� = f+:

Theorem 2.2.1. (Lebesgue�s Dominated Convergence Theorem)
Suppose fn : X ! R; n = 1; 2; :::; are measurable and

f(x) = lim
n!1

fn(x)

exists for every x 2 X: Moreover, suppose there exists a function g 2 L1(�)
such that

j fn(x) j� g(x); all x 2 X and n 2 N+:

Then f 2 L1(�),
lim
n!1

Z
X

j fn � f j d� = 0

and

lim
n!1

Z
X

fnd� =

Z
X

fd�

Proof. Since j f j� g, the function f is real-valued and measurable since
f+ and f� are measurable. Note here that

f�(x) = lim
n!1

f�n (x); all x 2 X:

We now apply the Fatous Lemma to the functions 2g� j fn � f j; n =
1; 2; :::; and have Z

X

2gd� � lim inf
n!1

Z
X

(2g� j fn � f j)d�

=

Z
X

2gd�� lim sup
n!1

Z
X

j fn � f j d�:

But
R
X
2gd� is �nite and we get

lim
n!1

Z
X

j fn � f j d� = 0:

Since

j
Z
X

fnd��
Z
X

fd� j=j
Z
X

(f � fn)d� j�
Z
X

j f � fn j d�



60

the last part in Theorem 2.2.1 follows from the �rst part. The theorem is
proved.

Example 2.2.1. Suppose f : ]a; b[�X ! R is a function such that f(t; �) 2
L1(�) for each t 2 ]a; b[ and, moreover, assume @f

@t
exists and

j @f
@t
(t; x) j� g(x) for all (t; x) 2 ]a; b[�X

where g 2 L1(�). Set

F (t) =

Z
X

f(t; x)d�(x) if t 2 ]a; b[ :

We claim that F is di¤erentiable and

F 0(t) =

Z
X

@f

@t
(t; x)d�(x):

To see this let t� 2 ]a; b[ be �xed and choose a sequence (tn)1n=1 in ]a; b[ n
ft�g which converges to t�: De�ne

hn(x) =
f(tn; x)� f(t�; x)

tn � t�
if x 2 X:

Here each hn is measurable and

lim
n!1

hn(x) =
@f

@t
(t�; x) for all x 2 X:

Furthermore, for each �xed n and x there is a �n;x 2 ]tn; t�[ such that hn(x) =
@f
@t
(�n;x; x) and we conclude that j hn(x) j� g(x) for every x 2 X: Since

F (tn)� F (t�)

tn � t�
=

Z
X

hn(x)d�(x)

the claim above now follows from the Lebesgue Dominated Convergence The-
orem.

Suppose S(x) is a statement, which depends on x 2 X: We will say that
S(x) holds almost (or �-almost) everywhere if there exists an N 2 Z� such
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that S(x) holds at every point of X nN: In this case we write �S holds a.e.
� or �S holds a.e. [�]�. Sometimes we prefer to write �S(x) holds a.e.�
or �S(x) holds a.e. [�]�: If the underlying measure space is a probability
space, we often say �almost surely�instead of almost everywhere. The term
�almost surely�is abbreviated a.s.
Suppose f : X ! R; is an (M;R)-measurable functions and g : X ! R:

If f = g a.e. [�] there exists an N 2 Z� such that f(x) = g(x) for every
x 2 X n N: We claim that g is (M�;R)-measurable. To see this let � 2 R
and use that

fg > �g = [ff > �g \ (X nN)] [ [fg > �g \N ] :

Now if we de�ne
A = ff > �g \ (X nN)

the set A 2M and
A � fg > �g � A [N:

Accordingly from this fg > �g 2 M� and g is (M�;R)-measurable since �
is an arbitrary real number.
Next suppose fn : X ! R; n 2 N+; is a sequence of (M;R)-measurable

functions and f : X ! R a function. Recall if

lim
n!1

fn(x) = f(x); all x 2 X

then f is (M;R)-measurable since

ff > �g = [k;l2N+ \n�k
�
fn > � + l�1

	
; all � 2 R:

If we only assume that

lim
n!1

fn(x) = f(x); a.e. [�]

then f need not be (M;R)-measurable but f is (M�;R)-measurable. To
see this suppose N 2 Z� and

lim
n!1

fn(x) = f(x); all x 2 X nN:

Then
lim
n!1

�XnN(x)fn(x) = �XnN(x)f(x)
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and it follows that the function �XnNf is (M;R)-measurable. Since f =
�XnNf a.e. [�] it follows that f is (M�;R)-measurable. The next example
shows that f need not be (M;R)-measurable.

Example 2.2.2. Let X = f0; 1; 2g ;M = f�; f0g ; f1; 2g ; Xg ; and �(A) =
�A(0); A 2 M: Set fn = �f1;2g; n 2 N+; and f(x) = x; x 2 X: Then each
fn is (M;R)-measurable and

lim
n!1

fn(x) = f(x) a.e. [�]

since n
x 2 X; lim

n!1
fn(x) = f(x)

o
= f0; 1g

and N = f1; 2g is a �-null set. The function f is not (M;R)-measurable.

Suppose f; g 2 L1(�): The functions f and g are equal almost everywhere
with respect to � if and only if ff 6= gg 2 Z�: This is easily seen to be an
equivalence relation and the set of all equivalence classes is denoted by L1(�):
Moreover, if f = g a.e. [�] ; thenZ

X

fd� =

Z
X

gd�

since Z
X

fd� =

Z
ff=gg

fd�+

Z
ff 6=gg

fd� =

Z
ff=gg

fd� =

Z
ff=gg

gd�

and, in a similar way, Z
X

gd� =

Z
ff=gg

gd�:

Below we consider the elements of L1(�) members of L1(�) and two members
of L1(�) are identi�ed if they are equal a.e. [�] : From this convention it is
straight-forward to de�ne f + g and �f for all f; g 2 L1(�) and � 2 R:
Moreover, we getZ

X

(f + g)d� =

Z
X

fd�+

Z
X

gd� if f; g 2 L1(�)
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and Z
X

�fd� = �

Z
X

fd� if f 2 L1(�) and � 2 R:

Next we give two theorems where exceptional null sets enter. The �rst
one is a mild variant of Theorem 2.2.1 and needs no proof.

Theorem 2.2.2. Suppose (X;M; �) is a positive complete measure space
and let fn : X ! R; n 2 N+; be measurable functions such that

sup
n2N+

j fn(x) j� g(x) a.e. [�]

where g 2 L1(�): Moreover, suppose f : X ! R is a function and

f(x) = lim
n!1

fn(x) a.e. [�] :

Then, f 2 L1(�),
lim
n!1

Z
X

j fn � f j d� = 0

and

lim
n!1

Z
X

fnd� =

Z
X

fd�:

Theorem 2.2.3. Suppose (X;M; �) is a positive measure space.
(a) If f : (X;M�)! ([0;1] ;R0;1) is measurable there exists a measur-

able function g : (X;M)! ([0;1] ;R0;1) such that f = g a.e. [�] :
(b) If f : (X;M�) ! (R;R) is measurable there exists a measurable

function g : (X;M)! (R;R) such that f = g a.e. [�] :

PROOF. Since f = f+�f� it is enough to prove Part (a): There exist simple
M�-measurable functions 'n ; n 2 N+; such that 0 � 'n " f: For each �xed
n suppose �1n; :::; �knn are the distinct values of 'n and choose for each �xed
i = 1; :::; kn a set Ain � '�1n (f�ing) such that Ain 2 M and '�1n (�in) n Ain
2 Z��. Set

 n = �
kn
i=1�in�Ain :
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Clearly  n(x) " f(x) if x 2 E =def \1n=1([kni=1Ain) and �(X n E) = 0: We
now de�ne g(x) = f(x); if x 2 E; and g(x) = 0 if x 2 X n E: The theorem
is proved.

Exercises

1. Suppose f and g are real-valued measurable functions. Prove that f 2 and
fg are measurable functions.

2. Suppose f 2 L1(�): Prove that

lim
�!1

Z
jf j��

j f j d� = 0:

(Here
R
jf j�� means

R
fjf j��g.)

3. Suppose f 2 L1(�): Prove that to each " > 0 there exists a � > 0 such
that Z

E

j f j d� < "

whenever �(E) < �:

4. Let (fn)1n=1 be a sequence of (M;R)-measurable functions. Prove that
the set of all x 2 R such that the sequence (fn(x))1n=1 converges to a real
limit belongs toM:

5. Let (X;M;R) be a positive measure space such that �(A) = 0 or 1 for
every A 2M: Show that f 2 L1(�) if and only if f(x) = 0 a.e. [�] :

6. Let (X;M; �) be a positive measure space and suppose f and g are
non-negative measurable functions such thatZ

A

fd� =

Z
A

gd�; all A 2M:
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(a) Prove that f = g a.e. [�] if � is �-�nite.
(b) Prove that the conclusion in Part (a) may fail if � is not �-�nite.

7. Let (X;M; �) be a �nite positive measure space and suppose the functions
fn : X ! R; n = 1; 2; :::; are measurable. Show that there is a sequence
(�n)

1
n=1 of positive real numbers such that

lim
n!1

�nfn = 0 a.e. [�] :

8. Let (X;M; �) be a positive measure space and let fn : X ! R; n = 1; 2; :::;
be a sequence in L1(�) which converges to f a.e. [�] as n ! 1: Suppose
f 2 L1(�) and

lim
n!1

Z
X

j fn j d� =
Z
X

j f j d�:

Show that

lim
n!1

Z
X

j fn � f j d� = 0:

9. Let (X;M; �) be a �nite positive measure space and suppose f 2 L1(�)
is a bounded function such thatZ

X

f 2d� =

Z
X

f 3d� =

Z
X

f 4d�:

Prove that f = �A for an appropriate A 2M:

10. Let (X;M; �) be a �nite positive measure space and f : X ! R a
measurable function. Prove that f 2 L1(�) if and only if

�1k=1�(j f j� k) <1:

11. Suppose f 2 L1(m): Prove that the series �1k=�1f(x + k) converges for
m-almost all x:
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12. a) Suppose f : R! [0;1[ is Lebesgue measurable and
R
R
fdm < 1:

Prove that
lim
�!1

�m(f � �) = 0:

b) Find a Lebesgue measurable function f : R! [0;1[ such that f =2
L1(m); m(f > 0) <1; and

lim
�!1

�m(f � �) = 0:

13. (a) SupposeM is an �-algebra of subsets of X and � a positive measure
onM with �(X) <1: Let A1; :::; An 2M: Show that

�A1[A2[:::[An = 1� (1� �A1) � ::: � (1� �An)

and conclude that

�(A1 [ A2 [ ::: [ An) =
X
1�i�n

�(Ai)�
X

1�i1<i2�n
�(Ai1 \ Ai2)

+
X

1�i1<i2<i3�n
�(Ai1 \ Ai2 \ Ai3)� :::+ (�1)n+1�(A1 \ ::: \ An):

(b) Let X be the set of all permutations (bijections) x : f1; 2; :::; ng !
f1; 2; :::; ng and let � = 1

n!
cX . A random variable � : 
! X has the uniform

distribution in X or, stated otherwise, the image measure P� equals �: Find
the probability that � has a �xed point, that is �nd

P [�(i) = i for some i 2 f1; 2; :::; ng] :

(Hint: Set Ai = fx 2 X; x(i) = ig ; i = 1; :::; n; and note that the probability
in question equals �(A1 [ A2 [ ::: [ An).)

14. Let (X;M; �) be a positive measure space and f : X ! R an (M,R)-
measurable function. Moreover, for each t > 1; let

a(t) =

1X
n=�1

tn�(tn �j f j< tn+1):
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Show that

lim
t!1+

a(t) =

Z
X

j f j d�:

15. Let (X;M; �) be a positive measure space and fn:X ! R; n 2 N+; a
sequence of measurable functions such that

lim sup
n!1

n2�(j fn j� n�2) <1:

Prove that the series
P1

n=1 fn(x) converges for �-almost all x 2 X:

16. Let (X;M; �) be a positive measure space and f :X ! R a measurable
function. Furthermore, suppose there are strictly positive constants B and
C such that Z

X

eafd� � Be
a2C
2 if a 2 R:

Prove that
�(j f j� t) � 2Be� t2

2C if t > 0:

2.3 Comparison of Riemann and Lebesgue Integrals

In this section we will show that the Lebesgue integral is a natural general-
ization of the Riemann integral. For short, the discussion is restricted to a
closed and bounded interval.
Let [a; b] be a closed and bounded interval and suppose f : [a; b] ! R is

a bounded function. For any partition

� : a = x0 < x1 < ::: < xn = b

of [a; b] de�ne
S�f = �

n
i=1( sup

]xi�1;xi]
f)(xi � xi�1)

and
s�f = �

n
i=1( inf

]xi�1;xi]
f)(xi � xi�1):
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The function f is Riemann integrable if

inf
�
S�f = sup

�
s�f

and the Riemann integral
R b
a
f(x)dx is, by de�nition, equal to this common

value.
Below an ((R�)[a;b];R)-measurable function is simply called Lebesgue

measurable. Furthermore, we write m instead of mj[a;b]:

Theorem 2.3.1. A bounded function f : [a; b] ! R is Riemann integrable
if and only if the set of discontinuity points of f is a Lebesgue null set.
Moreover, if the set of discontinuity points of f is a Lebesgue null set, then
f is Lebesgue measurable andZ b

a

f(x)dx =

Z
[a;b]

fdm:

PROOF. A partition �0 : a = x00 < x01 < ::: < x0n0 = b is a re�nement of a
partition � : a = x0 < x1 < ::: < xn = b if each xk is equal to some x0l and in
this case we write � � �0: The de�nitions give S�f � S�0f and s�f � s�0f
if � � �0: We de�ne, mesh(�) = max1�i�n(xi � xi�1):
First suppose f is Riemann integrable. For each partition � let

G� = f(a)�fag + �
n
i=1( sup

]xi�1;xi]
f)�]xi�1;xi]

and
g� = f(a)�fag + �

n
i=1( inf

]xi�1;xi]
f)�]xi�1;xi]

and note that Z
[a;b]

G�dm = S�f

and Z
[a;b]

g�dm = s�f:
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Suppose �k; k = 1; 2; :::; is a sequence of partitions such that �k � �k+1,

S�kf #
Z b

a

f(x)dx

and

s�kf "
Z b

a

f(x)dx

as k ! 1: Let G = limk!1G�k and g = limk!1 g�k : Then G and g are
(R[a;b];R)-measurable, g � f � G; and by dominated convergenceZ

[a;b]

Gdm =

Z
[a;b]

gdm =

Z b

a

f(x)dx:

But then Z
[a;b]

(G� g)dm = 0

so that G = g a.e. [m] and therefore G = f a.e. [m] : In particular, f is
Lebesgue measurable and Z b

a

f(x)dx =

Z
[a;b]

fdm:

Set
N = fx; g(x) < f(x) or f(x) < G(x)g :

We proved above thatm(N) = 0: LetM be the union of all those points which
belong to some partition �k: Clearly, m(M) = 0 since M is denumerable.
We claim that f is continuous o¤ N [M: If f is not continuous at a point
c =2 N [M , there is an " > 0 and a sequence (cn)1n=1 converging to c such
that

j f(cn)� f(c) j� " all n:

Since c =2 M , c is an interior point to exactly one interval of each partition
�k and we get

G�k(c)� g�k(c) � "

and in the limit
G(c)� g(c) � ":

But then c 2 N which is a contradiction.
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Conversely, suppose the set of discontinuity points of f is a Lebesgue null
set and let (�k)

1
k=1 is an arbitrary sequence of partitions of [a; b] such that

�k � �k+1 and mesh(�k)! 0 as k !1: By assumption,

lim
k!1

G�k (x) = lim
k!1

g�k (x) = f(x)

at each point x of continuity of f . Therefore f is Lebesgue measurable and
dominated convergence yields

lim
k!1

Z
[a;b]

G�kdm =

Z
[a;b]

fdm

and

lim
k!1

Z
[a;b]

g�kdm =

Z
[a;b]

fdm:

Thus f is Riemann integrable andZ b

a

f(x)dx =

Z
[a;b]

fdm:

In the following we sometimes writeZ
A

f(x)dx (A 2 R�)

instead of Z
A

fdm (A 2 R�):

In a similar way we often prefer to writeZ
A

f(x)dx (A 2 R�
n )

instead of Z
A

fdmn (A 2 R�
n ):

Furthermore,
R b
a
fdm means

R
[a;b]

fdm: Here, however, a warning is moti-
vated. It is simple to �nd a real-valued function f on [0;1[, which is bounded
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on each bounded subinterval of [0;1[ ; such that the generalized Riemann
integral Z 1

0

f(x)dx

is convergent, that is

lim
b!1

Z b

0

f(x)dx

exists and the limit is a real number, while the Riemann integralZ 1

0

j f(x) j dx

is divergent (take e.g. f(x) = sinx
x
): In this case the function f does not

belong to L1 with respect to Lebesgue measure on [0;1[ sinceZ
[0;1[

j f j dm = lim
b!1

Z b

0

j f(x) j dx =1:

Example 2.3.1. To compute

lim
n!1

Z n

0

(1� x
n
)np

x
dx

suppose n 2 N+ and use the inequality 1 + t � et; t 2 R; to get

�[0;n](x)(1�
x

n
)n � e�x if x � 0:

From this

fn(x) =def �[0;n](x)
(1� x

n
)np

x
� e�xp

x
; x � 0

and, in addition,

lim
n!1

fn(x) =
e�xp
x
:

Here e�xp
x
2 L1(m1 on [0;1[) since e�xp

x
� 0 andZ 1

0

e�xp
x
dx = 2

Z 1

0

e�x
2

dx =
p
�:
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Moreover fn � 0 for every n 2 N+ and by using dominated convergence we
get

lim
n!1

Z n

0

(1� x
n
)np

x
dx = lim

n!1

Z 1

0

fn(x)dx =Z 1

0

lim
n!1

fn(x)dx =

Z 1

0

e�xp
x
dx =

p
�:

Exercises

1. Let fn : [0; 1] ! [0; 1], n 2 N; be a sequence of Riemann integrable
functions such that

lim
n!1

fn(x) exists = f(x) all x 2 [0; 1] :

Show by giving an example that f need not be Riemann integrable.

2. Suppose fn(x) = n2 j x j e�njxj; x 2 R; n 2 N+: Compute limn!1 fn and
limn!1

R
R
fndm.

3. Compute the following limits and justify the calculations:
(a)

lim
n!1

Z 1

0

sin(ex)

1 + nx2
dx:

(b)

lim
n!1

Z n

0

(1 +
x

n
)�n cosxdx:

(c)

lim
n!1

Z n

0

(1 +
x

n
)ne�2xdx:

(d)

lim
n!1

Z 1

0

(1 +
x

n
)n exp(�(1 + x

n
)n)dx:

(e)

lim
n!1

n

Z 1

0

sin(x
n
)

x(1 + x2)
dx:
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(f)

lim
n!1

Z n

0

(1� x

n
)n
1 + nx

n+ x
cosxdx

(g)

lim
n!1

Z 1

0

(1 +
x

n
)n

2

e�nxdx:

(h)

lim
n!1

Z 1

0

1 + nx2

(1 + x2)n
dx:

(i)

lim
n!1

p
n

Z 1

�1
(1� t2)n(1 +

p
n j sin t j)dt:

4. Let (rn)1n=1 be an enumeration of Q and de�ne

f(x) = �1n=12
�n'(x� rn)

where '(x) = x�
1
2 if 0 < x < 1 and '(x) = 0 if x � 0 or x � 1: Show that

a) Z 1

�1
f(x)dx = 2:

b) Z b

a

f 2(x)dx =1 if a < b:

c)
f <1 a.s. [m] :

d)
sup
a<x<b

f(x) = +1 if a < b:

5. Let n 2 N+ and de�ne fn(x) = ex(1� x2

2n
)n; x 2 R: Compute

lim
n!1

Z p
2n

�
p
2n

fn(x)dx:
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6. Suppose p 2 N+ and de�ne fn(x) = npxp�1(1� x)n; 0 � x � 1; for every
n 2 N+: Show that

lim
n!1

Z 1

0

fn(x)dx = (p� 1)!:

7. Suppose f :[0; 1]!R is a continuous function. Find

lim
n!1

n

Z 1

0

f(x)e�(nmin(x;1�x))
2

dx:

2.4. Expectation

Suppose (
;F ; P ) is a probability space and � : (
;F) ! (S;S) a random
variable. Recall that the probability law � of � is given by the image measure
P�: By de�nition, Z

S

�Bd� =

Z



�B(�)dP

for every B 2 S; and, henceZ
S

'd� =

Z



'(�)dP

for each simple S-measurable function ' on S (we sometimes write f � g =
f(g)): By monotone convergence, we getZ

S

fd� =

Z



f(�)dP

for every measurable f : S ! [0;1] : Thus if f : S ! R is measurable,
f 2 L1(�) if and only if f(�) 2 L1(P ) and in this caseZ

S

fd� =

Z



f(�)dP:

In the special case when � is real-valued and � 2 L1(P );Z
R

xd�(x) =

Z



�dP:

The integral in the right-hand side is called the expectation of � and is
denoted by E [�] :



75

CHAPTER 3

Further Construction Methods of Measures

Introduction

In the �rst section of this chapter we collect some basic results on metric
spaces, which every mathematician must know about. Section 3.2 gives a
version of the Riesz Representation Theorem, which leads to another and
perhaps simpler approach to Lebesgue measure than the Carathéodory The-
orem. A reader can skip Section 3.2 without losing the continuity in this
paper. The chapter also treats so called product measures and Stieltjes in-
tegrals.

3.1. Metric Spaces

The construction of our most important measures requires topological con-
cepts. For our purpose it will be enough to restrict ourselves to so called
metric spaces.
A metric d on a set X is a mapping d : X �X ! [0;1[ such that

(a) d(x; y) = 0 if and only if x = y
(b) d(x; y) = d(y; x) (symmetry)
(c) d(x; y) � d(x; z) + d(z; y) (triangle inequality).

Here recall, if A1; :::; An are sets,

A1 � :::� An = f(x1; :::; xn); xi 2 Ai for all i = 1; :::; ng

A set X equipped with a metric d is called a metric space. Sometimes we
write X = (X; d) to emphasize the metric d: If E is a subset of the metric
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space (X; d); the function djE�E(x; y) = d(x; y); if x; y 2 E; is a metric on
E: Thus (E; djE�E) is a metric space.
The function '(t) = min(1; t); t � 0; satis�es the inequality

'(s+ t) � '(s) + '(t):

Therefore, if d is a metric on X, min(1; d) is a metric on X: The metric
min(1; d) is a bounded metric.
The set R equipped with the metric d1(x; y) =j x� y j is a metric space.

