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Preface

The present text forms the basis of a one-semester course which I have given
over the past three years at Delft University of Technology. The students
usually are in the first semester of their fourth year at university, after
having obtained a Bachelor’s degree. The course is designed for 14 weeks,
each comprising 90 minutes of lectures plus a 45 minutes problem class.

Due to my special audience this is not a conventional functional analysis
course. Students here are well-trained in applied maths, with a good back-
ground in computing, modelling, differential equations. On the other hand,
they miss some central theoretical notions — for instance metric spaces
or measure-theoretical integration theory — and many of them have diffi-
culties to assume abstract concepts, to formulate mathematical statements
correctly, and to give rigorous proofs. In many cases, the basic mathematical
skill to look at a concrete example through the glasses of abstract concepts
is underdeveloped.

It is clear that under these circumstances not only the material of a
beginning functional analysis course had to be adapted, but also the way of
its presentation. On the contents’ side, classical material had to be dropped,
like the treatment of dual spaces and the Hahn-Banach theorem, the Baire
theorem and its consequences (open mapping theorem, uniform boundedness
principle), the Arzelá-Ascoli and the abstract Stone-Weierstrass theorem,
compact operators other than on Hilbert spaces, `p-spaces other than p =
1, 2,∞. Furthermore, the lack of knowledge in measure theory forbids a
treatment of really decent applications in PDE, so one is reduced to toy
examples showing the essential features.

Practically none of the existing textbooks on functional analysis meets
these requirements, not even the books [15], [10] and [14], which aim at an
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x Preface

undergraduate level. (“Graduate level” and “undergraduate level” appear
to be quite relative notions anyway.) The book which comes closest in spirit
to what seems feasible here are the excellent books by Nicholas Young [18]
and Ward Cheney [4], from which I profitted most during writing these
notes. Although they go far beyond what we do here, I recommend them to
any student interested in applicable analysis.

On the didactical side, beginning with abstract topological notions would
just knock out the majority of my students already in the first lecture.
The whole classical top down approach from general to concrete appears
to be not feasible. On the contrary, it is one of the major didactical chal-
lenges of this course to build up basic conceptual mathematical skills in the
first place. By passing through elementary functional analysis, the students
should also learn to use proper mathematical language, to appreciate and
practice rigour, to “embrace the pleasure and acknowledge the power of
abstraction”.

Such a goal, if ever, can only be reached if the students do not get into
contact with the material only in a superficial way. We cannot be content
with the students just “having seen some functional analysis”. What should
be the merit of that? Only depth can really make a difference. It is therefore
no harm that many classical topics are not covered, as long as one knows
why the students should study those that remain and makes sure that these
are treated thoroughly. Now, here are my main points:

• viewing a function/sequence as a point in a certain space (abstract-
ing from its internal structure);

• the concept of an abstract distance (metric/norm) to be able to
treat approximations (convergence);

• the diversity of such distances and the associated notions of con-
vergence;

• the role of orthogonality in Hilbert spaces for an efficient way of
approximation (Fourier series);

• completeness as a necessary condition for finding solutions to min-
imization and fixed-point problems;

• the notion of a weak derivative to facilitate the search for solutions
of differential equations;

• the concept of an operator, emerging as a unified method of pro-
ducing solutions to a problem with varying initial data.

In composing the course, I tried to obey the rule that a new abstract notion
can only be introduced after the students have seen concrete examples. Also,
not too many recognizably difficult things — for instance abstract topology
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and abstract linear algebra — should be novel to them at the same time.
(These principles imply that one can neither start with metric spaces nor
with normed linear spaces right away.) Here is a brief synopsis of the course,
with the major difficulties attached in square brackets.

1) inner product spaces; no topology/convergence whatsoever, only basic
algebraic manipulations. But: examples; the analogy between Kd and
C[a, b].
[The concept of a vector space of functions, functions as points.]

2) Cauchy–Schwarz and the triangle inequality for the norm associated
with an inner product; the example `2; then general notion of a norm
and other examples, e.g., sup-norm, 1-norm; bounded linear mappings
with (very few) examples, operator norm; still no convergence whatso-
ever.
[The wealth of examples, sequences as points.]

3) metric spaces and convergence; different metrics lead to different no-
tions of convergence: uniform, pointwise and 2-norm convergence as
examples; closure is defined via sequences; then density, with Weier-
strass as example. No other topological notions.
[Different convergence notions; sequences of functions, sequences of se-
quences.]

4) closed sets (more important than open ones) defined via sequences;
continuity, defined via sequences (the ε− δ definition is mentioned but
never used); examples: continuity of the norm, of addition etc.; conti-
nuity=boundedness for linear maps; compactness (very briefly, hardly
ever used), equivalence of norms.
[Wealth of the material, sequence definition of convergence.]

5) Cauchy sequences and completeness; Hilbert space and the complete-
ness of `2; non-completeness of C[a, b] with the 2-norm; Banach spaces,
completeness of B(Ω), `∞, C[a, b] with the sup-norm; series, absolute
convergence, orthogonal series in Hilbert spaces.
[Completeness proofs, again sequences of sequences]

5a) Density principles; is not to be presented in the course, just used as a
reference later.

6) a round-up in Lebesgue integration, almost no proofs; central notions:
Lebesgue measure, null set, equality almost everywhere, the spaces L1

and L2. Dominated Covergence and completeness, density of C[a, b].
[Superficiality of the presentation, wealth of material, equivalence classes
of functions]
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7) best approximations in Hilbert space; orthogonal projections and de-
composition; Riesz-Fréchet; abstract Fourier expansions.
[Abstract nature of the material, few concrete examples.]

8) weak derivatives of L2(a, b) functions, H1(a, b), the integration operator
J , FTC for H1-functions, higher order Sobolev spaces, Poincaré in-
equality (1-dim), the solution of Poisson’s problem via Riesz–Fréchet.
[Weak derivatives.]

9) J as an integral operator, Fubini round-up, Green’s function for the
Poisson problem on [a, b]; Hilbert–Schmidt integral operators, the La-
place transform as a non-Hilbert–Schmidt integral operator; the op-
erator norm, examples; completeness of the space of bounded linear
operators; the Neumann series and abstract Volterra operators; Hilbert
space adjoints, examples; compact operators on Hilbert spaces (defined
as limits of finite rank operators); Hilbert–Schmidt integral operators
are compact; subsequence criterion for compactness (diagonal argument
in the proof).
[To work with the integration operator; operator norm convergence (vs.
strong convergence), definition of the adjoint, diagonal proof]

10) eigenvalues and approximate eigenvalues, are basically the same for
compact operators, self-adjoint operators, equality of numerical radius
and norm; the spectral theorem for compact self-adjoint operators,
spectral decomposition; solution theory of the eigenvalue problem.
[Abstract treatment, no examples here.]

11) applications of the spectral theorem: the Dirichlet-Laplacian, one-
dimensional Schrödinger operator with positive potential, the associ-
ated Sturm-Liouville problem with Green’s functions; the heat equa-
tion for the Schrödinger operator; the operator norm of J , leads to
the Laplace operator with mixed boundary conditions; the best con-
stant in the Poincaré inequality, needs the spectral decomposition of
the Dirichlet-Laplacian.
[The need of all the foregoing material.]

Every chapter is accompanied by a set of exercises (about ten per week),
some of them utmost elementary. I do not claim that it is necessary to do all
of them, as what’s necessary does strongly depend on the student. However,
being able to solve these, the student is strongly expected to pass the exam.
Besides these “quasi-obligatory” exercises, I also collected some others, for
further training or just for the fun of it. In later lectures I sometimes refer
to one of those.

The offical name of this course is “Applied Functional Analysis”. Now,
the functional analysis presented here is certainly applied every day, just
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not by us in this course. To make my point clear: this is not a failure of
the course, only of its name. Cheney has called his own book “Analysis
for Applied Mathematics” and he views it as prolegomena for applications.
That’s pretty much what this course is supposed to be, too. Only that we
are even further away, given that this course makes up less than a quarter
of his.

These lecture notes are not in their final version, and who knows whether
they will ever be. They undergo changes according to my experience with
students and hopefully improve over the years.

This is the second (2010) edition, and I am very grateful to all my stu-
dents who helped me finding mistakes in the first version and improve on
them. And I am grateful for their patience, because in the first version there
were so many mistakes that at some points reading was quite an unpleasant
experience. I dearly hope that the current version shows much fewer short-
comings, but anyone who is writing him- or herself knows how incredibly
blind one is towards self-made errors. So I again have to ask for patience,
and apologize in advance for all inconvenience that is still hidden in the text.