More generally, Rn equipped with the metric

dn(x; y) = dn((x1; :::; xn); (y1; :::; yn)) = max
1�k�n

j xk � yk j

is a metric space. If not otherwise stated, it will always be assumed that Rn

is equipped with this metric.
Let C [0; T ] denote the vector space of all real-valued continuous functions

on the interval [0; T ] ; where T > 0: Then

d1(x; y) = max
0�t�T

j x(t)� y(t) j

is a metric on C [0; T ] :
If (Xk; ek); k = 1; :::; n, are metric spaces,

d(x; y) = max
1�k�n

ek(xk; yk); x = (x1; :::; xn) ; y = (y1; :::; yn)

is a metric on X1 � ::: � Xn: The metric d is called the product metric on
X1 � :::�Xn:
If X = (X; d) is a metric space and x 2 X and r > 0; the open ball with

centre at x and radius r is the set B(x; r) = fy 2 X; d(y; x) < rg : If E � X
and E is contained in an appropriate open ball in X it is said to be bounded.
The diameter of E is, by de�nition,

diam E = sup
x;y2E

d(x; y)

and it follows that E is bounded if and only if diam E <1. A subset of X
which is a union of open balls in X is called open. In particular, an open
ball is an open set. The empty set is open since the union of an empty family
of sets is empty. An arbitrary union of open sets is open. The class of all
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open subsets of X is called the topology of X: The metrics d and min(1; d)
determine the same topology. A subset E of X is said to be closed if its
complement Ec relative to X is open. An intersection of closed subsets of
X is closed. If E � X, E� denotes the largest open set contained in E and
E� (or �E) the smallest closed set containing E: E� is the interior of E and
E� its closure. The �-algebra generated by the open sets in X is called the
Borel �-algebra in X and is denoted by B(X). A positive measure on B(X)
is called a positive Borel measure.
A sequence (xn)1n=1 in X converges to x 2 X if

lim
n!1

d(xn; x) = 0:

If, in addition, the sequence (xn)1n=1 converges to y 2 X; the inequalities

0 � d(x; y) � d(xn; x) + d(xn; y)

imply that y = x and the limit point x is unique.
If E � X and x 2 X; the following properties are equivalent:

(i) x 2 E�:
(ii) B(x; r) \ E 6= �; all r > 0:
(iii) There is a sequence (xn)1n=1 in E which converges to x:

If B(x; r) \ E = �, then B(x; r)c is a closed set containing E but not x:
Thus x =2 E�: This proves that (i))(ii). Conversely, if x =2 E�; since �Ec is
open there exists an open ball B(y; s) such that x 2 B(y; s) � �Ec � Ec: Now
choose r = s� d(x; y) > 0 so that B(x; r) � B(y; s): Then B(x; r) \ E = �:
This proves (ii))(i).
If (ii) holds choose for each n 2 N+ a point xn 2 E with d(xn; x) < 1

n

and (iii) follows. If there exists an r > 0 such that B(x; r) \ E = �; then
(iii) cannot hold. Thus (iii))(ii).
If E � X, the set E� nE� is called the boundary of E and is denoted by

@E:
A set A � X is said to be dense in X if A� = X: The metric space X is

called separable if there is an at most denumerable dense subset of X: For
example, Qn is a dense subset of Rn: The space Rn is separable.
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Theorem 3.1.1. B(Rn) = Rn:

PROOF. The �-algebra Rn is generated by the open n-cells in Rn and an
open n-cell is an open subset of Rn: Hence Rn � B(Rn): Let U be an open
subset in Rn and note that an open ball in Rn = (Rn; dn) is an open n-cell.
If x 2 U there exist an a 2Qn \ U and a rational number r > 0 such that
x 2 B(a; r) � U: Thus U is an at most denumerable union of open n-cells
and it follows that U 2 Rn: Thus B(Rn) � Rn and the theorem is proved.

Let X = (X; d) and Y = (Y; e) be two metric spaces. A mapping f :
X ! Y (or f : (X; d)! (Y; e) to emphasize the underlying metrics) is said
to be continuous at the point a 2 X if for every " > 0 there exists a � > 0
such that

x 2 B(a; �)) f(x) 2 B(f(a); "):
Equivalently this means that for any sequence (xn)1n=1 in X which converges
to a in X; the sequence (f(xn))1n=1 converges to f(a) in Y: If f is continuous
at each point of X, the mapping f is called continuous. Stated otherwise
this means that

f�1(V ) is open if V is open

or
f�1(F ) is closed if F is closed.

The mapping f is said to be Borel measurable if

f�1(B) 2 B(X) if B 2 B(Y )

or, what amounts to the same thing,

f�1(V ) 2 B(X) if V is open.

A Borel measurable function is sometimes called a Borel function. A
continuous function is a Borel function.

Example 3.1.1. Let f : (R;d1)! (R;d1) be a continuous strictly increasing
function and set �(x; y) =j f(x)� f(y) j; x; y 2 R: Then � is a metric on R.
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De�ne j(x) = x; x 2 R: The mapping j : (R;d1)! (R;�) is continuous. We
claim that the map j : (R;�)! (R;d1) is continuous: To see this, let a 2 R
and suppose the sequence (xn)1n=1 converges to a in the metric space (R;�);
that is j f(xn)� f(a) j! 0 as n!1: Let " > 0: Then

f(xn)� f(a) � f(a+ ")� f(a) > 0 if xn � a+ "

and
f(a)� f(xn) � f(a)� f(a� ") > 0 if xn � a� ":

Thus xn 2 ]a� "; a+ "[ if n is su¢ ciently large. This proves that he map
j : (R;�)! (R;d1) is continuous.
The metrics d1 and � determine the same topology and Borel subsets of

R:

A mapping f : (X; d) ! (Y; e) is said to be uniformly continuous if for
each " > 0 there exists a � > 0 such that e(f(x); f(y)) < " as soon as
d(x; y) < �:
If x 2 X and E; F � X; let

d(x;E) = inf
u2E

d(x; u)

be the distance from x to E and let

d(E;F ) = inf
u2E;v2F

d(u; v)

be the distance between E and F: Note that d(x;E) = 0 if and only if x 2 �E:
If x; y 2 X and u 2 E;

d(x; u) � d(x; y) + d(y; u)

and, hence
d(x;E) � d(x; y) + d(y; u)

and
d(x;E) � d(x; y) + d(y; E):

Next suppose E 6= �: Then by interchanging the roles of x and y; we get

j d(x;E)� d(y; E) j� d(x; y)
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and conclude that the distance function d(x;E); x 2 X; is continuous. In
fact, it is uniformly continuous. If x 2 X and r > 0; the so called closed ball
�B(x; r) = fy 2 X; d(y; x) � rg is a closed set since the map y ! d(y; x);
y 2 X; is continuous.
If F � X is closed and " > 0, the continuous function

�XF;" = max(0; 1�
1

"
d(�; F ))

ful�ls 0 � �XF;" � 1 and �XF;" = 1 on F: Furthermore, �XF;"(a) > 0 if and only
if a 2 F" =def fx 2 X; d(x; F ) < "g : Thus

�F � �XF;" � �F" :

Let X = (X; d) be a metric space. A sequence (xn)1n=1 in X is called
a Cauchy sequence if to each " > 0 there exists a positive integer p such
that d(xn; xm) < " for all n;m � p: If a Cauchy sequence (xn)1n=1 contains a
convergent subsequence (xnk)

1
k=1 it must be convergent. To prove this claim,

suppose the subsequence (xnk)
1
k=1 converges to a point x 2 X: Then

d(xm; x) � d(xm; xnk) + d(xnk ; x)

can be made arbitrarily small for all su¢ ciently large m by choosing k su¢ -
ciently large. Thus (xn)1n=1 converges to x:
A subset E of X is said to be complete if every Cauchy sequence in E

converges to a point in E: If E � X is closed and X is complete it is clear
that E is complete. Conversely, if X is a metric space and a subset E of X
is complete, then E is closed:
It is important to know that R is complete equipped with its standard

metric. To see this let (xn)1n=1 be a Cauchy sequence. There exists a positive
integer such that j xn � xm j< 1 if n;m � p: Therefore

j xn j�j xn � xp j + j xp j� 1+ j xp j

for all n � p: We have proved that the sequence (xn)1n=1 is bounded (the
reader can check that every Cauchy sequence in a metric space has this
property). Now de�ne

a = sup fx 2 R; there are only �nitely many n with xn � xg :

The de�nition implies that there exists a subsequence (xnk)
1
k=1; which con-

verges to a (since for any r > 0; xn 2 B(a; r) for in�nitely many n). The
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original sequence is therefore convergent and we conclude that R is complete
(equipped with its standard metric d1): It is simple to prove that the product
of n complete spaces is complete and we conclude that Rn is complete.
Let E � X: A family (Vi)i2I of subsets of X is said to be a cover of E

if [i2IVi � E and E is said to be covered by the V 0
i s: The cover (Vi)i2I is

said to be an open cover if each member Vi is open. The set E is said to be
totally bounded if, for every " > 0; E can be covered by �nitely many open
balls of radius ": A subset of a totally bounded set is totally bounded.
The following de�nition is especially important.

De�nition 3.1.1. A subset E of a metric space X is said to be compact if
to every open cover (Vi)i2I of E, there is a �nite subcover of E, which means
there is a �nite subset J of I such that (Vi)i2J is a cover of E:

If K is closed, K � E; and E is compact, then K is compact. To see this,
let (Vi)i2I be an open cover of K: This cover, augmented by the set X n K
is an open cover of E and has a �nite subcover since E is compact. Noting
that K \ (X nK) = �; the assertion follows.

Theorem 3.1.2. The following conditions are equivalent:
(a) E is complete and totally bounded.
(b) Every sequence in E contains a subsequence which converges to a
point of E:
(c) E is compact.

PROOF. (a))(b). Suppose (xn)1n=1 is a sequence in E: The set E can be
covered by �nitely many open balls of radius 2�1 and at least one of them
must contain xn for in�nitely many n 2 N+: Suppose xn 2 B(a1; 2

�1) if
n 2 N1 � N0 =def N+; where N1 is in�nite. Next E \ B(a1; 2�1) can be
covered by �nitely many balls of radius 2�2 and at least one of them must
contain xn for in�nitely many n 2 N1: Suppose xn 2 B(a2; 2

�1) if n 2 N2;
where N2 � N1 is in�nite. By induction, we get open balls B(aj; 2�j) and
in�nite sets Nj � Nj�1 such that xn 2 B(aj; 2

�j) for all n 2 Nj and j � 1:
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Let n1 < n2 < :::, where nk 2 Nk; k = 1; 2; ::: . The sequence (xnk)
1
k=1 is a

Cauchy sequence, and since E is complete it converges to a point of E .

(b))(a). If E is not complete there is a Cauchy sequence in E with no
limit in E: Therefore no subsequence can converge in E; which contradicts
(b). On the other hand if E is not totally bounded, there is an " > 0 such
that E cannot be covered by �nitely many balls of radius ": Let x1 2 E
be arbitrary. Having chosen x1; :::; xn�1; pick xn 2 En [n�1i=1 B(xi; "); and
so on. The sequence (xn)1n=1 cannot contain any convergent subsequence as
d(xn; xm) � " if n 6= m; which contradicts (b).

f(a) and (b)g )(c). Let (Vi)i2I be an open cover of E: Since E is totally
bounded it is enough to show that there is an " > 0 such that any open
ball of radius " which intersects E is contained in some Vi: Suppose on the
contrary that for every n 2 N+ there is an open ball Bn of radius � 2�n

which intersects E and is contained in no Vi: Choose xn 2 Bn \ E and
assume without loss of generality that (xn)1n=1 converges to some point x in
E by eventually going to a subsequence. Suppose x 2 Vi0 and choose r > 0
such that B(x; r) � Vi0 : But then Bn � B(x; r) � Vi0 for large n, which
contradicts the assumption on Bn:

(c))(b). If (xn)1n=1 is a sequence in E with no convergent subsequence in
E, then for every x 2 E there is an open ball B(x; rx) which contains xn for
only �nitely many n: Then (B(x; rx))x2E is an open cover of E without a
�nite subcover.

Corollary 3.1.1. A subset of Rn is compact if and only if it is closed and
bounded.

PROOF. Suppose K is compact. If xn 2 K and xn =2 B(0; n) for every
n 2 N+; the sequence (xn)1n=1 cannot contain a convergent subsequence.
Thus K is bounded. Since K is complete it is closed.
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Conversely, suppose K is closed and bounded. Since Rn is complete and
K is closed, K is complete. We next prove that a bounded set is totally
bounded. It is enough to prove that any n-cell in Rn is a union of �nitely
many n-cells I1�:::�In where each interval I1; :::; In has a prescribed positive
length. This is clear and the theorem is proved.

Corollary 3.1.2. Suppose f : X ! R is continuous and X compact :
(a) There exists an a 2 X such that maxX f = f(a) and a b 2 X
such that minX f = f(b):
(b) The function f is uniformly continuous:

PROOF. (a) For each a 2 X; let Va = fx 2 X : f(x) < 1 + f(a)g : The open
cover (Va)a2K of X has a �nite subcover and it follows that f is bounded. Let
(xn)

1
n=1 be a sequence in X such that f(xn)! supK f as n!1: Since X is

compact there is a subsequence (xnk)
1
k=1 which converges to a point a 2 X:

Thus, by the continuity of f; f(xnk)! f(a) as k !1:
The existence of a minimum is proved in a similar way.

(b) If f is not uniformly continuous there exist " > 0 and sequences
(xn)

1
n=1 and (yn)

1
n=1 such that j f(xn) � f(yn) j� " and j xn � yn j< 2�n

for every n � 1: Since X is compact there exists a subsequence (xnk)
1
k=1 of

(xn)
1
n=1 which converges to a point a 2 X: Clearly the sequence (ynk)

1
k=1

converges to a and therefore

j f(xnk)� f(ynk) j�j f(xnk)� f(a) j + j f(a)� f(ynk) j! 0

as k !1 since f is continuous. But j f(xnk)� f(ynk) j� " and we have got
a contradiction. The corollary is proved.

Example 3.1.2. Suppose X = ]0; 1] and de�ne �1(x; y) = d1(x; y) and
�2(x; y) =j 1x�

1
y
j; x; y 2 X: As in Example 3.1.1 we conclude that the metrics

�1 and �2 determine the same topology of subsets of X: The space (X; �1)
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totally bounded but not complete. However, the space (X; �2) is not totally
bounded but it is complete. To see this, let (xn)1n=1be a Cauchy sequence in
(X; �2): As a Cauchy sequence it must be bounded and therefore there exists
an " 2 ]0; 1] such that xn 2 ["; 1] for all n: But then, by Corollary 3.1.1,
(xn)

1
n=1 contains a convergent subsequence in (X; �1) and, accordingly from

this, the same property holds in (X; �2): The space (X; �2) is not compact,
since (X; �1) is not compact, and we conclude from Theorem 3.1.2 that the
space (X; �2) cannot be totally bounded.

Example 3.1.3. Set �R=R[f�1;1g and

d̂(x; y) =j arctanx� arctan y j

if x; y 2 �R: Here

arctan1 =
�

2
and arctan�1 = ��

2
:

Example 3.1.1 shows that the standard metric d1 and the metric d̂jR�R
determine the same topology.
We next prove that the metric space �R is compact. To this end, consider

a sequence (xn)1n=1 in �R. If there exists a real numberM such that j xn j�M
for in�nitely many n; the sequence (xn)1n=1 contains a convergent subsequence
since the interval [�M;M ] is compact. In the opposite case, for each positive
real number M , either xn � M for in�nitely many n or xn � �M for
in�nitely many n: Suppose xn � M for in�nitely many n for every M 2
N+: Then d̂(xnk ;1) =j arctanxnk � �

2
j! 0 as k ! 1 for an appropriate

subsequence (xnk)
1
k=1:

The space �R= (�R,d̂) is called a two-point compacti�cation of R.
It is an immediate consequence of Theorem 3.1.2 that the product of

�nitely many compact metric spaces is compact. Thus R̂n equipped with
the product metric is compact.
We will �nish this section with several useful approximation theorems.

Theorem 3.1.3. Suppose X is a metric space and � positive Borel measure
in X: Moreover, suppose there is a sequence (Un)1n=1of open subsets of X
such that

X = [1n=1Un
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and
�(Un) <1; all n 2 N+:

Then for each A 2 B(X) and " > 0; there are a closed set F � A and an
open set V � A such that

�(V n F ) < ":

In particular, for every A 2 B(X);

�(A) = inf
V�A
V open

�(V )

and
�(A) = sup

F�A
F closed

�(F )

If X = R and �(A) = �1n=1� 1
n
(A) ; A 2 R; then �(f0g) = 0 and �(V ) =

1 for every open set containing f0g : The hypothesis that the sets Un; n 2
N+; are open (and not merely Borel sets) is very important in Theorem 3.1.3.

PROOF. First suppose that � is a �nite positive measure.
Let A be the class of all Borel sets A in X such that for every " > 0

there exist a closed F � A and an open V � A such that �(V nF ) < ": If F
is a closed subset of X and Vn =

�
x; d(x; F ) < 1

n

	
; then Vn is open and, by

Theorem 1.1.2 (f), �(Vn) # �(F ) as n ! 1. Thus F 2 A and we conclude
that A contains all closed subsets of X:
Now suppose A 2 A: We will prove that Ac 2 A: To this end, we choose

" > 0 and a closed set F � A and an open set V � A such that �(V nF ) < ":
Then V c � Ac � F c and, moreover, �(F c n V c) < " since

V n F = F c n V c:

If we note that V c is closed and F c open it follows that Ac 2 A:
Next let (Ai)1i=1 be a denumerable collection of members of A. Choose

" > 0: By de�nition, for each i 2 N+ there exist a closed Fi � Ai and an
open Vi � Ai such that �(Vi n Fi) < 2�i": Set

V = [1i=1Vi:



86

Then
�(V n ([1i=1Fi)) � �([1i=1(Vi n Fi))

� �1i=1�(Vi n Fi) < ":

But
V n ([1i=1Fi) = \1n=1 fV n ([ni=1Fi)g

and since � is a �nite positive measure

�(V n ([1i=1Fi)) = lim
n!1

�(V n ([ni=1Fi)):

Accordingly, from these equations

�(V n ([ni=1Fi)) < "

if n is large enough. Since a union of open sets is open and a �nite union of
closed sets is closed, we conclude that [1i=1Ai 2 A: This proves that A is a
�-algebra. Since A contains each closed subset of X; A = B(X):
We now prove the general case. Suppose A 2 B(X): Since �Un is a �nite

positive measure the previous theorem gives us an open set Vn � A\Un such
that �Un(Vnn(A\Un)) < "2�n: By eventually replacing Vn by Vn\Un we can
assume that Vn � Un: But then �(Vnn(A\Un)) = �Un(Vnn(A\Un)) < "2�n:
Set V = [1n=1Vn and note that V is open. Moreover,

V n A � [1n=1(Vn n (A \ Un))

and we get
�(V n A) � �1n=1�(Vn n (A \ Un)) < ":

By applying the result already proved to the complement Ac we conclude
there exists an open set W � Ac such that

�(A nW c) = �(W n Ac) < ":

Thus if F =def W
c it follows that F � A � V and �(V n F ) < 2": The

theorem is proved.

If X is a metric space C(X) denotes the vector space of all real-valued
continuous functions f : X ! R: If f 2 C(X); the closure of the set of



87

all x where f(x) 6= 0 is called the support of f and is denoted by suppf:
The vector space of all all real-valued continuous functions f : X ! R with
compact support is denoted by Cc(X):

Corollary 3.1.3. Suppose � and � are positive Borel measures in Rn such
that

�(K) <1 and �(K) <1

for every compact subset K of Rn: IfZ
Rn

f(x)d�(x) =

Z
Rn

f(x)d�(x); all f 2 Cc(Rn)

then � = �:

PROOF. Let F be closed. Clearly �(B(0; i)) < 1 and �(B(0; i)) < 1 for
every positive integer i: Hence, by Theorem 3.1.3 it is enough to show that
�(F ) = �(F ): Now �x a positive integer i and set K = �B(0; i) \ F: It is
enough to show that �(K) = �(K): ButZ

Rn

�R
n

K;2�j(x)d�(x) =

Z
Rn

�R
n

K;2�j(x)d�(x)

for each positive integer j and letting j !1 we are done.

A metric space X is called a standard space if it is separable and com-
plete. Standard spaces have a series of very nice properties related to measure
theory; an example is furnished by the following

Theorem 3.1.4. (Ulam�s Theorem) Let X be a standard space and
suppose � is a �nite positive Borel measure on X: Then to each A 2 B(X)
and " > 0 there exist a compact K � A and an open V � A such that
�(V nK) < ":
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PROOF. Let " > 0: We �rst prove that there is a compact subset K of X
such that �(K) > �(X)�": To this end, let A be a dense denumerable subset
of X and let (ai)1i=1 be an enumeration of A: Now for each positive integer
j; [1i=1B(ai; 2�j") = X; and therefore there is a positive integer nj such that

�([nji=1B(ai; 2�j")) > �(X)� 2�j":
Set

Fj = [nji=1 �B(ai; 2�j")
and

L = \1j=1Fj:
The set L is totally bounded. SinceX is complete and L closed, L is complete.
Therefore, the set L is compact and, moreover

�(K) = �(X)� �(Lc) = �(X)� �([1j=1F cj )

� �(X)� �1j=1�(F cj ) = �(X)� �1j=1(�(X)� �(Fj))

� �(X)� �1j=12�j" = �(X)� ":

Depending on Theorem 3.1.3 to each A 2 B(X) there exists a closed
F � A and an open V � A such that �(V n F ) < ": But

V n (F \ L) = (V n F ) [ (F n L)

and we get

�(V n (F \ L)) � �(V n F ) + �(X nK) < 2":

Since the set F \ L is compact Theorem 3.1.4 is proved.

Two Borel sets in Rn are said to be almost disjoint if their intersection
has volume measure zero.

Theorem 3.1.5. Every open set U in Rn is the union of an at most denu-
merable collection of mutually almost disjoint cubes.
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Before the proof observe that a cube in Rn is the same as a closed ball
in Rn equipped with the metric dn.

PROOF. For each, k 2 N+; let Qkbe the class of all cubes of side length 2�k

whose vertices have coordinates of the form i2�k; i 2 Z: Let F1 be the union
of those cubes in Q1 which are contained in U: Inductively, for k � 1; let
Fk be the union of those cubes in Qk which are contained in U and whose
interiors are disjoint from [k�1j=1Fj: Since d(x;R

n n U) > 0 for every x 2 U it
follows that U = [1j=1Fj:

Exercises

1. Suppose f : (X;M)! (Rd;Rd) and g : (X;M)! (Rn;Rn) are measur-
able. Set h(x) = (f(x); g(x)) 2 Rd+n if x 2 X. Prove that h : (X;M) !
(Rd+n;Rd+n) is measurable.

2. Suppose f : (X;M)! (R;R) and g : (X;M)! (R;R) are measurable.
Prove that fg is (M;R)-measurable.

3. The function f : R ! R is a Borel function. Set g(x; y) = f(x); (x; y) 2
R2: Prove that g : R2 ! R is a Borel function.

4. Suppose f : [0; 1]! R is a continuous function and g : [0; 1]! [0; 1] a
Borel function. Compute the limit

lim
n!1

Z 1

0

f(g(x)n)dx:

5. SupposeX and Y are metric spaces and f : X ! Y a continuous mapping.
Show that f(E) is compact if E is a compact subset of X.
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6. SupposeX and Y are metric spaces and f : X ! Y a continuous bijection.
Show that the inverse mapping f�1 is continuous if X is compact.

7. Construct an open bounded subset V of R such that m(@V ) > 0:

8. The function f : [0; 1] !R has a continuous derivative. Prove that the
set f(K) 2 Zm if K = (f 0)�1(f0g):

9. Let P denote the class of all Borel probability measures on [0; 1] and L
the class of all functions f : [0; 1]! [�1; 1] such that

j f(x)� f(y) j�j x� y j; x; y 2 [0; 1] :

For any �; � 2 P; de�ne

�(�; �) = sup
f2L

j
Z
[0;1]

fd��
Z
[0;1]

fd� j :

(a) Show that (P; �) is a metric space. (b) Compute �(�; �) if � is linear
measure on [0; 1] and � = 1

n
�n�1k=0� k

n
; where n 2 N+ (linear measure on [0; 1]

is Lebesgue measure on [0; 1] restricted to the Borel sets in [0; 1]).

10. Suppose � is a �nite positive Borel measure on Rn: (a) Let (Vi)i2I be a
family of open subsets of Rn and V = [i2IVi. Prove that

�(V ) = sup
i1;:::;ik2I
k2N+

�(Vi1 [ ::: [ Vik):

(b) Let (Fi)i2I be a family of closed subsets of Rn and F = \i2IFi. Prove
that

�(F ) = inf
i1;:::;ik2I
k2N+

�(Fi1 \ ::: \ Fik):
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###

3.2. Linear Functionals and Measures

Let X be a metric space. A mapping T : Cc(X)! R is said to be a linear
functional on Cc(X) if

T (f + g) = Tf + Tg; all f; g 2 Cc(X)

and
T (�f) = �Tf; all � 2 R; f 2 Cc(X):

If in addition Tf � 0 for all f � 0; T is called a positive linear functional
on Cc(X): In this case Tf � Tg if f � g since g � f � 0 and Tg � Tf =
T (g � f) � 0: Note that Cc(X) = C(X) if X is compact.
The main result in this section is the following

Theorem 3.2.1. (The Riesz Representation Theorem) Suppose X is
a compact metric space and let T be a positive linear functional on C(X):
Then there exists a unique �nite positive Borel measure � in X with the
following properties:
(a)

Tf =

Z
X

fd�; f 2 C(X):

(b) For every E 2 B(X)

�(E) = sup
K�E

K compact

�(K):

(c) For every E 2 B(X)

�(E) = inf
V�E
V open

�(V ):
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The property (c) is a consequence of (b), since for each E 2 B(X) and
" > 0 there is a compact K � X n E such that

�(X n E) < �(K) + ":

But then
�(X nK) < �(E) + "

and X n K is open and contains E: In a similar way, (b) follows from (c)
since X is compact.
The proof of the Riesz Representation Theorem depends on properties of

continuous functions of independent interest. Suppose K � X is compact
and V � X is open. If f : X ! [0; 1] is a continuous function such that

f � �V and suppf � V

we write
f � V

and if
�K � f � �V and suppf � V

we write
K � f � V:

Theorem 3.2.2. Let K be compact subset X.
(a) Suppose K � V where V is open. There exists a function f on X

such that
K � f � V:

(b) Suppose X is compact and K � V1[ :::[Vn; where K is compact and
V1; :::; Vn are open. There exist functions h1; :::; hn on X such that

hi � Vi; i = 1; :::; n

and
h1 + :::+ hn = 1 on K:
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PROOF. (a) Suppose " = 1
2
minK d(�; V c): By Corollary 3.1.2, " > 0: The

continuous function f = �XK;" satis�es �K � f � �K"
; that is K � f � K":

Part (a) follows if we note that the closure (K")
� of K" is contained in V:

(b) For each x 2 K there exists an rx > 0 such that B(x; rx) � Vi for some
i. Let Ux = B(x; 1

2
rx): It is important to note that (Ux)� � Vi and (Ux)�

is compact since X is compact. There exist points x1; :::; xm 2 K such that
[mj=1Uxi � K: If 1 � i � n; let Fi denote the union of those (Uxj)

� which are
contained in Vi: By Part (a), there exist continuous functions fi such that
Fi � fi � Vi; i = 1; :::; n: De�ne

h1 = f1

h2 = (1� f1)f2

::::

hn = (1� f1):::(1� fn�1)fn:

Clearly, hi � Vi; i = 1; :::; n: Moreover, by induction, we get

h1 + :::+ hn = 1� (1� f1):::(1� fn�1)(1� fn):

Since [ni=1Fi � K we are done.

The uniqueness in Theorem 3.2.1 is simple to prove. Suppose �1 and
�2 are two measures for which the theorem holds. Fix " > 0 and compact
K � X and choose an open set V so that �2(V ) � �2(K)+ ": If K � f � V;

�1(K) =

Z
X

�Kd�1 �
Z
X

fd�1 = Tf

=

Z
X

fd�2 �
Z
X

�V d�2 = �2(V ) � �2(K) + ":

Thus �1(K) � �2(K): If we interchange the roles of the two measures, the
opposite inequality is obtained, and the uniqueness of � follows.
To prove the existence of the measure � in Theorem 3.2.1; de�ne for every

open V in X,
�(V ) = sup

f�V
Tf:
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Here �(�) = 0 since the supremum over the empty set, by convention, equals
0: Note also that �(X) = T1: Moreover, �(V1) � �(V2) if V1 and V2 are open
and V1 � V2: Now set

�(E) = inf
V�E
V open

�(V ) if E 2 B(X):

Clearly, �(E1) � �(E2); if E1 � E2 and E1;E2 2 B(X): We therefore say
that � is increasing.

Lemma 3.2.1. (a) If V1; :::; Vn are open,

�([ni=1Vi) � �ni=1�(Vi):

(b) If E1; E2; ::: 2 B(X);

�([1i=1Ei) � �1i=1�(Ei):

(c) If K1; :::; Kn are compact and pairwise disjoint,

�([ni=1Ki) = �
n
i=1�(Ki):

PROOF. (a) It is enough to prove (a) for n = 2: To this end �rst choose
g � V1[V2 and then hi � Vi, i = 1; 2; such that h1+h2 = 1 on supp g: Then

g = h1g + h2g

and it follows that

Tg = T (h1g) + T (h2g) � �(V1) + �(V2):

Thus
�(V1 [ V2) � �(V1) + �(V2):
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(b) Choose " > 0 and for each i 2 N+, choose an open Vi � Ei such �(Vi) <
�(Ei) + 2

�i": Set V = [1i=1Vi and choose f � V: Since suppf is compact,
f � V1 [ ::: [ Vn for some n: Thus, by Part (a),

Tf � �(V1 [ ::: [ Vn) � �ni=1�(Vi) � �1i=1�(Ei) + "

and we get
�(V ) � �1i=1�(Ei)

since " > 0 is arbitrary. But [1i=1Ei � V and it follows that

�([1i=1Ei) � �1i=1�(Ei):

(c) It is enough to treat the special case n = 2: Choose " > 0: Set � =
d(K1; K2) and V1 = (K1)�=2 and V2 = (K2)�=2: There is an open set U �
K1[K2 such that �(U) < �(K1[K2)+" and there are functions fi � U \Vi
such that Tfi > �(U \ Vi)� " for i = 1; 2: Now, using that � increases

�(K1) + �(K2) � �(U \ V1) + �(U \ V2)

� Tf1 + Tf2 + 2" = T (f1 + f2) + 2":

Since f1 + f2 � U;

�(K1) + �(K2) � �(U) + 2" � �(K1 [K2) + 3"

and, by letting "! 0;

�(K1) + �(K2) � �(K1 [K2):

The reverse inequality follows from Part (b). The lemma is proved.

Next we introduce the class

M =

8<:E 2 B(X); �(E) = sup
K�E

K compact

�(K)

9=;
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Since � is increasingM contains every compact set. Recall that a closed
set inX is compact, sinceX is compact. Especially, note that � andX 2M.

COMPLETION OF THE PROOF OF THEOREM 3.2.1:

CLAIM 1. M contains every open set.

PROOF OF CLAIM 1. Let V be open and suppose � < �(V ): There exists
an f � V such that � < Tf: If U is open and U � K =defsuppf; then f � U;
and hence Tf � �(U): But then Tf � �(K): Thus � < �(K) and Claim 1
follows since K is compact and K � V:

CLAIM 2. Let (Ei)1i=1 be a disjoint denumerable collection of members of
M and put E = [1i=1Ei: Then

�(E) = �1i=1�(Ei)

and E 2M:

PROOF OF CLAIM 2. Choose " > 0 and for each i 2 N+, choose a compact
Ki � Ei such that �(Ki) > �(Ei)� 2�i": Set Hn = K1 [ ::: [Kn: Then, by
Lemma 3.2.1 (c),

�(E) � �(Hn) = �
n
i=1�(Ki) > �

n
i=1�(Ei)� "

and we get
�(E) � �1i=1�(Ei):

Thus, by Lemma 3.2.1 (b), �(E) = �1i=1�(Ei). To prove that E 2M; let "
be as in the very �rst part of the proof and choose n such that

�(E) � �ni=1�(Ei) + ":
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Then
�(E) < �(Hn) + 2"

and this shows that E 2M:

CLAIM 3. Suppose E 2 M and " > 0: Then there exist a compact K and
an open V such that K � E � V and �(V nK) < ":

PROOF OF CLAIM 3. The de�nitions show that there exist a compact K
and an open V such that

�(V )� "

2
< �(E) < �(K) +

"

2
:

The set V nK is open and V nK 2 M by Claim 1. Thus Claim 2 implies
that

�(K) + �(V nK) = �(V ) < �(K) + "

and we get �(V nK) < ":

CLAIM 4. If A 2M; then X n A 2M:

PROOF OF CLAIM 4. Choose " > 0: Furthermore, choose compact K � A
and open V � A such that �(V nK) < ": Then

X n A � (V nK) [ (X n V ):

Now, by Lemma 3.2.1 (b),

�(X n A) � "+ �(X n V ):

Since X n V is a compact subset of X n A; we conclude that X n A 2M:

Claims 1, 2 and 4 prove thatM is a �-algebra which contains all Borel
sets. ThusM = B(X):
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We �nally prove (a). It is enough to show that

Tf �
Z
X

fd�

for each f 2 C(X): For once this is known

�Tf = T (�f) �
Z
X

�fd� � �
Z
X

fd�

and (a) follows.
Choose " > 0: Set f(X) = [a; b] and choose y0 < y1 < ::: < yn such that

y1 = a, yn�1 = b; and yi � yi�1 < ": The sets

Ei = f�1([yi�1; yi[); i = 1; :::; n

constitute a disjoint collection of Borel sets with the unionX: Now, for each i;
pick an open set Vi � Ei such that �(Vi) � �(Ei)+

"
n
and Vi � f�1(]�1; yi[):

By Theorem 3.2.2 there are functions hi � Vi; i = 1; :::; n; such that �ni=1hi =
1 on suppf and hif � yihi for all i: From this we get

Tf = �ni=1T (hif) � �ni=1yiThi � �ni=1yi�(Vi)

� �ni=1yi�(Ei) + �ni=1yi
"

n

� �ni=1(yi � ")�(Ei) + "�(X) + (b+ ")"

� �ni=1
Z
Ei

fd�+ "�(X) + (b+ ")"

=

Z
X

fd�+ "�(X) + (b+ ")":

Since " > 0 is arbitrary, we get

Tf �
Z
X

fd�:

This proves Theorem 3.2.1.

It is now simple to show the existence of volume measure in Rn: For
pedagogical reasons we �rst discuss the so called volume measure in the unit
cube Q = [0; 1]n in Rn:
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The Riemann integral Z
Q

f(x)dx;

is a positive linear functional as a function of f 2 C(Q): Moreover, T1 = 1
and the Riesz Representation Theorem gives us a Borel probability measure
� in Q such that Z

Q

f(x)dx =

Z
Q

fd�:

Suppose A � Q is a closed n-cell and i 2 N+: Then

vol(A) �
Z
Q

�Q
A;2�i(x)dx � vol(A2�i)

and
�Q
A;2�i(x)! �A(x) as i!1

for every x 2Rn: Thus
�(A) = vol(A):

The measure � is called the volume measure in the unit cube. In the special
case n = 2 it is called the area measure in the unit square and if n = 1 it is
called the linear measure in the unit interval.

PROOF OF THEOREM 1.1.1. Let �R=R[f�1;1g be the two-point com-
pacti�cation of R introduced in Example 3.1.3 and let R̂n denote the product
of n copies of the metric space R̂: Clearly,

B(Rn) =
n
A \Rn; A 2 B(R̂n)

o
:

Moreover, let w : Rn ! ]0;1[ be a continuous map such thatZ
Rn

w(x)dx = 1:

Now we de�ne

Tf =

Z
Rn

f(x)w(x)dx; f 2 C(R̂n):
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Note that T1 = 1. The function T is a positive linear functional on C(R̂n)
and the Riesz Representation Theorem gives us a Borel probability measure
� on R̂n such thatZ

Rn

f(x)w(x)dx =

Z
R̂n

fd�; f 2 C(R̂n):

As above we get Z
A

w(x)dx = �(A)

for each compact n-cell in Rn: Thus

�(Rn) = lim
i!1

Z
[�i;i]n

w(x)dx = 1

and we conclude that � is concentrated on Rn: Set �0(A) = �(A); A 2
B(Rn); and

dmn =
1

w
d�0:

Then, if f 2 Cc(Rn); Z
Rn

f(x)w(x)dx =

Z
Rn

fd�0

and by replacing f by f=w;Z
Rn

f(x)dx =

Z
Rn

fdmn:

From this mn(A) =vol(A) for every compact n-cell A and it follows that mn

is the volume measure on Rn. Theorem 1.1.1 is proved.

"""

3.3 q-Adic Expansions of Numbers in the Unit Interval

To begin with in this section we will discuss so called q-adic expansions of
real numbers and give some interesting consequences. As an example of an
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application, we construct a one-to-one real-valued Borel map f de�ned on
a proper interval such that the range of f is a Lebesgue null set. Another
example exhibits an increasing continuous function G on the unit interval
with the range equal to the unit interval such that the derivative of G is
equal to zero almost everywhere with respect to Lebesgue measure. In the
next section we will give more applications of q-adic expansions in connection
with in�nite product measures.
To simplify notation let (
; P;F) = ([0; 1[ ;B([0; 1[); v1j[0;1[). Furthermore,

let q � 2 be an integer and de�ne a function h : R!f0; 1; 2; :::; q � 1g of
period one such that

h(x) = k;
k

q
� x <

k + 1

q
; k = 0; :::; q � 1:

Furthermore, set for each n 2 N+;

�n(!) = h(qn�1!); 0 � ! < 1:

Then
P [�n = k] =

1

q
; k = 0; :::; q � 1:

Moreover, if k1; :::; kn 2 f0; 1; 2; :::; q � 1g ; it becomes obvious on drawing a
�gure that

P
�
�1 = k1; :::; �n�1 = kn�1

�
= �q�1i=0P

�
�1 = k1; :::; �n�1 = kn�1; �n = i

�
where each term in the sum in the right-hand side has the same value. Thus

P
�
�1 = k1; :::; �n�1 = kn�1

�
= qP

�
�1 = k1; :::; �n�1 = kn�1; �n = kn

�
and

P
�
�1 = k1; :::; �n�1 = kn�1; �n = kn

�
= P

�
�1 = k1; :::; �n�1 = kn�1

�
P [�n = kn] :

By repetition,

P
�
�1 = k1; :::�n�1 = kn�1; �n = kn

�
= �ni=1P [�i = ki] :

From this we get

P
�
�1 2 A1; :::�n�1 2 An�1; �n 2 An

�
= �ni=1P [�i 2 Ai]
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for all A1; :::; An � f0; 1; 2; :::; q � 1g :
Note that each ! 2 [0; 1[ has a so called q-adic expansion

! = �1i=1
�i(!)

qi
:

If necessary, we write �n = �(q)n to indicate q explicitly.
Let k0 2 f0; 1; 2; :::; q � 1g be �xed and consider the event A that a num-

ber in [0; 1[ does not have k0 in its q-adic expansion. The probability of A
equals

P [A] = P [�i 6= k0; i = 1; 2; :::] = lim
n!1

P [�i 6= k0; i = 1; 2; :::; n]

= lim
n!1

�ni=1P [�i 6= k0] = lim
n!1

(
q � 1
q
)n = 0:

In particular, if

Dn =
n
! 2 [0; 1[ ; �(3)i 6= 1; i = 1; :::; n

o
:

then, D = \1n=1Dn is a P -zero set.
Set

f(!) = �1i=1
2�
(2)
i (!)

3i
; 0 � ! < 1:

We claim that f is one-to-one. If 0 � !; !0 < 1 and ! 6= !0 let n be the
least i such that �(2)i (!) 6= �

(2)
i (!

0); we may assume that �(2)n (!) = 0 and
�(2)n (!

0) = 1: Then

f(!0) � �ni=1
2�
(2)
i (!

0)

3i
= �n�1i=1

2�
(2)
i (!

0)

3i
+
2

3n

= �n�1i=1

2�
(2)
i (!)

3i
+ �1i=n+1

4

3i
> �1i=1

2�
(2)
i (!)

3i
= f(!):

Thus f is one-to-one. We next prove that f(
) = D: To this end choose
y 2 D: If �(3)i (y) = 2 for all i 2 N+; then y = 1 which is a contradiction. If
k � 1 is �xed and �(3)k (y) = 0 and �

(3)
i (y) = 2; i � k + 1; then it is readily

seen that �(3)k (y) = 1 which is a contradiction. Now de�ne

! = �1i=1

1
2
�
(3)
i (y)

2i
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and we have f(!) = y:
Let Cn = D�

n ; n 2 N+: The set C = \1n=1Cn; is called the Cantor set.
The Cantor set is a compact Lebesgue zero set. The construction of the
Cantor set may alternatively be described as follows. First C0 = [0; 1]. Then
trisect C0 and remove the middle interval

�
1
3
; 2
3

�
to obtain C1 = C0 n

�
1
3
; 2
3

�
=�

0; 1
3

�
[
�
2
3
; 1
�
: At the second stage subdivide each of the closed intervals

of C1 into thirds and remove from each one the middle open thirds. Then
C2 = C1 n (

�
1
9
; 2
9

�
[
�
7
9
; 8
9

�
): What is left from Cn�1 is Cn de�ned above. The

set [0; 1] n Cn is the union of 2n �1 intervals numbered Ink ; k = 1; :::; 2n � 1;
where the interval Ink is situated to the left of the interval I

n
l if k < l:

Suppose n is �xed and let Gn : [0; 1]! [0; 1] be the unique monotone in-
creasing continuous function, which satis�es Gn(0) = 0; Gn(1) = 1; Gn(x) =
k2�n for x 2 Ink and which is a¢ ne on each interval of Cn: It is clear that
Gn = Gn+1 on each interval Ink , k = 1; :::; 2

n � 1: Moreover, j Gn � Gn+1 j�
2�n�1 and thus

j Gn �Gn+k j� �n+kk=n j Gk �Gk+1 j� 2�n:

Let G(x) = limn!1Gn(x); 0 � x � 1: The continuous and increasing func-
tion G is constant on each removed interval and it follows that G0 = 0 a.e.
with respect to linear measure in the unit interval.The function G is called
the Cantor function or Cantor-Lebesgue function.
Next we introduce the following convention, which is standard in Lebesgue

integration. Let (X;M; �) be a positive measure space and suppose A 2M
and �(Ac) = 0: If two functions g; h 2 L1(�) agree on A;Z

X

gd� =

Z
X

hd�:

If a function f : A ! R is the restriction to A of a function g 2 L1(�) we
de�ne Z

X

fd� =

Z
X

gd�:

Now suppose F : R ! R is a right continuous increasing function and
let � be the unique positive Borel such that

�(]a; x]) = F (x)� F (a) if a; x 2 R and a < x:

If h 2 L1(�) and E 2 R; the so called Stieltjes integralZ
E

h(x)dF (x)
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is by de�nition equal to Z
E

hd�:

If a; b 2 R, a < b; and F is continuous at the points a and b; we de�neZ b

a

h(x)dF (x) =

Z
I

hd�

where I is any interval with boundary points a and b:
The reader should note that the integralZ

R

h(x)dF (x)

in general is di¤erent from the integralZ
R

h(x)F 0(x)dx:

For example, if G is the Cantor function and G is extended so that G(x) = 0
for negative x and G(x) = 1 for x larger than 1, clearlyZ

R

h(x)G0(x)dx = 0

since G0(x) = 0 a.e. [m] : On the other hand, if we choose h = �[0;1];Z
R

h(x)dG(x) = 1:

3.4. Product Measures

Suppose (X;M) and (Y;N ) are two measurable spaces. If A 2 M and
B 2 N ; the set A�B is called a measurable rectangle in X�Y: The product
�-algebraM
N is, by de�nition, the �-algebra generated by all measurable
rectangles in X � Y: If we introduce the projections

�X(x; y) = x; (x; y) 2 X � Y

and
�Y (x; y) = y; (x; y) 2 X � Y;
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the product �-algebraM
N is the least �-algebra S of subsets of X � Y ,
which makes the maps �X : (X � Y;S) ! (X;M) and �Y : (X � Y;S) !
(Y;N ) measurable, that isM
N = �(��1X (M)[��1Y (N )):.
Suppose E generatesM; whereX 2 E ; and F generatesN ; where Y 2 F .

We claim that the class

E � F = fE � F ;E 2 E and F 2 Fg

generates the �-algebraM
N : First it is clear that

�(E � F) �M
N :

Moreover, the class

fE 2M;E � Y 2 �(E � F) g =M\
�
E � X; ��1X (E) 2 �(E � F)

	
is a �-algebra, which contains E and therefore equals M. Thus A � Y 2
�(E � F) for all A 2 M and, in a similar way, X � B 2 �(E � F) for all
B 2 N and we conclude that A � B = (A � Y ) \ (X � B) 2 �(E � F) for
all A 2M and all B 2 N : This proves that

M
N ��(E � F)

and it follows that
�(E � F) =M
N :

Thus
�(E � F) = �(E)
 �(F) if X 2 E and Y 2 F :

Since the �-algebraRn is generated by all open n-cells inRn, we conclude
that

Rk+n = Rk 
Rn:

Given E � X � Y; de�ne

Ex = fy; (x; y) 2 Eg if x 2 X

and
Ey = fx; (x; y) 2 Eg if y 2 Y:

If f : X � Y ! Z is a function and x 2 X; y 2 Y , let

fx(y) = f(x; y); if y 2 Y
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and
f y(x) = f(x; y); if x 2 X:

Theorem 3.4.1 (a) If E 2 M
N ; then Ex 2 N and Ey 2 M for every
x 2 X and y 2 Y:
(b) If f : (X � Y;M
N ) ! (Z;O) is measurable, then fx is (N ;O)-

measurable for each x 2 X and f y is (M;O)-measurable for each y 2 Y:

Proof. (a) Choose y 2 Y and de�ne ' : X ! X�Y by '(x) = (x; y): Then

M = �('�1(M�N )) = '�1(�(M�N )) = '�1(M
N )

and it follows that Ey 2M: In a similar way Ex 2 N for every x 2 X:
(b) For any set V 2 O;

(f�1(V ))x = (fx)
�1(V )

and
(f�1(V ))y = (f y)�1(V ):

Part (b) now follows from (a).

Below an (M;R0;1)-measurable or (M;R)-measurable function is simply
calledM-measurable.

Theorem 3.4.2. Suppose (X;M; �) and (Y;N ; �) are positive �-�nite
measurable spaces and suppose E 2M
N . If

f(x) = �(Ex) and g(y) = �(Ey)

for every x 2 X and y 2 Y; then f is M-measurable, g is N -measurable,
and Z

X

fd� =

Z
Y

gd�:

Proof. We �rst assume that (X;M; �) and (Y;N ; �) are �nite positive
measure spaces.
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Let D be the class of all sets E 2 M
N for which the conclusion of
the theorem holds. It is clear that the class G of all measurable rectangles
in X � Y is a subset of D and G is a �-system. Furthermore, the Beppo
Levi Theorem shows that D is a �-additive class. Therefore, using Theorem
1.2.2,M
N = �(G) � D and it follows that D =M
N :
In the general case, choose a denumerable disjoint collection (Xk)

1
k=1of

members ofM and a denumerable disjoint collection (Yn)1n=1of members of
N such that

[1k=1Xk = X and [1n=1 Yn = Y:

Set
�k = �Xk�, k = 1; 2; :::

and
�n = �Yn�, n = 1; 2; ::: .

Then, by the Beppo Levi Theorem, the function

f(x) =

Z
Y

�1n=1�E(x; y)�Yn(y)d�(y)

= �1n=1

Z
Y

�E(x; y)�Yn(y)d�(y) = �
1
n=1�n(Ex)

isM-measurable. Again, by the Beppo Levi Theorem,Z
X

fd� = �1k=1

Z
X

fd�k

and Z
X

fd� = �1k=1(�
1
n=1

Z
X

�n(Ex)d�k(x)) = �
1
k;n=1

Z
X

�n(Ex)d�k(x):

In a similar way, the function g is N -measurable andZ
Y

gd� = �1n=1(�
1
k=1

Z
Y

�k(E
y)d�n(y)) = �

1
k;n=1

Z
Y

�k(E
y)d�n(y):

Since the theorem is true for �nite positive measure spaces, the general case
follows.
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De�nition 3.4.1. If (X;M; �) and (Y;N ; �) are positive �-�nite measur-
able spaces and E 2M
N , de�ne

(�� �)(E) =

Z
X

�(Ex)d�(x) =

Z
Y

�(Ey)d�(y):

The function �� � is called the product of the measures � and �:

Note that Beppo Levi�s Theorem ensures that ��� is a positive measure.
Before the next theorem we recall the following convention. Let (X;M; �)

be a positive measure space and suppose A 2 M and �(Ac) = 0: If two
functions g; h 2 L1(�) agree on A;Z

X

gd� =

Z
X

hd�:

If a function f : A ! R is the restriction to A of a function g 2 L1(�) we
de�ne Z

X

fd� =

Z
X

gd�:

Theorem 3.4.3. Let (X;M; �) and (Y;N ; �) be positive �-�nite measur-
able spaces.

(a) (Tonelli�s Theorem) If h : X � Y ! [0;1] is (M
N )-measurable
and

f(x) =

Z
Y

h(x; y)d�(y) and g(y) =
Z
X

h(x; y)d�(x)

for every x 2 X and y 2 Y; then f is M-measurable, g is N -measurable,
and Z

X

fd� =

Z
X�Y

hd(�� �) =

Z
Y

gd�

(b) (Fubini�s Theorem)
(i) If h : X � Y ! R is (M
N )-measurable andZ

X

(

Z
Y

j h(x; y) j d�(y))d�(x) <1
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then h 2 L1(�� �): Moreover,Z
X

(

Z
Y

h(x; y)d�(y))d�(x) =

Z
X�Y

hd(�� �) =

Z
Y

(

Z
X

h(x; y)d�(x))d�(y)

(ii) If h 2 L1((�� �)�); then hx 2 L1(�) for �-almost all x andZ
X�Y

hd(�� �) =

Z
X

(

Z
Y

h(x; y)d�(y))d�(x)

(iii) If h 2 L1((�� �)�); then hy 2 L1(�) for �-almost all y andZ
X�Y

hd(�� �) =

Z
Y

(

Z
X

h(x; y)d�(x))d�(y)

PROOF. (a) The special case when h is a non-negative (M
N )-measurable
simple function follows from Theorem 3.4.2. Remembering that any non-
negative measurable function is the pointwise limit of an increasing sequence
of simple measurable functions, the Lebesgue Monotone Convergence Theo-
rem implies the Tonelli Theorem.