Finally, I have to admit that some of the plans from last year for the cur-
rent version could not be realized: there are still no diagrams and additional
sections on the Banach contraction principle and the uniform boundednesss
theorem are still missing, too. I am not happy about this, especially con-
cerning the diagrams. But I am full of hope for the future . . .

Delft, 9 July 2010 Markus Haase





Chapter 1

Inner Product Spaces

The main objects of study in functional analysis are function spaces, i.e.,
vector spaces of real or complex-valued functions on certain sets. Although
much of the theory can be done in the context of real vector spaces, at
certain points it is very convenient to have vector spaces over C. So we
introduce the generic notation K to denote either R or C. Background on
linear algebra is collected in Appendix A.7.

We begin by introducing two of the main players.

The space Kd. This is the set of all tuples x = (x1, . . . , xd) with compo-
nents x1, . . . , xd ∈ K:

Kd := {x = (x1, . . . , xd) | x1, . . . , xd ∈ K}.

It is a vector space over K with the obvious (i.e., componentwise) operations:

(x1, . . . , xd) + (y1, . . . , yd) := (x1 + y1, . . . , xd + yd),

λ(x1, . . . , xd) := (λx1, . . . , λxd).

The space C[a, b]. We let [a, b] be any closed interval of R of positive length.
Let us define

F[a, b] := {f | f : [a, b] −→ K}
C[a, b] := {f | f : [a, b] −→ K, continuous}.

If K = C then f : [a, b] −→ C can be written as f = Re f + i Im f with
Re f, Im f being real-valued functions; and f is continuous if and only if
both Re f, Im f are continuous.

Let us define the sum and the scalar multiple of functions pointwise, i.e.,

(f + g)(t) := f(t) + g(t), (λf)(t) := λf(t)

1
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where f, g : [a, b] −→ K are functions, λ ∈ K and t ∈ [a, b]. This turns the
set F[a, b] into a vector space over K (see also Appendix A.7).

If f, g ∈ C[a, b] then we know from elementary analysis that f + g, λf ∈
C[a, b] again, and so C[a, b] is a subspace of F[a, b], hence a vector space in
its own right.

Advice/Comment:
We use the notation C[a, b] for the generic case, leaving open whether
K = C or K = R. If we want to stress a particular choice of K, we
write C([a, b]; C) or C([a, b]; R). If we use the notation C[a, b] in concrete
situations, it is always tacitly assumed that we have the more general case
K = C.

Similar remarks apply to F[a, b] and all other function spaces we will
encounter in this lecture.

There is an analogy between these two examples. Namely, note that
each vector (x1, . . . , xd) ∈ Kd defines a map

x : {1, . . . , d} −→ K by x(j) := xj (j = 1, . . . , d).

Conversely, each such function x determines exactly one vector (x(1), . . . , x(d)).
Apart from a set-theoretical point of view, there is no difference between the
vector and the corresponding function, and we will henceforth identify them.
So we may write

Kd = F({1, . . . , d}; K).

A short look will convince you that the addition and scalar multiplication
in vector notation coincides precisely with the pointwise sum and scalar
multiplication of functions.

How far can we push the analogy between Kd and C[a, b]? Well, the first
result is negative:

Theorem 1.1. The space Kd has a basis consisting of precisely d vectors,
hence is finite-dimensional. The space C[a, b] is not finite-dimensional. For
example, the set of monomials {1, t, t2, . . . } is an infinite linearly indepen-
dent subset of C[a, b].

Proof. The first assertion is known from linear algebra. Let us turn to the
second. Let

p(t) := ant
n + · · ·+ a1t+ a0

be a finite linear combination of monomials, i.e., a0, . . . , an ∈ K. We suppose
that not all coefficients aj are zero, and we have to show that then p cannot
be the zero function.
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Now, if p(c) = 0 then by long division we can find a polynomial q such
that p(t) = (t − c)q(t) and deg q < deg p. If one applies this successively,
one may write

p(t) = (t− c1) (t− c2) . . . (t− ck) q(t)

for some k ≤ n and some polynomial q that has no zeroes in [a, b]. But that
means that p can have only finitely many zeroes in [a, b]. Since the interval
[a, b] has infinitely many points, we are done.