(b) PART (i) : By Part (a)

1 >

Z
X

(

Z
Y

h+(x; y)d�(y))d�(x) =

Z
X�Y

h+d(�� �)

=

Z
Y

(

Z
X

h+(x; y)d�(x))d�(y)

and

1 >

Z
X

(

Z
Y

h�(x; y)d�(y))d�(x) =

Z
X�Y

h�d(�� �)

=

Z
Y

(

Z
X

h�(x; y)d�(x))d�(y):

In particular, h = h+ � h� 2 L1(�� �): Let

A =
�
x 2 X; (h+)x; (h�)x 2 L1(�)

	
:
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Then Ac is a �-null set and we getZ
A

(

Z
Y

h+(x; y)d�(y))d�(x) =

Z
X�Y

h+d(�� �)

and Z
A

(

Z
Y

h�(x; y)d�(y))d�(x) =

Z
X�Y

h�d(�� �):

Thus Z
A

(

Z
Y

h(x; y)d�(y))d�(x) =

Z
X�Y

hd(�� �)

and, hence, Z
X

(

Z
Y

h(x; y)d�(y))d�(x) =

Z
X�Y

hd(�� �):

The other case can be treated in a similar way. The theorem is proved.

PART (ii) : We �rst use Theorem 2.2.3 and write h = ' +  where ' 2
L1(�� �);  is (M
N )�-measurable and  = 0 a.e. [�� �] : Set

A =
�
x 2 X; ('+)x; ('�)x 2 L1(�)

	
:

Furthermore, suppose E � f(x; y);  (x; y) 6= 0g ; E 2M
N and

(�� �)(E) = 0:

Then, by Tonelli�s Theorem

0 =

Z
X

�(Ex)d�(x):

Let B = fx 2 X; �(Ex) 6= 0g and note that B 2 M: Moreover �(B) = 0
and if x =2 B, then  x = 0 a.e. [�] that is hx = 'x a.e. [�] : Now, by Part (i)Z

X�Y
hd(�� �)� =

Z
X�Y

'd(�� �) =

Z
A

(

Z
Y

'(x; y)d�(y))d�(x)

=

Z
A\Bc

(

Z
Y

'(x; y)d�(y))d�(x) =

Z
A\Bc

(

Z
Y

h(x; y)d�(y))d�(x)
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=

Z
X

(

Z
Y

h(x; y)d�(y))d�(x):

Part (iii) is proved in the same manner as Part (ii): This concludes the
proof of the theorem.

If (Xi;Mi); i = 1; :::; n; are measurable spaces, the product �-algebra
M1 
 ::: 
Mn is, by de�nition, the �-algebra generated by all sets of the
form

A1 � :::� An

where Ai 2Mi; i = 1; :::; n: Now assume (Xi;Mi; �i); i = 1; :::; n; are �-�nite
positive measure spaces. By induction, we de�ne �1 = �1 and �k = �k�1��k;
k = 1; 2; :::; n: The measure, �n is called the product of the measures �1; :::; �n
and is denoted by �1 � :::� �n: It is readily seen that

Rn = R1 
 :::
R1 (n factors)

and
vn = v1 � :::� v1 (n factors):

Moreover,

R�
n � (R�

1 )
n =def R�

1 
 :::
R�
1 (n factors):

If A 2 P(R) n R�
1 ; by the Tonelli Theorem, the set A � f0; :::; 0g (n � 1

zeros) is an mn-null set, which, in view of Theorem 3.4.1, cannot belong to
the �-algebra (R�

1 )
n: Thus the Axiom of Choice implies that

R�
n 6= (R�

1 )
n:

Clearly, the completion of the measure m1 � ::: �m1 (n factors) equals
mn:
Sometimes we prefer to writeZ

A1�:::�An
f(x1; :::; xn)dx1:::dxn

instead of Z
A1�:::�An

f(x)dmn(x)
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or Z
A1�:::�An

f(x)dx:

Moreover, the integralZ
An

:::

Z
A1

f(x1; :::; xn)dx1:::dxn

is the same as Z
A1�:::�An

f(x1; :::; xn)dx1:::dxn:

De�nition 3.4.2. (a) The measure


1(A) =

Z
A

e�
x2

2
dxp
2�
; A 2 R

is called the standard Gauss measure in R:

(b) The measure


n = 
1 � :::� 
1 (n factors)

is called the standard Gauss measure in Rn: Thus, if

j x j=
q
x21 + :::+ x2n; x = (x1; :::; xn) 2 Rn

we have


n(A) =

Z
A

e�
jxj2
2

dxp
2�

n ; A 2 Rn:

(c) A Borel measure � in R is said to be a centred Gaussian measure if
� = f(
1) for some linear map f : R! R:

(d) A real-valued random variable � is said to be a centred Gaussian
random variable if its probability law is a centred Gaussian measure in R:
Stated otherwise, � is a real-valued centred Gaussian random variable if either

L(�) = �0 (abbreviated � 2 N(0; 0))
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or there exists a � > 0 such that

L( �
�
) = 
1 (abbreviated � 2 N(0; �)).

(e) A family (�t)t2T of real-valued random variables is said to be a centred
real-valued Gaussian process if for all t1; :::; tn 2 T; �1; :::; �n 2 R and every
n 2 N+; the sum

� = �nk=1�k�tk

is a centred Gaussian random variable:

Example 3.4.1 Suppose j x j =
p
x21 + :::+ x2n if x = (x1; :::; xn) 2 Rn: We

claim that

lim
k!1

Z
Rn

nY
i=1

(1 +
xi + x2i
4k

)kd
n(x) =
p
2
n
e
n
16

To prove this claim we �rst use that et � 1 + t for every real t and have for
each �xed i 2 f1; :::; ng ;

1 +
xi + x2i
4k

� e
xi+x

2
i

4k :

Moreover, if k 2 N+; then

1 +
xi + x2i
4k

=
1

4k
((xi +

1

2
)2 + 4k � 1

4
) � 0

and we conclude that

(1 +
xi + x2i
4k

)k � e
xi+x

2
i

4 :

Thus, for any k 2 N+;

0 � fk(x) =def

nY
i=1

(1 +
xi + x2i
4k

)k �
nY
i=1

e
xi+x

2
i

4 =def g(x)

where g 2 L1(
n) sinceZ
Rn

g(x)d
n(x) =

Z
Rn

nY
i=1

e
xi�x

2
i

4
dxp
2�

n = fTonelli�s Theoremg =
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nY
i=1

Z
R

e
xi�x

2
i

4
dxip
2�
=
p
2
n
e
n
16 :

Moreover,
lim
k!1

fk(x) = g(x)

and by dominated convergence we get

lim
k!1

Z
Rn

nY
i=1

(1 +
xi + x2i
4k

)kd
n(x) =

Z
Rn

g(x)d
n(x) =
p
2
n
e
n
16 :

Exercises

1. Let (X;M; �) and (Y;N ; �) be two �-�nite positive measure spaces. Let
f 2 L1(�) and g 2 L1(�) and de�ne h(x; y) = f(x)g(y); (x; y) 2 X � Y:
Prove that h 2 L1(�� �) andZ

X�Y
hd(�� �) =

Z
X

fd�

Z
Y

gd�:

2. Let (X;M; �) be a �-�nite positive measure space and f : X ! [0;1[ a
measurable function. Prove thatZ

X

fd� = (��m)(f(x; y); 0 < y < f(x); x 2 Xg):

3. Let (X;M; �) be a �-�nite positive measure space and f : X ! R a
measurable function. Prove that (��m)(f(x; f(x)); x 2 X g) = 0:

4. Let E 2 R�
2 and E � [0; 1]� [0; 1] : Suppose m(Ex) � 1

2
for m-almost all

x 2 [0; 1] : Show that

m(fy 2 [0; 1] ;m(Ey) = 1g) � 1

2
:
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5. Let c be the counting measure on R restricted to R and

D = f(x; x); x 2 Rg :

De�ne for every A 2 (R�R) [ fDg ;

�(A) =

Z
R

(

Z
R

�A(x; y)dv1(x))dc(y)

and

�(A) =

Z
R

(

Z
R

�A(x; y)dc(y))dv1(x):

(a) Prove that � and � agree on R�R:
(b) Prove that �(D) 6= �(D):

6. Let I = ]0; 1[ and

h(x; y) =
x2 � y2

(x2 + y2)2
; (x; y) 2 I � I:

Prove that Z
I

(

Z
I

h(x; y)dy)dx =
�

4
;Z

I

(

Z
I

h(x; y)dx)dy = ��
4

and Z
I�I

j h(x; y) j dxdy =1:

7. For t > 0 and x 2 R let

g(t; x) =
1p
2�t

e�
x2

2t

and

h(t; x) =
@g

@t
:

Given a > 0; prove that Z 1

�1
(

Z 1

a

h(t; x)dt)dx = �1
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and Z 1

a

(

Z 1

�1
h(t; x)dx)dt = 0

and conclude that Z
[a;1[�R

j h(t; x) j dtdx =1:

(Hint: First prove that Z 1

�1
g(t; x)dx = 1

and
@g

@t
=
1

2

@2g

@x2
:)

8. Given f 2 L1(m); let

g(x) =
1

2

Z x+1

x�1
f(t)dt; x 2 R:

Prove that Z
R

j g(x) j dx �
Z
R

j f(x) j dx:

9. Let I = [0; 1] and suppose f : I ! R is a Lebesgue measurable function
such that Z

I�I
j f(x)� f(y) j dxdy <1:

Prove that Z
I

j f(x) j dx <1:

10. Suppose A 2 R� and f 2 L1(m): Set

g(x) =

Z
R

d(y; A)f(y)

j x� y j2 dy; x 2 R:

Prove that Z
A

j g(x) j dx <1:
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11. Suppose that the functions f; g : R! [0;1[ are Lebesgue measurable
and introduce � = fm and � = gm: Prove that the measures � and � are
�-�nite and

(�� �)(E) =

Z
E

f(x)g(y)dxdy if E 2 R� 
R�:

12. Suppose � is a �nite positive Borel measure on Rn and f : Rn ! R a
Borel measurable function. Set g(x; y) = f(x)� f(y); x; y 2 Rn: Prove that
f 2 L1(�) if and only if g 2 L1(�� �):

13. A random variable � is non-negative and possesses the distribution func-
tion F (x) = P [� � x] : Prove thatE [�] =

R1
0
(1� F (x))dx:

14. Let (X; d) be a metric space and suppose Y 2 B(X): Then Y equipped
with the metric djY�Y is a metric space. Prove that

B(Y ) = fA \ Y ; A 2 B(X)g :

15. The continuous bijection f : (X; d) ! (Y; e) has a continuous inverse.
Prove that f(A) 2 B(Y ) if A 2 B(X)

16. A real-valued function f(x; y); x; y 2 R; is a Borel function of x for every
�xed y and a continuous function of y for every �xed x: Prove that f is a
Borel function. Is the same conclusion true if we only assume that f(x; y) is
a real-valued Borel function in each variable separately?

17. Suppose a > 0 and

�a = e�a
1X
n=0

an

n!
�n
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where �n(A) = �A(n) if n 2 N = f0; 1; 2; :::g and A � N: Prove that

(�a � �b)s
�1 = �a+b

for all a; b > 0; if s(x; y) = x+ y; x; y 2 N:

18. Suppose

f(t) =

Z 1

0

xe�x
2

x2 + t2
dx; t > 0:

Compute

lim
t!0+

f(t) and
Z 1

0

f(t)dt:

Finally, prove that f is di¤erentiable.

19. Suppose

f(t) =

Z 1

0

e�tx
ln(1 + x)

1 + x
dx; t > 0:

a) Show that
R1
0
f(t)dt <1:

b) Show that f is in�nitely many times di¤erentiable.

20. Suppose f is Lebesgue integrabel on ]0; 1[ : (a) Show that the function
g(x) =

R 1
x
t�1f(t)dt; 0 < x < 1; is continuous. (b) Prove that

R 1
0
g(x)dx =R 1

0
f(x)dx:

3.5 Change of Variables in Volume Integrals

If T is a non-singular n by n matrix with real entries, we claim that

T (vn) =
1

j detT jvn
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(here T is viewed as a linear map of Rn into Rn). Remembering Corollary
3.1.3 this means that the following linear change of variables formula holds,
viz. Z

Rn

f(Tx)dx =
1

j detT j

Z
Rn

f(x)dx all f 2 Cc(Rn):

The case n = 1 is obvious. Moreover, by Fubini�s Theorem the linear change
of variables formula is true for arbitrary n in the following cases:
(a) Tx = (x�(1); :::; x�(n)); where � is a permutation of the numbers 1; :::; n:
(b) Tx = (�x1; x2; :::; xn); where � is a non-zero real number.
(c) Tx = (x1 + x2; x2; :::; xn):
Recall from linear algebra that every non-singular n by n matrix T can be

row-reduced to the identity matrix, that is T can by written as the product
of �nitely many transformations of the types in (a),(b), and (c). This proves
the above linear change of variables formula.
Our main objective in this section is to prove a more general change

of variable formula. To this end let 
 and � be open subsets of Rn and
G : 
 ! � a C1 di¤eomorphism, that is G = (g1; :::; gn) is a bijective
continuously di¤erentiable map such that the matrix G0(x) = ( @gi

@xj
(x))1�i;j�n

is non-singular for each x 2 
: The inverse function theorem implies that
G�1 : �! 
 is a C1 di¤eomorphism [DI] :

Theorem 3.5.1. If f is a non-negative Borel function in 
; thenZ
�

f(x)dx =

Z



f(G(x)) j detG0(x) j dx:

The proof of Theorem 3.5.1 is based on several lemmas.
Throughout, Rn is equipped with the metric

dn(x; y) = max
1�k�n

j xk � yk j :

Let K be a compact convex subset of 
: Then if x; y 2 K and 1 � i � n;

gi(x)� gi(y) =

Z 1

0

d

dt
gi(y + t(x� y))dt

=

Z 1

0

�nk=1
@gi
@xk

(y + t(x� y))(xk � yk)dt
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and we get
dn(G(x); G(y)) �M(G;K)dn(x; y)

where

M(G;K) = max
1�i�n

�nk=1max
z2K

j @gi
@xk

(z) j :

Thus if �B(a; r) is a closed ball contained in K;

G( �B(a; r)) � �B(G(a);M(G;K)r):

Lemma 3.5.1. Let (Qk)1k=1 be a sequence of closed balls contained in 
 such
that

Qk+1 � Qk

and
diam Qk ! 0 as k !1:

Then, there is a unique point a belonging to each Qk and

lim sup
n!1

vn(G(Qk))

vn(Qk)
�j detG0(a) j :

PROOF. The existence of a point a belonging to each Qk is an immediate
consequence of Theorem 3.1.2. The uniqueness is also obvious since the
diameter of Qk converges to 0 as k ! 1: Set T = G0(a) and F = T�1G:
Then, if Qk = �B(xk; rk);

vn(G(Qk)) = vn(T (T
�1G(Qk))) =j detT j vn(T�1G( �B(xk; rk)))

�j detT j vn( �B(T�1G(xk);M(T�1G;Qk)rk) =j detT j M(T�1G;Qk)nvn(Qk):
Since

lim
k!1

M(T�1G;Qk) = 1

the lemma follows at once.

Lemma 3.5.2. Let Q be a closed ball contained in 
: Then

vn(G(Q)) �
Z
Q

j detG0(x) j dx:
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PROOF. Suppose there is a closed ball Q contained in 
 such that

vn(G(Q)) >

Z
Q

j detG0(x) j dx:

This will lead us to a contradiction as follows.
Choose " > 0 such that

vn(G(Q)) � (1 + ")
Z
Q

j detG0(x) j dx:

Let Q = [2n1 Bk where B1; :::; B2n are mutually almost disjoint closed balls
with the same volume. If

vn(G(Bk)) < (1 + ")

Z
Bk

j detG0(x) j dx; k = 1; :::; 2n

we get
vn(G(Q)) � �2

n

k=1vn(G(Bk))

< �2
n

k=1(1 + ")

Z
Bk

j detG0(x) j dx = (1 + ")
Z
Q

j detG0(x) j dx

which is a contradiction. Thus

vn(G(Bk)) � (1 + ")
Z
Bk

j detG0(x) j dx

for some k: By induction we obtain a sequence (Qk)1k=1 of closed balls con-
tained in 
 such that

Qk+1 � Qk;

diam Qk ! 0 as k !1

and

vn(G(Qk)) � (1 + ")
Z
Qk

j detG0(x) j dx:

But applying Lemma 3.5.1 we get a contradiction.
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PROOF OF THEOREM 3.5.1. Let U � 
 be open and write U = [1i=1Qi
where the Q0is are almost disjoint cubes as in Theorem 3.1.5. Then

vn(G(U)) � �1i=1vn(G(Qi)) � �1i=1
Z
Qi

j detG0(x) j dx

=

Z
U

j detG0(x) j dx:

Using Theorem 3.1.3 we now have that

vn(G(E)) �
Z
E

j detG0(x) j dx

for each Borel set E � 
: But thenZ
�

f(x)dx �
Z



f(G(x)) j detG0(x) j dx

for each simple Borel measurable function f � 0 and, accordingly from this
and monotone convergence, the same inequality holds for each non-negative
Borel function f: But the same line of reasoning applies to G replaced by
G�1 and f replaced by f(G) j detG0 j, so thatZ




f(G(x)) j detG0(x) j dx �
Z
�

f(x) j detG0(G�1(x)) jj det(G�1)0(x) j dx

=

Z
�

f(x)dx:

This proves the theorem.

Example 3.5.1. If f : R2 ! [0;1] is (R2;R0;1)-measurable and 0 < " <
R <1, the substitution

G(r; �) = (r cos �; r sin �)

yieldsZ
"<
p
x21+x

2
2<R

f(x1; x2)dx1dx2 = lim
�!0+

Z R

"

Z 2�

�

f(r cos �; r sin �)rd�dr
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=

Z R

"

Z 2�

0

f(r cos �; r sin �)rd�dr

and by letting "! 0 and R!1; we haveZ
R2

f(x1; x2)dx1dx2 =

Z 1

0

Z 2�

0

f(r cos �; r sin �)rd�dr:

The purpose of the example is to show an analogue formula for volume
measure in Rn:
Let Sn�1 = fx 2 Rn; j x j= 1g be the unit sphere in Rn: We will de�ne a

so called surface area Borel measure �n�1 on Sn�1 such thatZ
Rn

f(x)dx =

Z 1

0

Z
Sn�1

f(r!)rn�1d�n�1(!)dr

for any (Rn;R0;1)-measurable function f : Rn ! [0;1] : To this end de�ne
G : Rn n f0g ! ]0;1[� Sn�1 by setting G(x) = (r; !); where

r =j x j and ! = x

j x j :

Note that G�1 : ]0;1[� Sn�1 ! Rn n f0g is given by the equation

G�1(r; !) = r!:

Moreover,

G�1(]0; a]� E) = aG�1(]0; 1]� E) if a > 0 and E � Sn�1:

If E 2 B(Sn�1) we therefore have that

vn(G
�1(]0; a]� E)) = anvn(G

�1(]0; 1]� E)):

We now de�ne

�n�1(E) = nvn(G
�1(]0; 1]� E)) if E 2 B(Sn�1)

and

�(A) =

Z
A

rn�1dr if A 2 B(]0;1[):



124

Below, by abuse of language, we write vnjRnnf0g = vn: Then, if 0 < a �
b <1 and E 2 B(Sn�1);

G(vn)(]0; a]� E) = �(]0; a])�n�1(E)

and
G(vn)(]a; b]� E) = �(]a; b])�n�1(E):

Thus, by Theorem 1.2.3,
G(vn) = �� �n�1

and the claim above is immediate.
To check the normalization constant in the de�nition of �n�1; �rst note

that

vn(j x j< R) =

Z R

0

Z
Sn�1

rn�1d�(!)dr =
Rn

n
�n�1(S

n�1)

and we get
d

dR
vn(j x j< R) = Rn�1�n�1(S

n�1):

Exercises

1. Extend Theorem 3.5.1 to Lebesgue measurable functions.

2. The function f : R! [0;1[ is Lebesgue measurable and
R
R
fdm = 1:

Determine all non-zero real numbers � such that
R
R
hdm <1; where

h(x) = �1n=0f(�
nx+ n); x 2 R:

3. Suppose

�(A) =

Z
A

j x jn e�jxjndx; A 2 B(Rn);

where j x j =
p
x21 + :::+ x2n if x = (x1; :::; xn) 2 Rn: Compute the

limit
lim
�!1

��n ln�(fx 2 Rn; j x j� �g):
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4. Compute the n-dimensional Lebesgue integralZ
jxj<1

ln(1� j x j)dx

where j x j denotes the Euclidean norm of the vector x 2 Rn: (Hint:
�(Sn�1) = 2�n=2

�(n=2)
:)

5. Suppose f 2 L1(m2): Show that limn!1 f(nx) = 0 for m2-almost all
x 2 R2:

###
3.6. Independence in Probability

Suppose (
;F ; P ) is a probability space. The random variables �k : (
; P )!
(Sk;Sk); k = 1; :::; n are said to be independent if

P(�1;:::;�n) = �
n
k=1P�k :

A family (�i)i2I of random variables is said to be independent if �i1 ; :::; �in
are independent for any i1; :::in 2 I with ik 6= il if k 6= l: A family of
events (Ai)i2I is said to be independent if (�Ai)i2I is a family of independent
random variables. Finally a family (Ai)i2I of sub-�-algebras of F is said to
be independent if, for any Ai 2 Ai; i 2 I; the family (Ai)i2I is a family of
independent events.

Example 3.6.1. Let q � 2 be an integer. A real number ! 2 [0; 1[ has a
q-adic expansion

! = �1k=1
�
(q)
k

qk
:

The construction of the Cantor set shows that (�(q)k )
1
k=1 is a sequence of

independent random variables based on the probability space

([0; 1[ ; v1j[0;1[;B([0; 1[)):
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Example 3.6.2. Let (X;M; �) be a positive measure space and let Ai 2M;
i 2 N+; be such that

�1i=1�(Ai) <1:

The �rst Borel-Cantelli Lemma asserts that �-almost all x 2 X lie in Ai
for at most �nitely many i: This result is an immediate consequence of the
Beppo Levi Theorem sinceZ

X

�1i=1�Aid� = �
1
i=1

Z
X

�Aid� <1

implies that
�1i=1�Ai <1 a.e. [�] :

Suppose (
;F ; P ) is a probability space and let (Ai)1i=1 be independent
events such that

�1i=1P [Ai] =1:

The second Borel-Cantelli Lemma asserts that almost surely Ai happens for
in�nitely many i:
To prove this, we use the inequality

1 + x � ex; x 2 R

to obtain
P
�
\k+ni=k A

c
i

�
= �k+ni=k P [A

c
i ]

= �k+ni=k (1� P [Ai]) � �k+ni=k e
�P [Ai] = e��

k+n
i=k P [Ai]:

By letting n!1;
P [\1i=kAci ] = 0

or

P [[1i=kAi] = 1:
But then

P [\1k=1 [1i=k Ai] = 1
and the second Borel-Cantelli Lemma is proved.
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Theorem 3.6.1. Suppose �1; :::; �n are independent random variables and
�k 2 N(0; 1); k = 1; :::; n: If �1; :::; �n 2 R; then

�nk=1�k�k 2 N(0;�nk=1�2k)

PROOF. The case �1; :::; �n = 0 is trivial so assume �k 6= 0 for some k: We
have for each open interval A;

P [�nk=1�k�k 2 A] =
Z
�nk=1�kxk2A

d
1(x1):::d
1(xn)

Z
�nk=1�kxk2A

1p
2�

n e
� 1
2
(x21+:::+x

2
n)dx1:::dxn:

Set � =
p
�21 + :::+ �2n and let y = Gx be an orthogonal transformation

such that
y1 =

1

�
(�1x1 + :::+ �nxn):

Then, since detG = 1;

P [�1k=1�k�k 2 A] =
Z
�y12A

1p
2�

n e
� 1
2
(y21+:::+y

2
n)dy1:::dyn

=

Z
�y12A

1p
2�
e�

1
2
y21dy1

where we used Fubini�s theorem in the last step. The theorem is proved.

Finally, in this section, we prove a basic result about the existence of
in�nite product measures. Let �k; k 2 N+ be Borel probability measures
in R. The space RN+ is, by de�nition, the set of all sequences x = (xk)1k=1
of real numbers. For each k 2 N+; set �k(x) = xk: The �-algebra RN+

is the least �-algebra S of subsets of RN+ which makes all the projections
�k : (R

N+ ;S) ! (R;R); k 2 N+; measurable. Below, (�1; :::; �n) denotes
the mapping of RN+ into Rn de�ned by the equation

(�1; :::; �n)(x) = (�1(x); :::; �n(x)):
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Theorem 3.6.1. There is a unique probability measure � on RN+ such that

�(�1;:::;�n) = �1 � :::� �n

for every n 2 N+:

The measure � in Theorem 3.6.1 is called the product of the measures
�k; k 2 N+; and is often denoted by

�1k=1�k:

PROOF OF THEOREM 3.6.1. Let (
; P;F) = ([0; 1[ ; v1j[0;1[;B([0; 1[) and
set

�(!) = �1k=1
�
(2)
k (!)

2k
; ! 2 
:

We already know that P� = P: Now suppose (ki)1i=1 is a strictly increasing
sequence of positive integers and introduce

�0 = �1i=1
�
(2)
ki
(!)

2i
; ! 2 
:

Note that for each �xed positive integer n; the Rn-valued maps (�(2)1 ; :::; �(2)n )

and (�(2)k1 ; :::; �
(2)
kn
) are P -equimeasurable. Thus, if f : 
! R is continuous,Z



f(�)dP = lim
n!1

Z



f(�nk=1
�
(2)
k (!)

2k
)dP (!)

= lim
n!1

Z



f(�ni=1
�
(2)
ki
(!)

2i
)dP (!) =

Z



f(�0)dP

and it follows that P�0 = P� = P:
By induction, we de�ne for each k 2 N+ an in�nite subset Nk of the set

N+n[k�1i=1Ni such that the setN+n[ki=1Ni contains in�nitely many elements
and de�ne

�k = �
1
i=1

�(2)nik(!)

2i

where (nik)1i=1 is an enumeration of Nk: The map

	(!) = (�k(!))
1
k=1
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is a measurable map of (
;F) into (RN+ ;RN+) and

P	 = �1k=1�i

where �i = P for each i 2 N+:
For each i 2 N+ there exists a measurable map 'i of (
;F) into (R;R)

such that P'i = �i (see Section 1.6). The map

�(x) = ('i(xi))
1
i=1

is a measurable map of (RN+ ;RN+) into itself and we get � = (P	)�. This
completes the proof of Theorem 3.6.1.

"""
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CHAPTER 4

MODES OF CONVERGENCE

Introduction

In this chapter we will treat a variety of di¤erent sorts of convergence notions
in measure theory. So called L2-convergence is of particular importance.

4.1. Convergence in Measure, in L1(�); and in L2(�)

Let (X;M; �) be a positive measure space and denote by F(X) the class of
measurable functions f : (X;M)! (R;R). For any f 2 F(X); set

k f k1=
Z
X

j f(x) j d�(x)

and

k f k2=

sZ
X

f 2(x)d�(x):

The Cauchy-Schwarz inequality states thatZ
X

j fg j d� �k f k2k g k2 if f; g 2 F(X):

To prove this, without loss of generality, it can be assumed that

0 <k f k2<1 and 0 <k g k2<1:

We now use the inequality

�� � 1

2
(�2 + �2); �; � 2 R
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to obtain Z
X

j f j
k f k2

j g j
k g k2

d� �
Z
1

2
(
f 2

k f k22
+

g2

k g k22
)d� = 1

and the Cauchy-Schwarz inequality is immediate.
If not otherwise stated, in this section p is a number equal to 1 or 2: If it

is important to emphasize the underlying measure k f kp is written k f kp;� :
We now de�ne

Lp(�) = ff 2 F(X); k f kp<1g :

The special case p = 1 has been introduced earlier. We claim that the
following so called triangle inequality holds, viz.

k f + g kp�k f kp + k g kp if f; g 2 Lp(�):

The case p = 1; follows by �-integration of the relation

j f + g j�j f j + j g j :

To prove the case p = 2; we use the Cauchy-Schwarz inequality and have

k f + g k22�kj f j + j g jk22

=k f k22 +2
Z
X

j fg j d�+ k g k22

�k f k22 +2 k f k2k g k2 + k g k22= (k f k2 + k g k2)2

and the triangle inequality is immediate.
Suppose f; g 2 Lp(�): The functions f and g are equal almost everywhere

with respect to � if ff 6= gg 2 Z�: This is easily seen to be an equivalence
relation and the set of all equivalence classes is denoted by Lp(�): Below
we consider the elements of Lp(�) as members of Lp(�) and two members
of Lp(�) are identi�ed if they are equal a.e. [�] : From this convention it is
straight-forward to de�ne f + g and �f for all f; g 2 Lp(�) and � 2 R and
the function d(p)(f; g) =k f � g kp is a metric on Lp(�): Convergence in the
metric space Lp(�) = (Lp(�),d(p)) is called convergence in Lp(�): A sequence
(fk)

1
k=1 in F(X) converges in measure to a function f 2 F(X) if

lim
k!1

�(j fk � f j> ") = 0 all " > 0:
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If the sequence (fk)1k=1 in F(X) converges in measure to a function f
2 F(X) as well as to a function g 2 F(X); then f = g a.e. [�] since

fj f � g j> "g �
n
j f � fk j>

"

2

o
[
n
j fk � g j> "

2

o
and

�(j f � g j> ") � �(j f � fk j>
"

2
) + �(j fk � g j> "

2
)

for every " > 0 and positive integer k: A sequence (fk)1k=1 in F(X) is said
to be Cauchy in measure if for every " > 0;

�(j fk � fn j> ")! 0 as k; n!1:

By the Markov inequality, a Cauchy sequence in Lp(�) is Cauchy in measure.

Example 4.1.1. (a) If fk =
p
k�[0; 1k ]

; k 2 N+; then

k fk k2;m= 1 and k fk k1;m=
1p
k
:

Thus fk ! 0 in L1(m) as k !1 but fk 9 0 in L2(m) as k !1:

(b) L1(m) * L2(m) since

�[1;1[(x)
1

j x j 2 L
2(m) n L1(m)

and L2(m) * L1(m) since

�]0;1](x)
1p
j x j

2 L1(m) n L2(m):

Theorem 4.1.1. Suppose p = 1 or 2:
(a) Convergence in Lp(�) implies convergence in measure:
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(b) If �(X) <1; then L2(�) � L1(�) and convergence in L2(�) implies
convergence in L1(�):

Proof. (a) Suppose the sequence (fn)1n=1 converges to f in L
p(�) and let

" > 0: Then, by the Markov inequality,

�(j fn � f j� ") � 1

"p

Z
X

j fn � f jp d� = 1

"p
k fn � f kpp

and (a) follows at once.

(b) The Cauchy-Schwarz inequality gives for any f 2 F(X);

(

Z
X

j f j �1d�)2 �
Z
X

f 2d�

Z
X

1d�

or
k f k1�k f k2

p
�(X)

and Part (b) is immediate.

Theorem 4.1.2. Suppose fn 2 F(X); n 2 N+:
(a) If (fn)1n=1 is Cauchy in measure, there is a measurable function f :

X ! R such that fn ! f in measure as n ! 1 and a strictly increasing
sequence of positive integers (nj)1j=1 such that fnj ! f a.e. [�] as j !1.
(b) If � is a �nite positive measure and fn ! f 2 F(X) a.e. [�] as

n!1; then fn ! f in measure.
(c) (Egoro¤�s Theorem) If � is a �nite positive measure and fn !

f 2 F(X) a.e. [�] as n!1; then for every " > 0 there exists E 2M such
that �(E) < " and

sup
k�n
x2Ec

j fk(x)� f(x) j! 0 as n!1:

PROOF. (a) For each positive integer j; there is a positive integer nj such
that

�(j fk � fl j> 2�j) < 2�j; all k; l � nj:
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There is no loss of generality to assume that n1 < n2 < ::: : Set

Ej =
�
j fnj � fnj+1 j> 2�j

	
and

Fk = [1j=kEj:
If x 2 F ck and i � j � k

j fni(x)� fnj(x) j�
X
j�l<i

j fnl+1(x)� fnl(x) j

�
X
j�l<i

2�l < 2�j+1

and we conclude that (fnj(x))
1
j=1 is a Cauchy sequence for every x 2 F ck : Let

G = [1k=1F ck and note that for every �xed positive integer k;

�(Gc) � �(Fk) <
1X
j=k

2�j = 2�k+1:

Thus Gc is a �-null set. We now de�ne f(x) = limj!1 fnj(x) if x 2 G and
f(x) = 0 if x =2 G:
We next prove that the sequence (fn)1n=1 converges to f in measure. If

x 2 F ck and j � k we get

j f(x)� fnj(x) j� 2�j+1:

Thus, if j � k
�(j f � fnj j> 2�j+1) � �(Fk) < 2

�k+1:

Since

�(j fn � f j> ") � �(j fn � fnj j>
"

2
) + �(j fnj � f j> "

2
)

if " > 0; Part (a) follows at once.

(b) For each " > 0;

�(j fn � f j> ") =

Z
X

�]";1[(j fn � f j)d�
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and Part (c) follows from the Lebesgue Dominated Convergence Theorem.

(c) Set for �xed k; n 2 N+;

Ekn = [1j=n
�
j fj � f j> 1

k

�
:

We have
\1n=1Ekn 2 Z�

and since � is a �nite measure

�(Ekn)! 0 as n!1:

Given " > 0 pick nk 2 N+ such that �(Eknk) < "2�k: Then, if E = [1k=1Eknk ,
�(E) < ". Moreover, if x =2 E and j � nk

j fj(x)� f(x) j� 1

k
:

The theorem is proved.

Corollary 4.1.1. The spaces L1(�) and L2(�) are complete.

PROOF. Suppose p = 1 or 2 and let (fn)1n=1 be a Cauchy sequence in L
p(�):

We know from the previous theorem that there exists a subsequence (fnj)
1
j=1

which converges pointwise to a function f 2 F(X) a.e. [�] : Thus, by Fatou�s
Lemma, Z

X

j f � fk jp d� � lim inf
j!1

Z
X

j fnj � fk jp d�

and it follows that f � fk 2 Lp(�) and, hence f = (f � fk) + fk 2 Lp(�):
Moreover, we have that k f � fk kp! 0 as k !1: This concludes the proof
of the theorem.

Corollary 4.1.2. Suppose �n 2 N(0; �2n); n 2 N+; and �n ! � in L2(P ) as
n!1: Then � is a centred Gaussian random variable.
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PROOF. We have that k �n k2=
q
E
�
�2n
�
= �n and k �n k2!k � k2=def �

as n!1:
Suppose f is a bounded continuous function on R. Then, by dominated

convergence,

E [f(�n)] =

Z
R

f(�nx)d
1(x)!
Z
R

f(�x)d
1(x)

as n ! 1. Moreover, there exists a subsequence (�nk)
1
k=1 which converges

to � a.s. Hence, by dominated convergence

E
�
f(�nk)

�
! E [f(�)]

as k !1 and it follows that

E [f(�)] =

Z
R

f(�x)d
1(x):

By using Corollary 3.1.3 the theorem follows at once.

Theorem 4.1.3. Suppose X is a standard space and � a positive �-�nite
Borel measure on X. Then the spaces L1(�) and L2(�) are separable.

PROOF. Let (Ek)1k=1 be a denumerable collection of Borel sets with �nite
�-measures and such that Ek � Ek+1 and [1k=1Ek = X: Set �k = �Ek� and
�rst suppose that the set Dk is at most denumerable and dense in Lp(�k)
for every k 2 N+: Without loss of generality it can be assumed that each
member of Dk vanishes o¤ Ek: By monotone convergenceZ

X

fd� = lim
k!1

Z
X

fd�k, f � 0 measurable,

and it follows that the set [1k=1Dk is at most denumerable and dense in Lp(�):
From now on we can assume that � is a �nite positive measure. Let A

be an at most denumerable dense subset of X and and suppose the subset
frn; n 2 N+; g of ]0;1[ is dense in ]0;1[ : Furthermore, denote by U the
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class of all open sets which are �nite unions of open balls of the type B(a; rn);
a 2 A; n 2 N+. If U is any open subset of X

U = [ [V : V � U and V 2 U ]

and, hence, by the Ulam Theorem

�(U) = sup f�(V ); V 2 U and V � Ug :

Let K be the class of all functions which are �nite sums of functions of
the type ��U ; where � is a positive rational number and U 2 U . It follows
that K is at most denumerable.
Suppose " > 0 and that f 2 Lp(�) is non-negative. There exists a

sequence of simple measurable functions ('i)
1
i=1 such that

0 � 'i " f a.e. [�] :

Since j f �'i jp� fp; the Lebesgue Dominated Convergence Theorem shows
that k f � 'k kp< "

2
for an appropriate k: Let �1; :::; �l be the distinct

positive values of 'k and set

C = 1 + �lk=1�k:

Now for each �xed j 2 f1; :::; lg we use Theorem 3.1.3 to get an open
Uj � '�1k (f�jg) such that k �Uj � �'�1k (f�jg) kp<

"
4C
and from the above we

get a Vj 2 U such that Vj � Uj and k �Uj � �Vj kp<
"
4C
: Thus

k �Vj � �'�1k (f�jg) kp<
"

2C

and
k f � �lk=1�j�Vj kp< "

Now it is simple to �nd a  2 K such that k f �  kp< ": From this we
deduce that the set

K �K = fg � h; g; h 2 Kg

is at most denumerable and dense in Lp(�):
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The set of all real-valued and in�nitely many times di¤erentiable functions
de�ned on Rn is denoted by C(1)(Rn) and

C(1)c (Rn) =
�
f 2 C(1)(Rn); suppf compact

	
:

Recall that the support suppf of a real-valued continuous function f de�ned
on Rn is the closure of the set of all x where f(x) 6= 0: If

f(x) =
nY
k=1

f'(1 + xk)'(1� xk)g ; x = (x1; :::; xn) 2 Rn

where '(t) = exp(�t�1); if t > 0; and '(t) = 0; if t � 0; then f 2 C1c (Rn) .
The proof of the previous theorem also gives Part (a) of the following

Theorem 4.1.4. Suppose � is a positive Borel measure in Rn such that
�(K) <1 for every compact subset K of Rn: The following sets are dense
in L1(�); and L2(�) :
(a) the linear span of the functions

�I ; I open bounded n-cell in R
n;

(b) C(1)c (Rn):

PROOF. a) The proof is almost the same as the proof of Theorem 4.1.3.
First the Ek:s can be chosen to be open balls with their centres at the origin
since each bounded set in Rn has �nite �-measure. Moreover, as in the proof
of Theorem 4.1.3 we can assume that � is a �nite measure. Now let A be an
at most denumerable dense subset of Rn and for each a 2 A let

R(a) = fr > 0; �(fx 2 X; j xk � ak j= rg) > 0 for some k = 1; :::; ng :

Then [a2AR(a) is at most denumerable and there is a subset frn; n 2 N+g
of ]0;1[ n [a2AR(a) which is dense in ]0;1[ : Finally, let U denote the class
of all open sets which are �nite unions of open balls of the type B(a; rn);
a 2 A; n 2 N+; and proceed as in the proof of Theorem 4.1.3. The result
follows by observing that the characteristic function of any member of U
equals a �nite sum of characteristic functions of open bounded n-cells a.e.
[�] :
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Part (b) in Theorem 4.1.4 follows from Part (a) and the following

Lemma 4.1.1. Suppose K � U � Rn, where K is compact and U is open.
Then there exists a function f 2 C(1)c (Rn) such that

K � f � U

that is
�K � f � �U and suppf � U:

PROOF. Suppose � 2 C1c (Rn) is non-negative, supp � � B(0; 1); andZ
Rn

�dmn = 1:

Moreover, let " > 0 be �xed. For any g 2 L1(vn) we de�ne

f"(x) = "�n
Z
Rn

g(y)�("�1(x� y))dy:

Since

j g j max
Rn

j @
k1+:::+kn�

@xk11 :::@x
kn
n

j2 L1(vn); all k1; :::; kn 2 N

the Lebesgue Dominated Convergent Theorem shows that f" 2 C1(Rn):
Here f" 2 C1c (Rn) if g vanishes o¤ a bounded subset of Rn: In fact,

supp f" � (supp g)":

Now choose a positive number " � 1
2
d(K;U c) and de�ne g = �K"

: Since

f"(x) =

Z
Rn

g(x� "y)�(y)dy

we also have that f"(x) = 1 if x 2 K: The lemma is proved.
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Example 4.1.2. Suppose f 2 L1(mn) and let g : Rn ! R be a bounded
Lebesgue measurable function. Set

h(x) =

Z
Rn

f(x� y)g(y)dy; x 2 Rn:

We claim that h is continuous.
To see this �rst note that

h(x+�x)� h(x) =

Z
Rn

(f(x+�x� y)� f(x� y))g(y)dy

and

j h(x+�x)� h(x) j� K

Z
Rn

j f(x+�x� y)� f(x� y) j dy

= K

Z
Rn

j f(�x+ y)� f(y) j dy

if j g(x) j� K for every x 2 Rn: Now �rst choose " > 0 and then ' 2 Cc(Rn)
such that

k f � ' k1< ":

Using the triangle inequality, we get

j h(x+�x)� h(x) j� K(2 k f � ' k1 +
Z
Rn

j '(�x+ y)� '(y) j dy)

� K(2"+

Z
Rn

j '(�x+ y)� '(y) j dy)

where the right hand side is smaller than 3K" if j �x j is su¢ ciently small.
This proves that h is continuous.

Example 4.1.3. Suppose A 2 R�
n and mn(A) > 0: We claim that the set

A� A = fx� x;x 2 Ag

contains a neighbourhood of the origin.
To show this there is no loss of generality to assume that mn(A) < 1:

Set
f(x) = mn(A \ (A+ x)); x 2 Rn:
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Note that

f(x) =

Z
Rn

�A(y)�A(y � x)dy

and Example 4.1.2 proves that f is continuous. Since f(0) > 0 there exists a
� > 0 such that f(x) > 0 if j x j< �: In particular, A\ (A+x) 6= � if j x j< �;
which proves that

B(0; �) � A� A:

The following three examples are based on the Axiom of Choice.

Example 4.1.4. Let NL be the non-Lebesgue measurable set constructed
in Section 1.3. Furthermore, assume A � R is Lebesgue measurable and
A � NL: We claim that m(A) = 0: If not, there exists a � > 0 such that
B(0; �) � A�A � NL�NL: If 0 < r < � and r 2 Q, there exist a; b 2 NL
such that

a = b+ r:

But then a 6= b and at the same time a and b belong to the same equivalence
class, which is a contradiction. Accordingly from this, m(A) = 0:

Example 4.1.5. Suppose A �
�
�1
2
; 1
2

�
is Lebesgue measurable and m(A) >

0: We claim there exists a non-Lebesgue measurable subset of A: To see this
note that

A = [1i=1((ri +NL) \ A)
where (ri)1i=1 is an enumeration of the rational numbers in the interval [�1; 1] :
If each set (ri +NL) \ A; is Lebesgue measurable

m(A) = �1i=1m((ri +NL) \ A)

and we conclude that m((ri +NL) \ A) > 0 for an appropriate i: But then
m(NL\ (A� ri)) > 0 and NL\ (A� ri) � NL; which contradicts Example
4.1.4. Hence (ri+NL)\A is non-Lebesgue measurable for an appropriate i:
If A is a Lebesgue measurable subset of the real line of positive Lebesgue

measure, we conclude that A contains a non-Lebesgue measurable subset.
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Example 4.1.6. Set I = [0; 1] : We claim there exist a continuous function
f : I ! I and a Lebesgue measurable set L � I such that f�1(L) is not
Lebesgue measurable.
First recall from Section 3.3 the construction of the Cantor set C and the

Cantor function G. First C0 = [0; 1]. Then trisect C0 and remove the middle
interval

�
1
3
; 2
3

�
to obtain C1 = C0 n

�
1
3
; 2
3

�
=
�
0; 1

3

�
[
�
2
3
; 1
�
: At the second

stage subdivide each of the closed intervals of C1 into thirds and remove
from each one the middle open thirds. Then C2 = C1 n (

�
1
9
; 2
9

�
[
�
7
9
; 8
9

�
): We

repeat the process and what is left from Cn�1 is Cn. The set [0; 1] nCn is the
union of 2n �1 intervals numbered Ink ; k = 1; :::; 2n�1; where the interval Ink
is situated to the left of the interval Inl if k < l: The Cantor set C = \1n=1Cn:
Suppose n is �xed and let Gn : [0; 1]! [0; 1] be the unique the monotone

increasing continuous function, which satis�esGn(0) = 0; Gn(1) = 1; Gn(x) =
k2�n for x 2 Ink and which is linear on each interval of Cn: It is clear that
Gn = Gn+1 on each interval Ink , k = 1; :::; 2n � 1: The Cantor function is
de�ned by the limit G(x) = limn!1Gn(x); 0 � x � 1:
Now de�ne

h(x) =
1

2
(x+G(x)); x 2 I

where G is the Cantor function. Since h : I ! I is a strictly increasing and
continuous bijection, the inverse function f = h�1 is a continuous bijection
from I onto I: Set

A = h(I n C)

and
B = h(C):

Recall from the de�nition of G that G is constant on each removed interval
Ink and that h takes each removed interval onto an interval of half its length.
Thus m(A) = 1

2
and m(B) = 1�m(A) = 1

2
:

By the previous example there exists a non-Lebesgue measurable subset
M of B: Put L = h�1(M): The set L is Lebesgue measurable since L � C
and C is a Lebesgue null set. However, the set M = f�1(L) is not Lebesgue
measurable.

Exercises
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1. Let (X;M; �) be a �nite positive measure space and suppose '(t) =
min(t; 1); t � 0: Prove that fn ! f in measure if and only if '(j fn�f j)! 0
in L1(�):

2. Let � = mj[0;1]: Find measurable functions fn : [0; 1] ! [0; 1] ; n 2 N+;
such that fn ! 0 in L2(�) as n!1;

lim inf
n!1

fn(x) = 0 all x 2 [0; 1]

and
lim sup
n!1

fn(x) = 1 all x 2 [0; 1] :

3. If f 2 F(X) set

k f k0= inf f� 2 [0;1] ; �(j f j> �) � �g :

Let
L0(�) = ff 2 F(X); k f k0<1g

and identify functions in L0(�) which agree a.e. [�] :
(a) Prove that d(0) =k f � g k0 is a metric on L0(�) and that the corre-

sponding metric space is complete.

(b) Show that F(X) = L0(�) if � is a �nite positive measure.