(See Exercise 1.1 for an alternative proof.) Ex.1.1

1.1. Inner Products

We now come to a positive result. Recall that on Kd we can define

〈x, y〉 := x1y1 + x2y2 + · · ·+ xdyd =
d∑

j=1

xjyj

for x, y ∈ Kd. We call this the standard inner product of the two vectors
x, y. If K = R, this is the usual scalar product you know from undergraduate
courses; for K = C this is a natural extension of it.

Analogously, we define the standard inner product on C[a, b] by

〈f, g〉 :=
∫ b

a
f(t)g(t) dt

for f, g ∈ C[a, b]. There is a general notion behind these examples.

Definition 1.2. Let E be a vector space. A mapping

E × E −→ K, (f, g) 7−→ 〈f, g〉

is called an inner product or a scalar product if it is sesquilinear:

〈λf + µg, h〉 = λ 〈f, h〉+ µ 〈g, h〉

〈h, λf + µg〉 = λ 〈h, f〉+ µ 〈h, g〉 (f, g, h ∈ E, λ, µ ∈ K),

symmetric:
〈f, g〉 = 〈g, f〉 (f, g ∈ E),

positive:
〈f, f〉 ≥ 0 (f ∈ E),

and definite:
〈f, f〉 = 0 =⇒ f = 0 (f ∈ E).

A vector space E together with an inner product on it is called an inner
product space or a pre-Hilbert space.
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Advice/Comment:
There are different conventions to denote generic inner products, for ex-
ample

〈f, g〉 , (f | g ) , 〈f |g〉 or simply (f, g).
The latter convention has the disadvantage that it is the same as for the
ordered pair (f, g) and this may cause considerable confusion. In these
notes we stick to the notation 〈f, g〉.

The proof that the standard inner product on C[a, b] is sesquilinear,
symmetric and positive is an exercise. The definiteness is more interestingEx.1.2

and derives from the following fact.

Lemma 1.3. Let f ∈ C[a, b], f ≥ 0. If
∫ b
a f(t) dt = 0 then f = 0.

Proof. To prove the statement, suppose towards a contradiction that f 6= 0.
Then there is t0 ∈ (a, b) where f(t0) 6= 0, i.e. f(t0) > 0. By continuity, there
are ε, δ > 0 such that

|t− t0| ≤ δ ⇒ f(t) ≥ ε.

But then ∫ b

a
f(t) dt ≥

∫ t0+δ

t0−δ
f(t) dt ≥ 2δε > 0,

which contradicts the hypothesis.

Using this lemma, we prove definiteness as follows: Suppose that f ∈
C[a, b] is such that 〈f, f〉 = 0. Then

0 = 〈f, f〉 =
∫ b

a
f(t)f(t) dt =

∫ b

a
|f(t)|2 dt

Since |f |2 is also a continuous function, the previous lemma applies and
yields |f |2 = 0. But this is equivalent to f = 0.

Advice/Comment:
Note that by “f = 0” we actually mean “f(t) = 0 for all t ∈ [a, b]”. Also
we use |f | as an abbreviation of the function t 7→ |f(t)|.

Inner products endow a vector space with a geometric structure that
allows to measure lengths and angles. If (E, 〈·, ·〉) is an inner product space
then the length of x ∈ E is given by

‖x‖ :=
√
〈x, x〉.
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The following properties are straightforward from the definition:

‖x‖ ≥ 0, ‖λx‖ = |λ| ‖x‖ , ‖x‖ = 0 ⇐⇒ x = 0.

The mapping ‖·‖ : E −→ R is called the (natural) norm on the inner
product space E. We will see more about norms in the next chapter.

Ex.1.3

Example 1.4. For the standard inner product on Kd, the associated norm
is

‖x‖2 :=
√
〈x, x〉 =

(∑d

j=1
xjxj

)1/2

=
(∑d

j=1
|xj |2

)1/2

and is called the 2-norm or Euclidean norm on Kd.
For the standard inner product on C[a, b] the associated norm is given

by

‖f‖2 :=
√
〈f, f〉 =

(∫ b

a
f(t)f(t) dt

)1/2

=
(∫ b

a
|f(t)|2 dt

)1/2

and is called the 2-norm.

Advice/Comment:
We shall soon consider other norms different from the 2-norm, on Kd as
well as on C[a, b].

Ex.1.4

Let us turn to some “geometric properties” of the norm.