4. Suppose Lp(X;M; �) is separable, where p = 1 or 2: Show that Lp(X;M�; ��)
is separable.

5. Suppose g is a real-valued, Lebesgue measurable, and bounded function
of period one. Prove that

lim
n!1

Z 1

�1
f(x)g(nx)dx =

Z 1

�1
f(x)dx

Z 1

0

g(x)dx
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for every f 2 L1(m):

6. Let hn(t) = 2 + sinnt; 0 � t � 1; and n 2 N+: Find real constants � and
� such that

lim
n!1

Z 1

0

f(t)hn(t)dt = �

Z 1

0

f(t)dt

and

lim
n!1

Z 1

0

f(t)

hn(t)
dt = �

Z 1

0

f(t)dt

for every real-valued Lebesgue integrable function f on [0; 1] :

7. If k = (k1; :::; kn) 2 Nn
+; set ek(x) = �

n
i=1 sin kixi; x = (x1; :::; xn) 2 Rn;

and j k j= (�ni=1k2i )
1
2 : Prove that

lim
jkj!1

Z
Rn

fekdmn = 0

for every f 2 L1(mn):

8. Suppose f 2 L1(mn); where mn denotes Lebesgue measure on Rn. Com-
pute the following limit and justify the calculations:

lim
jhj!1

Z
Rn

j f(x+ h)� f(x) j dx:

9. The set A � R has positive Lebesgue measure and

A+Q = fx+ y; x 2 A and y 2 Qg

where Q stands for the set of all rational numbers. Show that the set

Rn(A+Q)

is a Lebesgue null set. (Hint: The function f(x) = m(A�(A�x)); x 2 R; is
continuous.)
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4.2 Orthogonality

Suppose (X;M; �) is a positive measure space. If f; g 2 L2(�); let

hf; gi =def
Z
X

fgd�

be the so called scalar product of f and g: The Cauchy-Schwarz inequality

j hf; gi j�k f k2k g k2

shows that the map f ! hf; gi of L2(�) into R is continuous. Observe that

k f + g k22=k f k22 +2hf; gi+ k g k22

and from this we get the so called Parallelogram Law

k f + g k22 + k f � g k22= 2(k f k22 + k g k22):

We will say that f and g are orthogonal (abbr. f ? g) if hf; gi = 0: Note
that

k f + g k22=k f k22 + k g k22 if and only if f ? g:

Since f ? g implies g ? f; the relation ? is symmetric. Moreover, if
f ? h and g ? h then (�f + �g) ? h for all �; � 2R. Thus h? =def
ff 2 L2(�); f ? hg is a subspace of L2(�); which is closed since the map
f ! hf; hi; f 2 L2(�) is continuous. If M is a subspace of L2(�); the set

M? =def \h2Mh?

is a closed subspace of L2(�): The function f = 0 if and only if f ? f:
If M is a subspace of L2(�) and f 2 L2(�) there exists at most one point

g 2 M such that f � g 2 M?: To see this, let g0; g1 2 M be such that
f � gk 2M?; k = 0; 1: Then g1 � g0 = (f � g0)� (f � g1) 2M? and hence
g1 � g0 ? g1 � g0 that is g0 = g1:

Theorem 4.2.1. Let M be a closed subspace in L2(�) and suppose f 2
L2(�): Then there exists a unique point g 2M such that

k f � g k2�k f � h k2 all h 2M:
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Moreover,
f � g 2M?:

The function g in Theorem 4.2.1 is called the projection of f on M and
is denoted by ProjM f:

PROOF OF THEOREM 4.2.1. Set

d =def d
(2)(f;M) = inf

g2M
k f � g k2 :

and let (gn)1n=1 be a sequence in M such that

d = lim
n!1

k f � gn k2 :

Then, by the Parallelogram Law

k (f�gk)+(f�gn) k22 + k (f�gk)�(f�gn) k22= 2(k f�gk k22 + k f�gn k22)

that is

4 k f � 1
2
(gk + gn) k22 + k gn � gk k22= 2(k f � gk k22 + k f � gn k22)

and, since 1
2
(gk + gn) 2M; we get

4d2+ k gn � gk k22� 2(k f � gk k22 + k f � gn k22):

Here the right hand converges to 4d2 as k and n go to in�nity and we conclude
that (gn)1n=1 is a Cauchy sequence. Since L

2(�) is complete and M closed
there exists a g 2M such that gn ! g as n!1: Moreover,

d =k f � g k2 :

We claim that f � g 2 M?: To prove this choose h 2 M and � > 0
arbitrarily and use the inequality

k (f � g) + �h k22�k f � g k22

to obtain
k f � g k22 +2�hf � g; hi+ �2 k h k22�k f � g k22
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and
2hf � g; hi+ � k h k22� 0:

By letting �! 0; hf � g; hi � 0 and replacing h by �h; hf � g; hi � 0: Thus
f � g 2 h? and it follows that f � g 2M?:
The uniqueness in Theorem 4.2.1 follows from the remark just before the

formulation of Theorem 4.2.1. The theorem is proved.

A linear mapping T : L2(�) ! R is called a linear functional on L2(�):
If h 2 L2(�); the map h ! hf; hi of L2(�) into R is a continuous linear
functional on L2(�): It is a very important fact that every continuous linear
functional on L2(�) is of this type.

Theorem 4.2.2. Suppose T is a continuous linear functional on L2(�):
Then there exists a unique w 2 L2(�) such that

Tf = hf; wi all f 2 L2(�):

PROOF. Uniqueness: If w;w0 2 L2(�) and hf; wi= hf; w0i for all f 2 L2(�);
then hf; w�w0i = 0 for all f 2 L2(�): By choosing f = w�w0 we get f ? f
that is w = w0:

Existence: The set M =def T�1(f0g) is closed since T is continuous and
M is a linear subspace of L2(�) since T is linear. If M = L2(�) we choose
w = 0: Otherwise, pick a g 2 L2(�) nM:Without loss of generality it can be
assumed that Tg = 1 by eventually multiplying g by a scalar. The previous
theorem gives us a vector h 2 M such that u =def g � h 2 M?: Note that
0 <k u k22= hu; g � hi = hu; gi:
To conclude the proof, let �xed f 2 L2(�) be �xed; and use that (Tf)g�

f 2M to obtain
h(Tf)g � f; ui = 0

or
(Tf)hg; ui = hf; ui:
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By setting

w =
1

k u k22
u

we are done.

###
4.3. The Haar Basis and Wiener Measure

In this section we will show the existence of Brownian motion with continu-
ous paths as a consequence of the existence of linear measure � in the unit
interval. The so called Wiener measure is the probability law on C [0; 1] of
real-valued Brownian motion in the time interval [0; 1] : The Brownian mo-
tion process is named after the British botanist Robert Brown (1773-1858).
It was suggested by Lous Bachelier in 1900 as a model of stock price �uctua-
tions and later by Albert Einstein in 1905 as a model of the physical phenom-
enon Brownian motion. The existence of the mathematical Brownian motion
process was �rst established by Norbert Wiener in the twenties. Wiener also
proved that the model can be chosen such that the path t! W (t); 0 � t � 1;
is continuous a.s. Today Brownian motion is a very important concept in
probability, �nancial mathematics, partial di¤erential equations and in many
other �elds in pure and applied mathematics.
Suppose n is a non-negative integer and set In = f0; :::; ng : A sequence

(ei)i2In in L
2(�) is said to be orthonormal if ei ? ej for all i 6= j; i; j 2 In

and k ei k= 1 for each i 2 In: If (ei)i2In is orthonormal and f 2 L2(�);

f � �i2Inhf; eiiei ? ej all j 2 I

and Theorem 4.2.1 shows that

k f � �i2Inhf; eiiei k2�k f � �i2In�iei k2 all real �1; :::; �n:

Moreover

k f k22=k f � �i2Inhf; eiiei k22 + k �i2Inhf; eiiei k22

and we get
�i2Inhf; eii2 �k f k22 :
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We say that (en)n2In is an orthonormal basis in L
2(�) if it is orthonormal

and
f = �i2Inhf; eiiei all f 2 L2(�):

A sequence (ei)1i=0 in L
2(�) is said to be orthonormal if (ei)ni=0 is ortho-

normal for each non-negative integer n: In this case, for each f 2 L2(�);

�1i=0hf; eii2 �k f k22

and the series
�1i=0hf; eiiei

converges since the sequence

(�ni=0hf; eiiei)1n=0

of partial sums is a Cauchy sequence in L2(�): We say that (ei)1i=0 is an
orthonormal basis in L2(�) if it is orthonormal and

f = �1i=0hf; eiiei for all f 2 L2(�):

Theorem 4.3.1. An orthonormal sequence (ei)1i=0 in L2(�) is a basis of
L2(�) if

(hf; eii = 0 all i 2 N)) f = 0

Proof. Let f 2 L2(�) and set

g = f � �1i=0hf; eiiei:

Then, for any j 2 N;

hg; eji = hf � �1i=0hf; eiiei; eji

= hf; eji � �1i=0hf; eiihei; eji = hf; eji � hf; eji = 0:
Thus g = 0 or

f = �1i=0hf; eiiei:
The theorem is proved.
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As an example of an application of Theorem 4.3.1 we next construct an
orthonormal basis of L2(�), where � is linear measure in the unit interval.
Set

H(t) = �[0; 12 [
(t)� �[ 12 ;1]

(t); t 2 R

Moreover, de�ne h00(t) = 1; 0 � t � 1; and for each n � 1 and j = 1; :::; 2n�1,

hjn(t) = 2
n�1
2 H(2n�1t� j + 1); 0 � t � 1:

Stated otherwise, we have for each n � 1 and j = 1; :::; 2n�1

hjn(t) =

8>>>>><>>>>>:
2
n�1
2 ; j�1

2n�1 � t <
j� 1

2

2n�1 ;

�2n�12 ; j�
1
2

2n�1 � t � j
2n�1 ;

0; elsewhere in [0; 1] :

It is simple to show that the sequence h00;hjn; j = 1; :::; 2n�1; n � 1; is
orthonormal in L2(�). We will prove that the same sequence constitute an
orthonormal basis of L2(�): Therefore, suppose f 2 L2(�) is orthogonal to
each of the functions h00;hjn; j = 1; :::; 2n�1; n � 1: Then for each n � 1 and
j = 1; :::; 2n�1 Z j� 1

2
2n�1

j�1
2n�1

fd� =

Z j

2n�1

j� 1
2

2n�1

fd�

and, hence, Z j

2n�1

j�1
2n�1

fd� =
1

2n�1

Z 1

0

fd� = 0

since Z 1

0

fd� =

Z 1

0

fh00d� = 0:

Thus Z k
2n�1

j

2n�1

fd� = 0; 1 � j � k � 2n�1

and we conclude thatZ 1

0

1[a;b]fd� =

Z b

a

fd� = 0; 0 � a � b � 1:
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Accordingly from this, f = 0 and we are done.
The above basis (hk)1k=0 = (h00;h11; h12; h22; h13; h23; h33; h43; :::) of L

2(�)
is called the Haar basis.
Let 0 � t � 1 and de�ne for �xed k 2 N

ak(t) =

Z 1

0

�[0;t](x)hk(x)dx =

Z t

0

hkd�

so that
�[0;t] = �

1
k=0ak(t)hk in L

2(�):

Then, if 0 � s; t � 1;

min(s; t) =

Z 1

0

�[0;s](x)�[0;t](x)dx = h�1k=1ak(s)hk; �[0;t]i

= �1k=0ak(s)hhk; �[0;t]i = �1k=0ak(s)ak(t):
Note that

t = �1k=0a
2
k(t):

If (Gk)1k=0 is a sequence of N(0; 1) distributed random variables based on
a probability space (
;F ; P ) the series

�1k=0ak(t)Gk

converges in L2(P ) and de�nes a Gaussian random variable which we denote
by W (t): From the above it follows that (W (t))0�t�1 is a real-valued centred
Gaussian stochastic process with the covariance

E [W (s)W (t)] = min(s; t):

Such a process is called a real-valued Brownian motion in the time interval
[0; 1] :
Recall that

(h00;h11; h12; h22; h13; h23; h33; h43; :::) = (hk)
1
k=0:

We de�ne
(a00;a11; a12; a22; a13; a23; a33; a43; :::) = (ak)

1
k=0

and
(G00;G11; G12; G22; G13; G23; G33; G43; :::) = (Gk)

1
k=0:
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It is important to note that for �xed n;

ajn(t) =

Z t

0

�[0;t](x)hjn(x)dx 6= 0 for at most one j:

Set
U0(t) = a00(t)G00

and
Un(t) = �

2n�1

j=1 ajn(t)Gjn; n 2 N+:

We know that
W (t) = �1n=0Un(t) in L

2(P )

for �xed t:
The space C [0; 1] will from now on be equipped with the metric

d(x; y) =k x� y k1

where k x k1= max0�t�1 j x(t) j : Recall that every x 2 C [0; 1] is uniformly
continuous. From this, remembering that R is separable, it follows that the
space C [0; 1] is separable. Since R is complete it is also simple to show that
the metric space C [0; 1] is complete. Finally, if xn 2 C [0; 1] ; n 2N; and

�1n=0 k xn k1<1

the series
�1n=0xn

converges since the partial sums

sn = �
n
k=0xk; k 2 N

forms a Cauchy sequence.
We now de�ne

� = f! 2 
;�1n=0 k Un k1<1g :

Here � 2 F since
k Un k1= sup

0�t�1
t2Q

j Un(t) j

for each n: Next we prove that 
 n� is a null set.
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To this end let n � 1 and note that

P
�
k Un k1> 2�

n
4

�
� P

�
max

1�j�2n�1
(k ajn k1j Gjn j) > 2�

n
4

�
:

But
k ajn k1=

1

2
n+1
2

and, hence,

P
�
k Un k1> 2�

n
4

�
� 2n�1P

h
j G00 j> 2

n
4
+ 1
2

i
:

Since

x � 1) P [j G00 j� x] � 2
Z 1

x

ye�y
2=2 dy

x
p
2�
� e�x

2=2

we get
P
�
k Un k1> 2�

n
4

�
� 2ne�2n=2

and conclude that

E

" 1X
n=0

1[kUnk1>2�
n
4 ]

#
=

1X
n=0

P
�
k Un k1> 2�

n
4

�
<1:

From this and the Beppo Levi Theorem (or the �rst Borel-Cantelli Lemma)
P [�] = 1:
The trajectory t ! W (t; !); 0 � t � 1; is continuous for every ! 2 �:

Without loss of generality, from now on we can therefore assume that all
trajectories of Brownian motion are continuous (by eventually replacing 

by �):
Suppose

0 � t1 < ::: < tn � 1
and let I1; :::; In be open subintervals of the real line. The set

S(t1; :::; tn; I1; :::; In) = fx 2 C [0; 1] ; x(tk) 2 Ik; k = 1; :::; ng

is called an open n-cell in C [0; 1] : A set in C [0; T ] is called an open cell if
there exists an n 2 N+ such that it is an open n-cell. The �-algebra generated
by all open cells in C [0; 1] is denoted by C: The construction above shows
that the map

W : 
! C [0; 1]
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which maps ! to the trajectory

t! W (t; !); 0 � t � 1

is (F ; C)-measurable. The image measure PW is called Wiener measure in
C [0; 1] :
The Wiener measure is a Borel measure on the metric space C [0; 1] : We

leave it as an excersice to prove that

C = B(C [0; 1]):

"""
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CHAPTER 5

DECOMPOSITION OF MEASURES

Introduction

In this section a version of the fundamental theorem of calculus for Lebesgue
integrals will be proved. Moreover, the concept of di¤erentiating a measure
with respect to another measure will be developped. A very important result
in this chapter is the so called Radon-Nikodym Theorem.

5:1: Complex Measures

Let (X;M) be a measurable space. Recall that if An � X; n 2 N+, and
Ai \Aj = � if i 6= j, the sequence (An)n2N+ is called a disjoint denumerable
collection. The collection is called a measurable partition of A if A = [1n=1An
and An 2M for every n 2 N+:
A complex function � onM is called a complex measure if

�(A) = �1n=1�(An)

for every A 2M and measurable partition (An)1n=1 of A: Note that �(�) = 0
if � is a complex measure. A complex measure is said to be a real measure
if it is a real function. The reader should note that a positive measure need
not be a real measure since in�nity is not a real number. If � is a complex
measure � = �Re+ i�Im , where �Re =Re � and �Im =Im � are real measures.
If (X;M; �) is a positive measure and f 2 L1(�) it follows that

�(A) =

Z
A

fd�; A 2M

is a real measure and we write d� = fd�.
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A function � :M! [�1;1] is called a signed measure measure if

(a) � :M! ]�1;1] or � :M! [�1;1[
(b) �(�) = 0
and
(c) for every A 2M and measurable partition (An)1n=1 of A;

�(A) = �1n=1�(An)

where the latter sum converges absolutely if �(A) 2 R:

Here �1 � 1 = �1 and �1 + x = �1 if x 2 R: The sum of a
positive measure and a real measure and the di¤erence of a real measure and
a positive measure are examples of signed measures and it can be proved that
there are no other signed measures (see Folland [F ]). Below we concentrate
on positive, real, and complex measures and will not say more about signed
measures here.
Suppose � is a complex measure onM and de�ne for every A 2M

j � j (A) = sup�1n=1 j �(An) j;

where the supremum is taken over all measurable partitions (An)1n=1 of A:
Note that j � j (�) = 0 and

j � j (A) �j �(B) j if A;B 2M and A � B:

The set function j � j is called the total variation of � or the total variation
measure of �: It turns out that j � j is a positive measure. In fact, as will
shortly be seen, j � j is a �nite positive measure.

Theorem 5.1.1. The total variation j � j of a complex measure is a positive
measure.

PROOF. Let (An)1n=1 be a measurable partition of A:
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For each n; suppose an <j � j (An) and let (Ekn)1k=1 be a measurable
partition of An such that

an < �
1
k=1 j �(Ekn) j :

Since (Ekn)1k;n=1 is a partition of A it follows that

�1n=1an < �
1
k;n=1 j �(Ekn) j�j � j (A):

Thus
�1n=1 j � j (An) �j � j (A):

To prove the opposite inequality, let (Ek)1k=1 be a measurable partition of
A: Then, since (An\Ek)1n=1 is a measurable partition of Ek and (An\Ek)1k=1
a measurable partition of An;

�1k=1 j �(Ek) j= �1k=1 j �1n=1�(An \ Ek) j

� �1k;n=1 j �(An \ Ek) j� �1n=1 j � j (An)

and we get
j � j (A) � �1n=1 j � j (An):

Thus
j � j (A) = �1n=1 j � j (An):

Since j � j (�) = 0, the theorem is proved.

Theorem 5.1.2. The total variation j � j of a complex measure � is a �nite
positive measure.

PROOF. Since
j � j�j �Re j + j �Im j

there is no loss of generality to assume that � is a real measure.
Suppose j � j (E) =1 for some E 2M: We �rst prove that there exist

disjoint sets A;B 2M such that

A [B = E
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and
j �(A) j> 1 and j � j (B) =1:

To this end let c = 2(1+ j �(E) j) and let (Ek)1k=1 be a measurable partition
of E such that

�nk=1 j �(Ek) j> c

for some su¢ ciently large n: There exists a subset N of f1; :::; ng such that

j �k2N�(Ek) j>
c

2
:

Set A = [k2NEk and B = E n A: Then j �(A) j> c
2
� 1 and

j �(B) j=j �(E)� �(A) j

�j �(A) j � j �(E) j> c

2
� j �(E) j= 1:

Since 1 =j � j (E) =j � j (A)+ j � j (B) we have j � j (A) = 1 or
j � j (B) = 1: If j � j (B) < 1 we interchange A and B and have
j �(A) j> 1 and j � j (B) =1:
Suppose j � j (X) =1: Set E0 = X and choose disjoint sets A0; B0 2M

such that
A0 [B0 = E0

and
j �(A0) j> 1 and j � j (B0) =1:

Set E1 = B0 and choose disjoint sets A1; B1 2M such that

A1 [B1 = E1

and
j �(A1) j> 1 and j � j (B1) =1:

By induction, we �nd a measurable partition (An)1n=0 of the set A =def
[1n=0An such that j �(An) j> 1 for every n: Now, since � is a complex
measure,

�(A) = �1n=0�(An):

But this series cannot converge, since the general term does not tend to zero
as n!1: This contradiction shows that j � j is a �nite positive measure.
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If � is a real measure we de�ne

�+ =
1

2
(j � j +�)

and

�� =
1

2
(j � j ��):

The measures �+ and �� are �nite positive measures and are called the
positive and negative variations of �; respectively . The representation

� = �+ � ��

is called the Jordan decomposition of �:

Exercises

1. Suppose (X;M; �) is a positive measure space and d� = fd�; where
f 2 L1(�): Prove that d j � j=j f j d�:

2. Suppose �; �; and � are real measures de�ned on the same �-algebra and
� � � and � � �: Prove that

� � min(�; �)

where

min(�; �) =
1

2
(�+ �� j �� � j):

3. Suppose � :M! C is a complex measure and f; g : X ! R measurable
functions. Show that

j �(f 2 A)� �(g 2 A) j�j � j (f 6= g)
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for every A 2 R:

5.2. The Lebesque Decomposition and the Radon-Nikodym Theo-
rem

Let � be a positive measure on M and � a positive or complex measure
onM: The measure � is said to be absolutely continuous with respect to �
(abbreviated � << �) if �(A) = 0 for every A 2 M for which �(A) = 0: If
we de�ne

Z� = fA 2M; �(A) = 0g
it follows that � << � if and only if

Z� � Z�:

For example, 
n << vn and vn << 
n:
The measure � is said to be concentrated on E 2 M if � = �E , where

�E(A) =def �(E \ A) for every A 2 M: This is equivalent to the hypoth-
esis that A 2 Z� if A 2 M and A \ E = �: Thus if E1; E2 2 M, where
E1 � E2; and � is concentrated on E1; then � is concentrated on E2: More-
over, if E1; E2 2 M and � is concentrated on both E1 and E2; then � is
concentrated on E1 \ E2: Two measures �1 and �2 are said to be mutually
singular (abbreviated �1 ? �2) if there exist disjoint measurable sets E1 and
E2 such that �1 is concentrated on E1 and �2 is concentrated on E2:

Theorem 5.2.1. Let � be a positive measure and �; �1; and �2 complex
measures.
(i) If �1 << � and �2 << �; then (�1�1 + �2�2) << � for all complex

numbers �1 and �2:
(ii) If �1 ? � and �2 ? �; then (�1�1 + �2�2) ? � for all complex

numbers �1 and �2:
(iii) If � << � and � ? �; then � = 0:
(iv) If � << �; then j � j<< �:

PROOF. The properties (i) and (ii) are simple to prove and are left as exer-
cises.
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To prove (iii) suppose E 2 M is a �-null set and � = �E: If A 2 M, then
�(A) = �(A \ E) and A \ E is a �-null set. Since � << � it follows that
A \ E 2 Z� and, hence, �(A) = �(A \ E) = 0: This proves (iii)
To prove (iv) suppose A 2 M and �(A) = 0: If (An)1n=1 is measurable

partition of A; then �(An) = 0 for every n: Since � << �; �(An) = 0 for
every n and we conclude that j � j (A) = 0: This proves (vi).

Theorem 5.2.2. Let � be a positive measure onM and � a complex measure
on M: Then the following conditions are equivalent:
(a) � << �:
(b) To every " > 0 there corresponds a � > 0 such that j �(E) j< " for

all E 2M with �(E) < �:

If � is a positive measure, the implication (a)) (b) in Theorem 5.2.2 is,
in general, wrong. To see this take � = 
1 and � = v1: Then � << � and if
we choose An = [n;1[ ; n 2 N+; then �(An)! 0 as n!1 but �(An) =1
for each n:

PROOF. (a))(b). If (b) is wrong there exist an " > 0 and sets En 2 M,
n 2 N+; such that j �(En) j� " and �(En) < 2�n: Set

An = [1k=nEk and A = \1n=1An:

Since An � An+1 � A and �(An) < 2�n+1, it follows that �(A) = 0 and
using that j � j (An) �j �(En) j; Theorem 1.1.2 (f) implies that

j � j (A) = lim
n!1

j � j (An) � ":

This contradicts that j � j<< �:

(b))(a). If E 2 M and �(E) = 0 then to each " > 0; j �(E) j< "; and we
conclude that �(E) = 0: The theorem is proved:
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Theorem 5.2.3. Let � be a �-�nite positive measure and � a real measure
on M.
(a) (The Lebesgue Decomposition of �) There exists a unique pair

of real measures �a and �s onM such that

� = �a + �s; �a << �; and �s ? �:

If � is a �nite positive measure, �a and �s are �nite positive measures.
(b) (The Radon-Nikodym Theorem) There exits a unique g 2 L1(�)

such that
d�a = gd�:

If � is a �nite positive measure, g � 0 a.e. [�] :

The proof of Theorem 5.2.3 is based on the following

Lemma 5.2.1. Let (X;M; �) be a �nite positive measure space and suppose
f 2 L1(�):
(a) If a 2 R and Z

E

fd� � a�(E); all E 2M

then f � a a.e. [�].
(b) If b 2 R and Z

E

fd� � b�(E); all E 2M

then f � b a.e. [�].

PROOF. (a) Set g = f � a so thatZ
E

gd� � 0; all E 2M:

Now choose E = fg > 0g to obtain

0 �
Z
E

gd� =

Z
X

�Egd� � 0
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as �Eg � 0 a.e. [�] : But then Example 2.1.2 yields �Eg = 0 a.e. [�] and we
get E 2 Z�: Thus g � 0 a.e. [�] or f � a a.e. [�] :

Part (b) follows in a similar way as Part (a) and the proof is omitted
here.

PROOF. Uniqueness: (a) Suppose �(k)a and �(k)s are real measures onM such
that

� = �(k)a + �(k)s ; �(k)a << �; and �(k)s ? �

for k = 1; 2: Then
�(1)a � �(2)a = �(2)s � �(1)s

and
�(1)a � �(2)a << � and �(1)a � �(2)a ? �:

Thus by applying Theorem 5.2.1, �(1)a � �(2)a = 0 and �(1)a = �(2)a : From this
we conclude that �(1)s = �(2)s .
(b) Suppose gk 2 L1(�); k = 1; 2; and

d�a = g1d� = g2d�:

Then hd� = 0 where h = g1 � g2: But thenZ
fh>0g

hd� = 0

and it follows that h � 0 a.e. [�] : In a similar way we prove that h � 0 a.e.
[�]. Thus h = 0 in L1(�); that is g1 = g2 in L1(�):

Existence: The beautiful proof that follows is due to von Neumann.
First suppose that � and � are �nite positive measures and set � = �+�:

Clearly, L1(�) � L1(�) � L2(�): Moreover, if f : X ! R is measurableZ
X

j f j d� �
Z
X

j f j d� �

sZ
X

f 2d�
p
�(X)

and from this we conclude that the map

f !
Z
X

fd�
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is a continuous linear functional on L2(�): Therefore, in view of Theorem
4.2.2, there exists a g 2 L2(�) such thatZ

X

fd� =

Z
X

fgd� all f 2 L2(�):

Suppose E 2M and put f = �E to obtain

0 � �(E) =

Z
E

gd�

and, since � � �;

0 �
Z
E

gd� � �(E):

But then Lemma 5.2.1 implies that 0 � g � 1 a.e. [�] : Therefore, without
loss of generality we can assume that 0 � g(x) � 1 for all x 2 X and, in
addition, as above Z

X

fd� =

Z
X

fgd� all f 2 L2(�)

that is Z
X

f(1� g)d� =

Z
X

fgd� all f 2 L2(�):

Put A = f0 � g < 1g, S = fg = 1g ; �a = �A; and �s = �S: Note that
� = �A+�S: The choice f = �S gives �(S) = 0 and hence �s ? �: Moreover,
the choice

f = (1 + :::+ gn)�E

where E 2M; givesZ
E

(1� gn+1)d� =

Z
E

(1 + :::+ gn)gd�:

By letting n!1 and using monotone convergence

�(E \ A) =
Z
E

hd�:

where
h = lim

n!1
(1 + :::+ gn)g:
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Since h is non-negative and

�(A) =

Z
X

hd�

it follows that h 2 L1(�): Moreover, the construction above shows that � =
�a + �s:
In the next step we assume that � is a �-�nite positive measure and �

a �nite positive measure. Let (Xn)
1
n=1 be a measurable partition of X such

that �(Xn) < 1 for every n: Let n be �xed and apply Part (a) to the pair
�Xn and �Xn to obtain �nite positive measures (�Xn)a and (�

Xn)s such that

�Xn = (�Xn)a + (�
Xn)s; (�

Xn)a << �Xn ; and (�Xn)s ? �Xn

and
d(�Xn)a = hnd�

Xn (or (�Xn)a = hn�
Xn)

where 0 � hn 2 L1(�Xn): Without loss of generality we can assume that
hn = 0 o¤Xn and that (�

Xn)s is concentrated on An � Xn where An 2 Z�:
In particular, (�Xn)a = hn�: Now

� = h�+ �1n=1(�
Xn)s

where
h = �1n=1hn

and Z
X

hd� � �(X) <1:

Thus h 2 L1(�): Moreover, �s =def �1n=1(�Xn)s is concentrated on [1n=1An 2
Z�: Hence �s ? �:
Finally if � is a real measure we apply what we have already proved to

the positive and negative variations of � and we are done.

Example 5.2.1. Let � be Lebesgue measure in the unit interval and � the
counting measure in the unit interval restricted to the class of all Lebesgue
measurable subsets of the unit interval. Clearly, � << �: Suppose there is an
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h 2 L1(�) such that d� = hd�. We can assume that h � 0 and the Markov
inequality implies that the set fh � "g is �nite for every " > 0: But then

�(h 2 ]0; 1]) = lim
n!1

�(h � 2�n) = 0

and it follows that 1 = �(h = 0) =
R
fh=0g hd� = 0; which is a contradiction.

Corollary 5.2.1. Suppose � is a real measure. Then there exists

h 2 L1(j � j)

such that j h(x) j= 1 for all x 2 X and

d� = hd j � j :

PROOF. Since j �(A) j�j � j (A) for every A 2 M, the Radon-Nikodym
Theorem implies that d� = hd j � j for an appropriate h 2 L1(j � j): But
then d j � j=j h j d j � j (see Exercise 1 in Chapter 5.1): Thus

j � j (E) =
Z
E

j h j d j � j; all E 2M

and Lemma 5.2.1 yields h = 1 a.e. [j � j] : From this the theorem follows at
once.

Theorem 5.2.4. (Hahn�s Decomposition Theorem) Suppose � is a
real measure. There exists an A 2M such that

�+ = �A and �� = ��Ac :

PROOF. Let d� = hd j � j where j h j= 1: Note that hd� = d j � j : Set
A = fh = 1g : Then

d�+ =
1

2
(d j � j +d�) = 1

2
(h+ 1)d� = �Ad�
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and
d�� = d�+ � d� = (�A � 1)d� = ��Acd�:

The theorem is proved.

If a real measure � is absolutely continuous with respect to a �-�nite
positive measure �, the Radon-Nikodym Theorem says that d� = fd� for an
approprite f 2 L1(�): We sometimes write

f =
d�

d�

and call f the Radon-Nikodym derivate of � with respect to �:

Exercises

1. Let � be a �-�nite positive measure on (X;M) and (fn)n2N a sequence of
measurable functions which converges in �-measure to a measurable function
f: Moreover, suppose � is a �nite positive measure on (X;M) such that
� << �: Prove that fn ! f in �-measure.

2. Suppose � and �n; n 2N, are positive measures de�ned on the same
�-algebra and set � = �1n=0�n. Prove that
a) � ? � if �n ? �; all n 2 N:
b) � << � if �n << �; all n 2 N:

3. Suppose � is a real measure and � = �1 � �2; where �1 and �2 are �nite
positive measures. Prove that �1 � �+ and �2 � ��:

4. Let �1 and �2 be mutually singular complex measures on the same �-
algebra: Show that j �1 j?j �2 j :
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5. Let (X;M; �) be a �-�nite positive measure space and suppose � and �
are two probability measures de�ned on the �-algebraM such that � << �
and � << �: Prove that

sup
A2M

j �(A)� �(A) j= 1

2

Z
X

j d�
d�
� d�

d�
j d�:

6. Let (X;M) be a measurable space and suppose �; �:M!R and are real
measures. Prove that

(�+ �)+ � �+ + �+:

5.3. The Wiener Maximal Theorem and the Lebesgue Di¤erentia-
tion Theorem

We say that a Lebesgue measurable function f in Rn is locally Lebesgue in-
tegrable and belongs to the class L1loc(mn) if f�K 2 L1(mn) for each compact
subset K of Rn: In a similar way f 2 L1loc(vn) if f is a Borel function such
that f�K 2 L1(vn) for each compact subset K of Rn: If f 2 L1loc(mn); we
de�ne the average Arf(x) of f on the open ball B(x; r) as

Arf(x) =
1

mn(B(x; r))

Z
B(x;r)

f(y)dy:

It follows from dominated convergence that the map (x; r) ! Arf(x) of
Rn � ]0;1[ into R is continuous. The Hardy-Littlewood maximal function
f � is, by de�nition, f � = supr>0Ar j f j or, stated more explicitly,

f �(x) = sup
r>0

1

mn(B(x; r))

Z
B(x;r)

j f(y) j dy; x 2 Rn:

The function f � : (Rn;B(Rn))! ([0;1] ;R0;1) is measurable since

f � = sup
r>0
r2Q

Ar j f j :
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Theorem 5.3.1. (Wiener�s Maximal Theorem) There exists a positive
constant C = Cn <1 such that for all f 2 L1(mn);

mn(f
� > �) � C

�
k f k1 if � > 0:

The proof of the Wiener Maximal Theorem is based on the following
remarkable result.

Lemma 5.3.1. Let C be a collection of open balls in Rn and set V = [B2CB:
If c < mn(V ) there exist pairwise disjoint B1; :::; Bk 2 C such that

�ki=1mn(Bi) > 3
�nc:

PROOF. LetK � V be compact withmn(K) > c; and suppose A1; :::; Ap 2 C
cover K: Let B1 be the largest of the A0is (that is, B1 has maximal radius),
let B2 be the largest of the A0is which are disjoint from B1; let B3 be the
largest of the A0is which are disjoint from B1[B2; and so on until the process
stops after k steps. If Bi = B(xi; ri) put B�

i = B(xi; 3ri): Then [ki=1B�
i � K

and
c < �ki=1mn(B

�
i ) = 3

n�ki=1mn(Bi):

The lemma is proved.

PROOF OF THEOREM 5.3.1. Set

E� = ff � > �g :

For each x 2 E� choose an rx > 0 such that Arx j f j (x) > �: If c < mn(E�);
by Lemma 5.3.1 there exist x1; :::; xk 2 E� such that the balls Bi = B(xi; rxi);
i = 1; :::; k; are mutually disjoint and

�ki=1mn(Bi) > 3
�nc:

But then

c < 3n�ki=1mn(Bi) <
3n

�
�ki=1

Z
Bi

j f(y) j dy � 3n

�

Z
Rn

j f(y) j dy:
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The theorem is proved.

Theorem 5.3.2. If f 2 L1loc(mn);

lim
r!0

1

mn(B(x; r))

Z
B(x;r)

f(y)dy = f(x) a.e. [mn] :

PROOF. Clearly, there is no loss of generality to assume that f 2 L1(mn):
Suppose g 2 Cc(Rn) =def ff 2 C(Rn); f(x) = 0 if j x j large enoughg. Then

lim
r!0

Arg(x) = g(x) all x 2 Rn:

Since Arf � f = Ar(f � g)� (f � g) + Arg � g;

lim
r!0

j Arf � f j� (f � g)�+ j f � g j :

Now, for �xed � > 0;
mn(lim

r!0
j Arf � f j> �)

� mn((f � g)� >
�

2
) +mn(j f � g j> �

2
)

and the Wiener Maximal Theorem and the Markov Inequality give

mn(lim
r!0

j Arf � f j> �)

� (2C
�
+
2

�
) k f � g k1 :

Remembering that Cc(Rn) is dense in L1(mn); the theorem follows at once.

If f 2 L1loc(mn) we de�ne the so called Lebesgue set Lf to be

Lf =

�
x; lim

r!0

1

mn(B(x; r))

Z
B(x;r)

j f(y)� f(x) j dy = 0
�
:

Note that if q is real and

Eq =

�
x; lim

r!0

1

mn(B(x; r))

Z
B(x;r)

j f(y)� q j dy =j f(x)� q j
�
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then mn([q2QEcq) = 0: If x 2 \q2QEq;

lim
r!0

1

mn(B(x; r))

Z
B(x;r)

j f(y)� f(x) j dy � 2 j f(x)� q j

for all rational numbers q and it follows that mn(L
c
f ) = 0:

A family Ex = (Ex;r)r>0 of Borel sets in Rn is said to shrink nicely to a
point x in Rn if Ex;r � B(x; r) for each r and there is a positive constant �;
independent of r; such that mn(Ex;r) � �mn(B(x; r)):

Theorem 5.3.3. (The Lebesgue Di¤erentiation Theorem) Suppose
f 2 L1loc(mn) and x 2 Lf : Then

lim
r!0

1

mn(Ex;r)

Z
Ex;r

j f(y)� f(x) j dy = 0

and

lim
r!0

1

mn(Ex;r)

Z
Ex;r

f(y)dy = f(x):

PROOF. The result follows from the inequality

1

mn(Ex;r)

Z
Ex;r

j f(y)� f(x) j dy � 1

�mn(B(x; r))

Z
B(x;r)

j f(y)� f(x) j dy:

Theorem 5.3.4. Suppose � is a real or positive measure on Rn and suppose
� ? vn: If � is a positive measure it is assumed that �(K) < 1 for every
compact subset of Rn. Then

lim
r!0

�(Ex;r)

vn(Ex;r)
= 0 a.e. [vn]

If Ex;r = B(x; r) and � is the counting measure cQn restricted to Rn then
� ? vn but the limit in Theorem 5.3.4 equals plus in�nity for all x 2 Rn: The
hypothesis "�(K) <1 for every compact subset of Rn" in Theorem 5.3.4 is
not super�ous.
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PROOF. Since j �(E) j�j � j (E) if E 2 Rn; there is no restriction to assume
that � is a positive measure (cf. Theorem 3.1.4). Moreover, since

�(Ex;r)

vn(Ex;r)
� �(B(x; r))

�vn(B(x; r))

it can be assumed that Ex;r = B(x; r): Note that the function �(B(�; r))
is Borel measurable for �xed r > 0 and �(B(x; �)) left continuous for �xed
x 2 Rn:
Suppose A 2 Z� and vn = (vn)A: Given � > 0; it is enough to prove that

F 2 Zvn where

F =

�
x 2 A; lim

r!0

�(B(x; r))

mn(B(x; r))
> �

�
To this end let " > 0 and use Theorem 3.1.3 to get an open U � A such that
�(U) < ": For each x 2 F there is an open ball Bx � U such that

�(Bx) > �vn(Bx):

If V = [x2FBx and c < vn(V ) we use Lemma 5.3.1 to obtain x1; :::; xk such
that Bx1 ; :::; Bxk are pairwise disjoint and

c < 3n�ki=1vn(Bxi) < 3
n��1�ki=1�(Bxi)

� 3n��1�(U) < 3n��1":
Thus vn(V ) � 3n��1": Since V � F 2 Rn and " > 0 is arbitrary, vn(F ) = 0
and the theorem is proved.

Corollary 5.3.1. Suppose F : R!R is an increasing function. Then F 0(x)
exists for almost all x with respect to linear measure.

PROOF. Let D be the set of all points of discontinuity of F: Suppose �1 <
a < b <1 and " > 0: If a < x1 < ::: < xn < b; where x1; :::; xn 2 D and

F (xk+)� F (xk�) � "; k = 1; :::; n



173

then
n" � �nk=1(F (xk+)� F (xk�)) � F (b)� F (a):

Thus D \ [a; b] is at most denumerable and it follows that D is at most
denumerable. Set H(x) = F (x+) � F (x); x 2 R; and let (xj)Nj=0 be an
enumeration of the members of the set fH > 0g : Moreover, for any a > 0;X

jxj j<a

H(xj) �
X
jxj j<a

(F (xj+)� F (xj�))

� F (a)� F (�a) <1:

Now, if we introduce

�(A) = �Nj=0H(xj)�xj(A); A 2 R

then � is a positive measure such that �(K) < 1 for each compact subset
K of R. Furthermore, if h is a non-zero real number;

j 1
h
(H(x+ h)�H(x) j� 1

j h j(H(x+ h) +H(x)) � 4 1

4 j h j�(B(x; 2 j h j)

and Theorem 5.3.4 implies that H 0(x) = 0 a.e. [v1]. Therefore, without loss
of generality it may be assumed that F is right continuous and, in addition,
there is no restriction to assume that F (+1)� F (�1) <1:
By Section 1.6 F induces a �nite positive Borel measure � such that

�(]x; y]) = F (y)� F (x) if x < y:

Now consider the Lebesgue decomposition

d� = fdv1 + d�

where f 2 L1(v1) and � ? v1: If x < y;

F (y)� F (x) =

Z y

x

f(t)dt+ �(]x; y])

and the previous two theorems imply that

lim
y#x

F (y)� F (x)

y � x
= f(x) a.e. [v1]
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If y < x;

F (x)� F (y) =

Z x

y

f(t)dt+ �(]y; x])

and we get

lim
y"x

F (y)� F (x)

y � x
= f(x) a.e. [v1] :

The theorem is proved.

Exercises

1. Suppose F : R! R is increasing and let f 2 L1loc(v1) be such that
F 0(x) = f(x) a.e. [v1] : Prove thatZ y

x

f(t)dt � F (y)� F (x) if�1 < x � y <1:

5.4. Absolutely Continuous Functions and Functions of Bounded
Variation

Throughout this section a and b are reals with a < b and to simplify notation
we set ma;b = mj[a;b]: If f 2 L1(ma;b) we know from the previous section that
the function

(If)(x) =def

Z x

a

f(t)dt; a � x � b

has the derivative f(x) a.e. [ma;b] ; that is

d

dx

Z x

a

f(t)dt = f(x) a.e. [ma;b] :

Our next main task will be to describe the range of the linear map I:
A function F : [a; b] ! R is said to be absolutely continuous if to every

" > 0 there exists a � > 0 such that

�ni=1 j bi � ai j< � implies �ni=1 j F (bi)� F (ai) j< "
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whenever ]a1; b1[ ; :::; ]an; bn[ are disjoint open subintervals of [a; b]. It is ob-
vious that an absolutely continuous function is continuous. It can be proved
that the Cantor function is not absolutely continuous.1.

Theorem 5.4.1. If f 2 L1(ma;b); then If is absolutely continuous.

PROOF. There is no restriction to assume f � 0: Set

d� = fdma;b:

By Theorem 5.2.2, to every " > 0 there exists a � > 0 such that �(A) < "
for each Lebesgue set A in [a; b] such that ma;b(A) < �: Now restricting A to
be a �nite disjoint union of open intervals, the theorem follows.

Suppose �1 � � < � � 1 and F : ]�; �[! R: For every x 2 ]�; �[ we
de�ne

TF (x) = sup�
n
i=1 j F (xi)� F (xi�1) j

where the supremum is taken over all positive integers n and all choices
(xi)

n
i=0 such that

� < x0 < x1 < ::: < xn = x < �:

The function TF : ]�; �[! [0;1] is called the total variation of F: Note that
TF is increasing. If TF is a bounded function, F is said to be of bounded varia-
tion. A bounded increasing function on R is of bounded variation. Therefore
the di¤erence of two bounded increasing functions on R is of bounded vari-
ation. Interestingly enough, the converse is true. In the special case ]�; �[ =
R we write F 2 BV if F is of bounded variation.

Example 5.4.1. Let f :R! R be a Lebesgue integrable function and de�ne

g(x) =

Z 1

�1
e�jyjf(x� y)dy if x 2 R:
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We claim that g is a continuous function of bounded variation.
To prov this claim put h(x) = e�jxj if x 2 R so that

g(x) =

Z 1

�1
h(x� y)f(y)dy.

We �rst prove that the function h is continuous. To this end suppose
(an)n2N+ is a sequence of real numbers which converges to a real number a:
Then

j h(an � y)f(y)) j2j f(y)) j if n 2 N+ and y 2 R
and since f 2 L1(m) by dominated convergence,

lim
n!1

g(an) =

Z 1

�1
lim
n!1

h(an � y)f(y)dy =Z 1

�1
h(a� y)f(y)dy = g(a)

and it follows that g is continuous.
We next prove that the function h is of bounded variation. Recall that

the total variation function Th(x) of h at the point x is the supremum of all
sums of the type

nX
i=1

j h(xi)� h(xi�1) j

where
�1 < x0 < x1 < ::: < xn = x <1:

We claim that h is the di¤erence of two bounded increasing functions. Setting

 (x) = emin(0;x)

and observing that
h(x) =  (x) +  (�x)� 1

the claim above is obvious and

C =def supTh <1:

Moreover, if �1 < x0 < x1 < ::: < xn <1;

nX
i=1

j g(xi)� g(xi�1) j=
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nX
i=1

j
Z 1

�1
h(xi � y)f(y)dy �

Z 1

�1
h(xi�1 � y)f(y)dy j

�
nX
i=1

Z 1

�1
j h(xi � y)� h(xi�1 � y) jj f(y) j dy

Z 1

�1

 
nX
i=1

j h(xi � y)� h(xi�1 � y) j
!
j f(y) j dy

�
Z 1

�1
C j f(y) j dy = C

Z 1

�1
j f(y) j dy <1:

Hence g is of bounded variation.

Theorem 5.4.2. Suppose F 2 BV:
(a) The functions TF + F and TF � F are increasing and

F =
1

2
(TF + F )� 1

2
(TF � F ):

In particular, F is di¤erentiable almost everywhere with respect to linear
measure.
(b) If F is right continuous, then so is TF :

PROOF. (a) Let x < y and " > 0: Choose x0 < x1 < ::: < xn = x such that

�ni=1 j F (xi)� F (xi�1) j� Tf (x)� ":

Then
TF (y) + F (y)

� �ni=1 j F (xi)� F (xi�1) j + j F (y)� F (x) j +(F (y)� F (x)) + F (x)

� TF (x)� "+ F (x)

and, since " > 0 is arbitrary, TF (y) +F (y) � TF (x) +F (x): Hence TF +F is
increasing. Finally, replacing F by �F it follows that the function TF � F
is increasing.
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(b) If c 2 R and x > c;

Tf (x) = TF (c) + sup�
n
i=1 j F (xi)� F (xi�1) j

where the supremum is taken over all positive integers n and all choices
(xi)

n
i=0 such that

c = x0 < x1 < ::: < xn = x:

Suppose TF (c+) > TF (c) where c 2 R: Then there is an " > 0 such that

TF (x)� TF (c) > "

for all x > c: Now, since F is right continuous at the point c, for �xed x > c
there exists a partition

c < x11 < ::: < x1n1 = x

such that
�n1i=2 j F (x1i)� F (x1i�1) j> ":

But
TF (x11)� TF (c) > "

and we get a partition

c < x21 < ::: < x2n2 = x11

such that
�n2i=2 j F (x2i)� F (x2i�1) j> ":

Summing up we have got a partition of the interval [x21; x] with

�n2i=2 j F (x2i)� F (x2i�1) j +�n1i=2 j F (x1i)� F (x1i�1) j> 2":

By repeating the process the total variation of F becomes in�nite, which is
a contradiction. The theorem is proved.

Theorem 5.4.3. Suppose F : [a; b] ! R is absolutely continuous. Then
there exists a unique f 2 L1(ma;b) such that

F (x) = F (a) +

Z x

a

f(t)dt; a � x � b:
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In particular, the range of the map I equals the set of all real-valued absolutely
continuous maps on [a; b] which vanish at the point a:

PROOF. Set F (x) = F (a) if x < a and F (x) = F (b) if x > b: There exists a
� > 0 such that

�ni=1 j bi � ai j< � implies �ni=1 j F (bi)� F (ai) j< 1

whenever ]a1; b1[ ; :::; ]an; bn[ are disjoint subintervals of [a; b] : Let p be the
least positive integer such that a + p� � b: Then TF � p and F 2 BV: Let
F = G � H; where G = 1

2
(TF + F ) and H = 1

2
(TF � F ): There exist �nite

positive Borel measures �G and �H such that

�G(]x; y]) = G(y)�G(x); x � y

and
�H(]x; y]) = H(y)�H(x); x � y:

If we de�ne � = �G � �H ;

�(]x; y]) = F (y)� F (x); x � y:

Clearly,
�(]x; y[) = F (y)� F (x); x � y

since F is continuous.
Our next task will be to prove that � << v1. To this end, suppose A 2 R

and v1(A) = 0: Now choose " > 0 and let � > 0 be as in the de�nition of the
absolute continuity of F on [a; b] : For each k 2 N+ there exists an open set
Vk � A such that v1(Vk) < � and limk!1 �(Vk) = �(A): But each �xed Vk is
a disjoint union of open intervals (]ai; bi[)1i=1 and hence

�ni=1 j bi � ai j< �

for every n and, accordingly from this,

�1i=1 j F (bi)� F (ai) j� "

and
j �(Vk) j� �1i=1 j �(]ai; bi[) j� ":
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Thus j �(A) j� " and since " > 0 is arbitrary, �(A) = 0: From this � << v1
and the theorem follows at once.

Suppose (X;M; �) is a positive measure space. From now on we write
f 2 L1(�) if there exist a g 2 L1(�) and an A 2 M such that Ac 2 Z� and
f(x) = g(x) for all x 2 A: Furthermore, we de�neZ

X

fd� =

Z
X

gd�

(cf the discussion in Section 2). Note that f(x) need not be de�ned for every
x 2 X:

Corollary 5.4.1. A function f : [a; b]! R is absolutely continuous if and
only if the following conditions are true:
(i) f 0(x) exists for ma;b-almost all x 2 [a; b]
(ii) f 0 2 L1(ma;b)
(iii) f(x) = f(a) +

R x
a
f 0(t)dt; all x 2 [a; b] :

Exercises

1. Suppose f : [0; 1] ! R satis�es f(0) = 0 and

f(x) = x2 sin
1

x2
if 0 < x � 1:

Prove that f is di¤erentiable everywhere but f is not absolutely continuous.

2. Suppose � is a positive real number and f a function on [0; 1] such that
f(0) = 0 and f(x) = x� sin 1

x
; 0 < x � 1. Prove that f is absolutely

continuous if and only if � > 1:
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3. Suppose f(x) = x cos(�=x) if 0 < x < 2 and f(x) = 0 if x 2 Rn ]0; 2[ :
Prove that f is not of bounded variation on R.