Lemma 1.5. Let (E, 〈·, ·〉) be an inner product space. Then the following
identities hold for all f, g ∈ E:

a) ‖f + g‖2 = ‖f‖2 + 2 Re 〈f, g〉+ ‖g‖2

b) ‖f + g‖2 − ‖f − g‖2 = 4Re 〈f, g〉 (polarization identity)

c) ‖f + g‖2 + ‖f − g‖2 = 2 ‖f‖2 + 2 ‖g‖2 (parallelogram law).

Proof. The sesquilinearity and symmetry of the inner product yields

‖f + g‖2 = 〈f + g, f + g〉 = 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉

= ‖f‖2 + 〈f, g〉+ 〈f, g〉+ ‖g‖2 = ‖f‖2 + 2 Re 〈f, g〉+ ‖g‖2 .

since z + z = 2Re z for every complex number z ∈ C. This is a). Replacing
g by −g yields

‖f − g‖2 = ‖f‖2 − 2 Re 〈f, g〉+ ‖g‖2

and addding this to a) yields c). Subtracting it leads to b).
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Ex.1.5

See Exercise 1.14 for a useful comment on the polarization identity.

1.2. Orthogonality

As in the case of 3-space geometry we could use the inner product to define
angles between vectors. However, we shall not need other angles than right
ones, so we confine ourselves to this case.

Definition 1.6. Let (E, 〈·, ·〉) be an inner product space. Two elements
f, g ∈ E are called orthogonal, written f ⊥ g, if 〈f, g〉 = 0. For a subset
S ⊆ E we let

S⊥ := {f ∈ E | f ⊥ g for all g ∈ S}.

Note that by symmetry of the inner product, f ⊥ g if and only if g ⊥ f .
The definiteness of the inner product translates into the following useful
fact:

x ⊥ E ⇐⇒ x = 0
or in short: E⊥ = {0}.

Example 1.7. In the (standard) inner product space C[a, b] we denote by
1 the function which is constantly equal to 1, i.e., 1(t) := 1, t ∈ [a, b]. Then
for f ∈ C[a, b] one has

〈f,1〉 =
∫ b

a
f(t)1(t) dt =

∫ b

a
f(t) dt.

Hence {1}⊥ = {f ∈ C[a, b] |
∫ b
a f(t) dt = 0}.

Let us note a useful lemma.

Lemma 1.8. Let (E, 〈·, ·〉) be an inner product space, and let S ⊆ E be any
subset. Then S⊥ is a linear subspace of E.

Proof. Clearly 0 ∈ S⊥. Let x, y ∈ S⊥, λ ∈ K we have to show that
λx+ y ∈ S⊥. Then

〈λx+ y, s〉 = λ 〈x, s〉+ 〈y, s〉 = λ · 0 + 0 = 0

for arbitrary s ∈ S, and this was to show.

The following should seem familiar from elementary geometry.

Lemma 1.9 (Pythagoras’ Theorem). Let (E, 〈·, ·〉) be an inner product
space with associated norm ‖·‖. Let f1, . . . , fd ∈ E be pairwise orthogonal,
i.e., fi ⊥ fj whenever i 6= j. Then

‖f1 + · · ·+ fd‖2 = ‖f1‖2 + · · ·+ ‖fd‖2 .
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Proof. For d = 2 this follows from Lemma 1.5.a). The rest is induction.

Ex.1.6

A collection of vectors (ei)i∈I ⊆ E (I an arbitrary index set) in an inner
product space E is called an orthonormal system (ONS) if

〈ei, ej〉 = δij :=

{
0 i 6= j

1 i = j.

Let (ei)i∈I be an ONS in the inner product space H. For a vector x ∈ H we
call the scalar

〈x, ei〉
the i-th abstract Fourier coefficient and the formal(!) series∑

i∈I
〈x, ei〉 ei

its abstract Fourier series with respect to the given ONS. It will be one
of the major tasks in these lectures to make sense of such expressions when
I is not finite. Until then there is still much work to do, so let us for now
confine our study to finite ONS’s.

Lemma 1.10. Let (E, 〈·, ·〉) be an inner product space with induced norm
‖·‖, and let e1, . . . , en ∈ E be a finite orthonormal system. Then the follow-
ing assertions hold:

a) Let g =
∑n

j=1 λjej (with λ1, . . . , λn ∈ K) be any linear combina-
tion of the ej. Then

〈g, ek〉 =
∑n

j=1
λj 〈ej , ek〉 = λk (k = 1, . . . , n)

and ‖g‖2 =
∑n

j=1
|λj |2 =

∑n

j=1
|〈g, ej〉|2 .

b) For f ∈ E define Pf :=
∑n

j=1 〈f, ej〉 ej. Then

f − Pf ⊥ span{e1, . . . , en} and ‖Pf‖ ≤ ‖f‖ .