4 A function f : [a; b] ! R is a Lipschitz function, that is there exists a
positive real number C such that

j f(x)� f(y) j� C j x� y j

for all x; y 2 [a; b] : Show that f is absolutely continuous and j f 0(x) j� C
a.e. [ma;b] :

5. Suppose f : [a; b] ! R is absolutely continuous. Prove that

Tg(x) =

Z x

a

j f 0(t) j dt; a < x < b

if g is the restriction of f to the open interval ]a; b[ :

6. Suppose f and g are real-valued absolutely continuous functions on the
compact interval [a; b]. Show that the function h = max(f; g) is absolutely
continuous and h0 � max(f 0; g0) a.e. [ma;b].

7. Suppose (X;M; �) is a �nite positive measure space and f 2 L1(�): De�ne

g(t) =

Z
X

j f(x)� t j d�(x); t 2 R:

Prove that g is absolutely continuous and

g(t) = g(a) +

Z t

a

(�(f � s)� �(f � s))ds if a; t 2 R:

8. Let � and � be probability measures on (X;M) such that j ��� j (X) = 2:
Show that � ? �:

###
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5.5. Conditional Expectation

Let (
;F ; P ) be a probability space and suppose � 2 L1(P ): Moreover,
suppose G � F is a �-algebra and set

�(A) = P [A] ; A 2 G

and

�(A) =

Z
A

�dP; A 2 G:

It is trivial that Z� = ZP \G � Z� and the Radon-Nikodym Theorem shows
there exists a unique � 2 L1(�) such that

�(A) =

Z
A

�d� all A 2 G

or, what amounts to the same thing,Z
A

�dP =

Z
A

�dP all A 2 G:

Note that � is (G;R)-measurable. The random variable � is called the con-
ditional expectation of � given G and it is standard to write � = E [� j G] :
A sequence of �-algebras (Fn)1n=1 is called a �ltration if

Fn � Fn+1 � F :

If (Fn)1n=1 is a �ltration and (�n)1n=1 is a sequence of real valued random
variables such that for each n;

(a) �n 2 L1(P )
(b) �n is (Fn;R)-measurable
(c) E

�
�n+1 j Fn

�
= �n

then (�n;Fn)1n=1 is called a martingale. There are very nice connections
between martingales and the theory of di¤erentiation (see e.g Billingsley [B]
and Malliavin [M ]):

"""
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CHAPTER 6

COMPLEX INTEGRATION

Introduction

In this section, in order to illustrate the power of Lebesgue integration, we
collect a few results, which often appear with uncomplete proofs at the un-
dergraduate level.

6.1. Complex Integrand

So far we have only treated integration of functions with their values in R or
[0;1] and it is the purpose of this section to discuss integration of complex
valued functions.
Suppose (X;M; �) is a positive measure. Let f; g 2 L1(�): We de�neZ

X

(f + ig)d� =

Z
X

fd�+ i

Z
X

gd�:

If � and � are real numbers,Z
X

(�+ i�)(f + ig)d� =

Z
X

((�f � �g) + i(�g + �f))d�

=

Z
X

(�f � �g)d�+ i

Z
X

(�g + �f)d�

= �

Z
X

fd�� �

Z
X

gd�+ i�

Z
X

gd�+ i�

Z
X

fd�

= (�+ i�)(

Z
X

fd�+ i

Z
X

gd�)

= (�+ i�)

Z
X

(f + ig)d�:
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We write f 2 L1(�;C) if Re f; Im f 2 L1(�) and have, for every f 2 L1(�;C)
and complex �; Z

X

�fd� = �

Z
X

fd�:

Clearly, if f; g 2 L1(�;C); thenZ
X

(f + g)d� =

Z
X

fd�+

Z
X

gd�:

Now suppose � is a complex measure on M: If

f 2 L1(�;C) =defL1(�Re;C) \ L1(�Im;C)

we de�ne Z
X

fd� =

Z
X

fd�Re + i

Z
X

fd�Im:

It follows for every f; g 2 L1(�;C) and � 2 C thatZ
X

�fd� = �

Z
X

fd�:

and Z
X

(f + g)d� =

Z
X

fd�+

Z
X

gd�:

###

6.2. The Fourier Transform

Below, if x = (x1; :::; xn) and y = (y1; :::; yn) 2 Rn; we let

hx; yi = �nk=1xkyk:

and
j x j=

p
hx; yi:

If � is a complex measure on Rn (or R�
n ) the Fourier transform �̂ of � is

de�ned by

�̂(y) =

Z
Rn

e�ihx;yid�(x); y 2 Rn:
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Note that
�̂(0) = �(Rn):

The Fourier transform of a function f 2 L1(mn;C) is de�ned by

f̂(y) = �̂(y) where d� = fdmn:

Theorem 6.2.1. The canonical Gaussian measure 
n in Rn has the Fourier
transform


̂n(y) = e�
jyj2
2 :

PROOF. Since

n = 
1 
 :::
 
1 (n factors)

it is enough to consider the special case n = 1: Set

g(y) = 
̂1(y) =
1p
2�

Z
R

e�
x2

2 cosxydx:

Note that g(0) = 1: Since

j cosx(y + h)� cosxy
h

j�j x j

the Lebesgue Dominated Convergence Theorem yields

g0(y) =
1p
2�

Z
R

�xe�x2

2 sin xydx

(Exercise: Prove this by using Example 2.2.1). Now, by partial integration,

g0(y) =
1p
2�

h
e�

x2

2 sin xy
ix=1
x=�1

� yp
2�

Z
R

e�
x2

2 cosxydx

that is
g0(y) + yg(y) = 0

and we get

g(y) = e�
y2

2 :
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If � = (�1; :::; �n) is an Rn-valued random variable with �k 2 L1(P );
k = 1; :::; n; the characteristic function c� of � is de�ned by

c�(y) = E
�
eih�;yi

�
= P̂�(�y); y 2 Rn:

For example, if � 2 N(0; �); then � = �G; where G 2 N(0; 1); and we get

c�(y) = E
�
eihG;�yi

�
= 
̂1(��y)

= e�
�2y2

2 :

Choosing y = 1 results in

E
�
ei�
�
= e�

1
2
E[�2] if � 2 N(0; �):

Thus if (�k)
n
k=1 is a centred real-valued Gaussian process

E
�
ei�

n
k=1yk�k

�
= exp(�1

2
E
�
(�nk=1yk�k)

2
�

= exp(�1
2
�nk=1y

2
kE
�
�2k
�
� �1�j<k�nyjykE

�
�j�k

�
):

In particular, if
E
�
�j�k

�
= 0; j 6= k

we see that

E
�
ei�

n
k=1yk�k

�
= �nk=1e

� y2k
2
E[�2k]

or
E
�
ei�

n
k=1yk�k

�
= �nk=1E

�
eiyk�k

�
:

Stated otherwise, the Fourier tranforms of the measures P(�1;:::;�n) and�nk=1P�k
agree. Below we will show that complex measures in Rn with the same
Fourier transforms are equal and we get the following

Theorem 6.2.2. Let (�k)nk=1 be a centred real-valued Gaussian process with
uncorrelated components, that is

E
�
�j�k

�
= 0; j 6= k:
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Then the random variables �1; :::; �n are independent.

6.3 Fourier Inversion

Theorem 6.3.1. Suppose f 2 L1(mn): If f̂ 2 L1(mn) and f is bounded
and continuous

f(x) =

Z
Rd

eihy;xif̂(y)
dy

(2�)n
; x 2 Rn:

PROOF. Choose " > 0: We haveZ
Rn

eihy;xie�
"2

2
jyj2 f̂(y)

dy

(2�)n
=

Z
Rn

f(u)

�Z
Rn

eihy;x�uie�
"2

2
jyj2 dy

(2�)n

�
du

where the right side equalsZ
Rn

f(u)

�Z
Rn

eihv;
x�u
"
ie�

1
2
jvj2 dvp

2�
n

�
dup
2�

n
"n
=

Z
Rn

f(u)e�
1
2"2

ju�xj2 dup
2�

n
"n

=

Z
Rn

f(x+ "z)e�
1
2
jzj2 dzp

2�
n :

Thus Z
Rn

eihy;xie�
"2

2
jyj2 f̂(y)

dy

(2�)n
=

Z
Rn

f(x+ "z)e�
1
2
jzj2 dzp

2�
n :

By letting "! 0 and using the Lebesgue Dominated Convergence Theorem,
Theorem 6.3.1 follows at once.

Recall that C1c (R
n) denotes the class of all functions f : Rn ! R

with compact support which are in�nitely many times di¤erentiable. If f 2
C1c (R

n) then f̂ 2 L1(mn). To see this, suppose yk 6= 0 and use partial
integration to obtain

f̂(y) =

Z
Rd

e�ihx;yif(x)dx =
1

iyk

Z
Rd

e�ihx;yif 0xk(x)dx

and

f̂(y) =
1

(iyk)l

Z
Rd

e�ihx;yif (l)xk (x)dx; l 2 N:
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Thus

j yk jlj f̂(y) j�
Z
Rn

j f (l)xk (x) j dx; l 2 N

and we conclude that

sup
y2Rn

(1+ j y j)n+1 j f̂(y) j<1:

and, hence, f̂ 2 L1(mn):

Corollary 6.3.1. If f 2 C1c (R
n); then f̂ 2 L1(mn) and

f(x) =

Z
Rn

eihy;xif̂(y)
dy

(2�)n
; x 2 Rn:

Corollary 6.3.2 If � is a complex Borel measure in Rn and �̂ = 0; then
� = 0:

PROOF. Choose f 2 C1c (Rn). We multiply the equation �̂(�y) = 0 by f̂(y)
(2�)n

and integrate over Rn with respect to Lebesgue measure to obtainZ
Rn

f(x)d�(x) = 0:

Since f 2 C1c (Rn) is arbitrary it follows that � = 0: The theorem is proved.

6.4. Non-Di¤erentiability of Brownian Paths

Let ND denote the set of all real-valued continuous function de�ned on the
unit interval which are not di¤erentiable at any point. It is well known that
ND is non-empty. In fact, if � is Wiener measure on C [0; 1], x 2 ND
a.e. [�] : The purpose of this section is to prove this important property of
Brownian motion.
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Let W = (W (t))0�t�1 be a real-valued Brownian motion in the time
interval [0; 1] such that every path t! W (t); 0 � t � 1 is continuous. Recall
that

E [W (t)] = 0

and
E [W (s)W (t)] = min(s; t):

If
0 � t0 � ::: � tn � 1

and 1 � j < k � n

E [(W (tk)�W (tk�1))(W (tj)�W (tj�1)]

= E [(W (tk)W (tj)]�E [W (tk)W (tj�1)]�E [W (tk�1)W (tj)]+E [W (tk�1)W (tj�1)]
= tj � tj�1 � tj + tj�1 = 0:

From the previous section we now infer that the random variables

W (t1)�W (t0); :::;W (tn)�W (tn�1)

are independent.

Theorem 7. The function t ! W (t); 0 � t � 1 is not di¤erentiable at
any point t 2 [0; 1] a.s. [P ] :

PROOF. Without loss of generality we assume the underlying probability
space is complete. Let c; " > 0 and denote by B(c; ") the set of all ! 2 

such that

j W (t)�W (s) j< c j t� s j if t 2 [s� "; s+ "] \ [0; 1]

for some s 2 [0; 1] : It is enough to prove that the set
1[
j=1

1[
k=1

B(j;
1

k
):

is of probability zero. From now on let c; " > 0 be �xed. It is enough to
prove P [B(c; ")] = 0 :
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Set

Xn;k = max
k�j<k+3

j W (j + 1
n
)�W (

j

n
) j

for each integer n > 3 and k 2 f0; :::; n� 3g :
Let n > 3 be so large that

3

n
� ":

We claim that

B(c; ") �
�
min

0�k�n�3
Xn;k �

6c

n

�
:

If ! 2 B(c; ") there exists an s 2 [0; 1] such that

j W (t)�W (s) j� c j t� s j if t 2 [s� "; s+ "] \ [0; 1] :

Now choose k 2 f0; :::; n� 3g such that

s 2
�
k

n
;
k

n
+
3

n

�
:

If k � j < k + 3;

j W (j + 1
n
)�W (

j

n
) j�jW (j + 1

n
)�W (s) j + j W (s)�W (

j

n
) j

� 6c

n

and, hence, Xn;k � 6c
n
: Now

B(c; ") �
�
min

0�k�n�3
Xn;k �

6c

n

�
and it is enough to prove that

lim
n!1

P

�
min

0�k�n�3
Xn;k �

6c

n

�
= 0:

But

P

�
min

0�k�n�3
Xn;k �

6c

n

�
�

n�3X
k=0

P

�
Xn;k �

6c

n

�



191

= (n� 2)P
�
Xn;0 �

6c

n

�
� nP

�
Xn;0 �

6c

n

�
= n(P

�
j W ( 1

n
) j� 6c

n

�
)3 = n(P (j W (1) j� 6cp

n
)3

� n(
12cp
2�n

)3:

where the right side converges to zero as n!1. The theorem is proved.

Recall that a function of bounded variation possesses a derivative a.e.
with respect to Lebesgue measure. Therefore, with probability one, a Brown-
ian path is not of bounded variation. In view of this an integral of the typeZ 1

0

f(t)dW (t)

cannot be interpreted as an ordinary Stieltjes integral. Nevertheless, such
an integral can be de�ned by completely di¤erent means and is basic in, for
example, �nancial mathematics.

"""
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CHAPTER 6

COMPLEX INTEGRATION

Introduction

In this section, in order to illustrate the power of Lebesgue integration, we
collect a few results, which often appear with uncomplete proofs at the un-
dergraduate level.

6.1. Complex Integrand

So far we have only treated integration of functions with their values in R or
[0;1] and it is the purpose of this section to discuss integration of complex
valued functions.
Suppose (X;M; �) is a positive measure. Let f; g 2 L1(�): We de�neZ

X

(f + ig)d� =

Z
X

fd�+ i

Z
X

gd�:

If � and � are real numbers,Z
X

(�+ i�)(f + ig)d� =

Z
X

((�f � �g) + i(�g + �f))d�

=

Z
X

(�f � �g)d�+ i

Z
X

(�g + �f)d�

= �

Z
X

fd�� �

Z
X

gd�+ i�

Z
X

gd�+ i�

Z
X

fd�

= (�+ i�)(

Z
X

fd�+ i

Z
X

gd�)

= (�+ i�)

Z
X

(f + ig)d�:
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We write f 2 L1(�;C) if Re f; Im f 2 L1(�) and have, for every f 2 L1(�;C)
and complex �; Z

X

�fd� = �

Z
X

fd�:

Clearly, if f; g 2 L1(�;C); thenZ
X

(f + g)d� =

Z
X

fd�+

Z
X

gd�:

Now suppose � is a complex measure on M: If

f 2 L1(�;C) =defL1(�Re;C) \ L1(�Im;C)

we de�ne Z
X

fd� =

Z
X

fd�Re + i

Z
X

fd�Im:

It follows for every f; g 2 L1(�;C) and � 2 C thatZ
X

�fd� = �

Z
X

fd�:

and Z
X

(f + g)d� =

Z
X

fd�+

Z
X

gd�:

###

6.2. The Fourier Transform

Below, if x = (x1; :::; xn) and y = (y1; :::; yn) 2 Rn; we let

hx; yi = �nk=1xkyk:

and
j x j=

p
hx; yi:

If � is a complex measure on Rn (or R�
n ) the Fourier transform �̂ of � is

de�ned by

�̂(y) =

Z
Rn

e�ihx;yid�(x); y 2 Rn:
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Note that
�̂(0) = �(Rn):

The Fourier transform of a function f 2 L1(mn;C) is de�ned by

f̂(y) = �̂(y) where d� = fdmn:

Theorem 6.2.1. The canonical Gaussian measure 
n in Rn has the Fourier
transform


̂n(y) = e�
jyj2
2 :

PROOF. Since

n = 
1 
 :::
 
1 (n factors)

it is enough to consider the special case n = 1: Set

g(y) = 
̂1(y) =
1p
2�

Z
R

e�
x2

2 cosxydx:

Note that g(0) = 1: Since

j cosx(y + h)� cosxy
h

j�j x j

the Lebesgue Dominated Convergence Theorem yields

g0(y) =
1p
2�

Z
R

�xe�x2

2 sin xydx

(Exercise: Prove this by using Example 2.2.1). Now, by partial integration,

g0(y) =
1p
2�

h
e�

x2

2 sin xy
ix=1
x=�1

� yp
2�

Z
R

e�
x2

2 cosxydx

that is
g0(y) + yg(y) = 0

and we get

g(y) = e�
y2

2 :
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If � = (�1; :::; �n) is an Rn-valued random variable with �k 2 L1(P );
k = 1; :::; n; the characteristic function c� of � is de�ned by

c�(y) = E
�
eih�;yi

�
= P̂�(�y); y 2 Rn:

For example, if � 2 N(0; �); then � = �G; where G 2 N(0; 1); and we get

c�(y) = E
�
eihG;�yi

�
= 
̂1(��y)

= e�
�2y2

2 :

Choosing y = 1 results in

E
�
ei�
�
= e�

1
2
E[�2] if � 2 N(0; �):

Thus if (�k)
n
k=1 is a centred real-valued Gaussian process

E
�
ei�

n
k=1yk�k

�
= exp(�1

2
E
�
(�nk=1yk�k)

2
�

= exp(�1
2
�nk=1y

2
kE
�
�2k
�
� �1�j<k�nyjykE

�
�j�k

�
):

In particular, if
E
�
�j�k

�
= 0; j 6= k

we see that

E
�
ei�

n
k=1yk�k

�
= �nk=1e

� y2k
2
E[�2k]

or
E
�
ei�

n
k=1yk�k

�
= �nk=1E

�
eiyk�k

�
:

Stated otherwise, the Fourier tranforms of the measures P(�1;:::;�n) and�nk=1P�k
agree. Below we will show that complex measures in Rn with the same
Fourier transforms are equal and we get the following

Theorem 6.2.2. Let (�k)nk=1 be a centred real-valued Gaussian process with
uncorrelated components, that is

E
�
�j�k

�
= 0; j 6= k:
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Then the random variables �1; :::; �n are independent.

6.3 Fourier Inversion

Theorem 6.3.1. Suppose f 2 L1(mn): If f̂ 2 L1(mn) and f is bounded
and continuous

f(x) =

Z
Rd

eihy;xif̂(y)
dy

(2�)n
; x 2 Rn:

PROOF. Choose " > 0: We haveZ
Rn

eihy;xie�
"2

2
jyj2 f̂(y)

dy

(2�)n
=

Z
Rn

f(u)

�Z
Rn

eihy;x�uie�
"2

2
jyj2 dy

(2�)n

�
du

where the right side equalsZ
Rn

f(u)

�Z
Rn

eihv;
x�u
"
ie�

1
2
jvj2 dvp

2�
n

�
dup
2�

n
"n
=

Z
Rn

f(u)e�
1
2"2

ju�xj2 dup
2�

n
"n

=

Z
Rn

f(x+ "z)e�
1
2
jzj2 dzp

2�
n :

Thus Z
Rn

eihy;xie�
"2

2
jyj2 f̂(y)

dy

(2�)n
=

Z
Rn

f(x+ "z)e�
1
2
jzj2 dzp

2�
n :

By letting "! 0 and using the Lebesgue Dominated Convergence Theorem,
Theorem 6.3.1 follows at once.

Recall that C1c (R
n) denotes the class of all functions f : Rn ! R

with compact support which are in�nitely many times di¤erentiable. If f 2
C1c (R

n) then f̂ 2 L1(mn). To see this, suppose yk 6= 0 and use partial
integration to obtain

f̂(y) =

Z
Rd

e�ihx;yif(x)dx =
1

iyk

Z
Rd

e�ihx;yif 0xk(x)dx

and

f̂(y) =
1

(iyk)l

Z
Rd

e�ihx;yif (l)xk (x)dx; l 2 N:
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Thus

j yk jlj f̂(y) j�
Z
Rn

j f (l)xk (x) j dx; l 2 N

and we conclude that

sup
y2Rn

(1+ j y j)n+1 j f̂(y) j<1:

and, hence, f̂ 2 L1(mn):

Corollary 6.3.1. If f 2 C1c (R
n); then f̂ 2 L1(mn) and

f(x) =

Z
Rn

eihy;xif̂(y)
dy

(2�)n
; x 2 Rn:

Corollary 6.3.2 If � is a complex Borel measure in Rn and �̂ = 0; then
� = 0:

PROOF. Choose f 2 C1c (Rn). We multiply the equation �̂(�y) = 0 by f̂(y)
(2�)n

and integrate over Rn with respect to Lebesgue measure to obtainZ
Rn

f(x)d�(x) = 0:

Since f 2 C1c (Rn) is arbitrary it follows that � = 0: The theorem is proved.

6.4. Non-Di¤erentiability of Brownian Paths

Let ND denote the set of all real-valued continuous function de�ned on the
unit interval which are not di¤erentiable at any point. It is well known that
ND is non-empty. In fact, if � is Wiener measure on C [0; 1], x 2 ND
a.e. [�] : The purpose of this section is to prove this important property of
Brownian motion.
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Let W = (W (t))0�t�1 be a real-valued Brownian motion in the time
interval [0; 1] such that every path t! W (t); 0 � t � 1 is continuous. Recall
that

E [W (t)] = 0

and
E [W (s)W (t)] = min(s; t):

If
0 � t0 � ::: � tn � 1

and 1 � j < k � n

E [(W (tk)�W (tk�1))(W (tj)�W (tj�1)]

= E [(W (tk)W (tj)]�E [W (tk)W (tj�1)]�E [W (tk�1)W (tj)]+E [W (tk�1)W (tj�1)]
= tj � tj�1 � tj + tj�1 = 0:

From the previous section we now infer that the random variables

W (t1)�W (t0); :::;W (tn)�W (tn�1)

are independent.

Theorem 7. The function t ! W (t); 0 � t � 1 is not di¤erentiable at
any point t 2 [0; 1] a.s. [P ] :

PROOF. Without loss of generality we assume the underlying probability
space is complete. Let c; " > 0 and denote by B(c; ") the set of all ! 2 

such that

j W (t)�W (s) j< c j t� s j if t 2 [s� "; s+ "] \ [0; 1]

for some s 2 [0; 1] : It is enough to prove that the set
1[
j=1

1[
k=1

B(j;
1

k
):

is of probability zero. From now on let c; " > 0 be �xed. It is enough to
prove P [B(c; ")] = 0 :
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Set

Xn;k = max
k�j<k+3

j W (j + 1
n
)�W (

j

n
) j

for each integer n > 3 and k 2 f0; :::; n� 3g :
Let n > 3 be so large that

3

n
� ":

We claim that

B(c; ") �
�
min

0�k�n�3
Xn;k �

6c

n

�
:

If ! 2 B(c; ") there exists an s 2 [0; 1] such that

j W (t)�W (s) j� c j t� s j if t 2 [s� "; s+ "] \ [0; 1] :

Now choose k 2 f0; :::; n� 3g such that

s 2
�
k

n
;
k

n
+
3

n

�
:

If k � j < k + 3;

j W (j + 1
n
)�W (

j

n
) j�jW (j + 1

n
)�W (s) j + j W (s)�W (

j

n
) j

� 6c

n

and, hence, Xn;k � 6c
n
: Now

B(c; ") �
�
min

0�k�n�3
Xn;k �

6c

n

�
and it is enough to prove that

lim
n!1

P

�
min

0�k�n�3
Xn;k �

6c

n

�
= 0:

But

P

�
min

0�k�n�3
Xn;k �

6c

n

�
�

n�3X
k=0

P

�
Xn;k �

6c

n

�
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= (n� 2)P
�
Xn;0 �

6c

n

�
� nP

�
Xn;0 �

6c

n

�
= n(P

�
j W ( 1

n
) j� 6c

n

�
)3 = n(P (j W (1) j� 6cp

n
)3

� n(
12cp
2�n

)3:

where the right side converges to zero as n!1. The theorem is proved.

Recall that a function of bounded variation possesses a derivative a.e.
with respect to Lebesgue measure. Therefore, with probability one, a Brown-
ian path is not of bounded variation. In view of this an integral of the typeZ 1

0

f(t)dW (t)

cannot be interpreted as an ordinary Stieltjes integral. Nevertheless, such
an integral can be de�ned by completely di¤erent means and is basic in, for
example, �nancial mathematics.

"""
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