Proof. a) is just sesquilinearity and Pythagoras’ theorem. For the proof of
b) note that by a) we have 〈Pf, ej〉 = 〈f, ej〉, i.e.,

〈f − Pf, ej〉 = 〈f, ej〉 − 〈Pf, ej〉 = 0

for all j = 1, . . . , n. By Lemma 1.8 it follows that f − Pf ⊥ span{ej | j =
1, . . . , n} =: F . In particular, since Pf ∈ F we have f − Pf ⊥ Px and

‖f‖2 = ‖(f − Pf) + Pf‖2 = ‖f − Pf‖2 + ‖Pf‖2 ≥ ‖Pf‖2

by Pythagoras’ theorem.
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The mapping

P : E −→ E Pf =
n∑

j=1

〈f, ej〉 ej

is called the orthogonal projection onto the subspace span{e1, . . . , en}.
It is linear, i.e., it satisfies

P (f + g) = Pf + Pg, P (λf) = λPf (f, g ∈ H,λ ∈ K).

Exercise 1.7 provides more information about this mapping.Ex.1.7

Advice/Comment:
It is strongly recommended to do Exercise 1.7. The proofs are quite
straightforward, and an optimal way to train the notions of this chap-
ter.

Orthogonal projections are an indispensable tool in Hilbert space the-
ory and its applications. We shall see in Chapter 7 how to construct them
in the case that the range space F is not finite-dimensional any more.

By Lemma 1.10.a) each ONS is a linearly independent set. So it is a
basis for its linear span. Assume for the moment that this span is already
everything, i.e.,

E := span{e1, . . . , en}.
Now consider the (linear!) mapping

T : E −→ Kn, T f := (〈f, e1〉 , . . . , 〈f, en〉).

By Lemma 1.10.a) T is exactly the coordinatization mapping associated
with the algebraic basis {e1, . . . , en}. Hence it is an algebraic isomorphism.
However, more is true:

(1.1) 〈Tf, Tg〉Kn = 〈f, g〉E (f, g ∈ E)

where 〈·, ·〉Kn denotes the standard inner product on Kn.
Ex.1.8

As a consequence, one obtains that

‖Tf‖2,Kn = ‖f‖E for all f ∈ E.

This means that T maps members of E onto members of Kn of equal length,
whence is called a (linear) isometry.

Ex.1.9

The next, probably already well-known result shows that one can always
find an orthonormal basis in an inner product space with finite or countable
algebraic basis.
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Lemma 1.11 (Gram–Schmidt). Let N ∈ N ∪ {∞} and let (fn)1≤n<N

be a linearly independent set of vectors in an inner product space E. Then
there is an ONS (en)1≤n<N of E such that

span{ej | 0 ≤ j < n} = span{fj | 0 ≤ j < n}

for all n ≤ N .

Proof. The construction is recursive. By the linear independence, f1 cannot
be the zero vector, so e1 := f1/ ‖f1‖ has norm one. Let g2 := f2−〈f2, e1〉 e1.
Then g2 ⊥ e1. Since f1, f2 are linear independent, g2 6= 0 and so e2 :=
g2/ ‖g2‖ is the next unit vector.

Suppose that we have already constructed an ONS {e1, . . . , en−1} such
that span{e1, . . . , en−1} = span{f1, . . . , fn−1}. If n = N , we are done. Else
let

gn := fn −
∑n−1

j=1
〈fn, ej〉 ej .

Then gn ⊥ ej for all 1 ≤ j < n (Lemma 1.10). Moreover, by the linear
independence of the fj and the construction of the ej so far, gn 6= 0. Hence
en := gn/ ‖gn‖ is the next unit vector in the ONS.

Ex.1.10

As a corollary we obtain that for each finite-dimensional subspace G = F
of an inner product space E, there exists the orthogonal projection from E
onto F . The extension of this statement to the infinite-dimensional case will
occupy us in Chapter 7.

1.3. The Trigonometric System

We now come to an important example of an ONS in the Pre-Hilbert space
E = C([0, 1]; C). Consider

en(t) := e2nπit (t ∈ [0, 1], n ∈ Z).

If n 6= m

〈en, em〉 =
∫ 1

0
en(t)em(t) dt =

∫ 1

0
e2πi(n−m)t dt

=
e2πi(n−m)t

2πi(n−m)

∣∣∣∣1
0

=
1− 1

2πi(n−m)
= 0

by the fundamental theorem of calculus. On the other hand

‖en‖2 =
∫ 1

0

∣∣e2πin
∣∣2 dt =

∫ 1

0
1dt = 1.

This shows that (en)n∈Z is an orthonormal system in the complex space
C([0, 1]; C), the so-called trigonometric system.
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One can construct from this an ONS in the real space C([0, 1]; R), see
Exercise 1.15. For f ∈ C[0, 1] the abstract Fourier series

f ∼
∑∞

n=−∞
〈f, en〉 e2πint

with respect to the trigonometric system is called its Fourier series. We
shall have to say more about this in later chapters.

Exercises

Exercise 1.1. Here is a different way of proving Theorem 1.1. Suppose first
that 0 is in the interior of [a, b]. Then prove the theorem by considering the
derivatives p(j)(0) for j = 0, . . . , n. In the general case, find a < c < b and
use the change of variables y = x− c.

Exercise 1.2. Show that 〈·, ·〉 : C[a, b] × C[a, b] −→ K defined above is
indeed sesquilinear, positive and symmetric on C[a, b].

Exercise 1.3. Show that in an inner product space ‖λx‖ = |λ| ‖x‖ for every
x ∈ E. Treat complex scalars explicitly!

Exercise 1.4. a) Compute the 2-norm of the monomials tn, n ∈ N, in
the inner product space C[a, b] with standard inner product.

b) Let E := P[0,∞) be the space of all polynomials, considered as func-
tions on the half-line [0,∞). Define ‖p‖ by

‖p‖2 =
∫ ∞

0
|p(t)|2 e−t dt

for p ∈ E. Show that ‖p‖ is the norm induced by an inner product on
E. Prove all your claims.

Exercise 1.5. Make a drawing that helps you understanding why the par-
allelogram law carries its name.

Exercise 1.6. Work out the induction proof of Pythagoras’ Theorem.

Exercise 1.7. Let {e1, . . . , en} be a finite ONS in an inner product space
(E, 〈·, ·〉), let F := span{e1, . . . , en} and let P : E −→ F the orthogonal
projection onto F . Show that the following assertions hold:

a) PPf = Pf for all f ∈ E.

b) If f, g ∈ E are such that g ∈ F and f − g ⊥ F , then g = Pf .

c) Each f ∈ E has a unique representation as a sum f = u + v, where
u ∈ F and v ∈ F⊥. (In fact, u = Pf .)

d) If f ∈ E is such that f ⊥ F⊥, then f ∈ F . (Put differently: (F⊥)⊥ =
F .)
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e) Let Qf := f − Pf , f ∈ E. Show that QQf = Qf and ‖Qf‖ ≤ ‖f‖ for
all f ∈ E.

Exercise 1.8. Prove the identity (1.1).

Exercise 1.9. Let E,F be real inner product spaces, let T : E −→ F be
an isometry, i.e., T is linear and ‖Tf‖F = ‖f‖E for all f ∈ E. Show that
〈Tf, Tg〉F = 〈f, g〉E for all f, g ∈ E. (Hint: polarization identity.)

Exercise 1.10. Apply the Gram-Schmidt procedure to the polynomials
1, t, t2 in the inner product space C[−1, 1] to construct an orthonormal basis
of F = {p ∈ P[−1, 1] | deg p ≤ 2}. (Continuing this for t3, t4 . . . would yield
the sequence of so-called Legendre polynomials.)

Further Exercises

Exercise 1.11. Apply the Gram–Schmidt procedure to the monomials
1, t, t2 in the inner product space P[0,∞) with inner product

〈f, g〉 :=
∫ ∞

0
f(t)g(t)e−t dt.

Exercise 1.12. Let us call a function f : [1,∞) −→ K mildly decreasing
if there is a constant c = c(f) such that |f(t)| ≤ ct−1 for all t ≥ 1. Let
E := {f : [1,∞) −→ K | f is continuous and mildly decreasing}.

a) Show that E is a linear subspace of C[1,∞).

b) Show that

〈f, g〉 :=
∫ ∞

1
f(t)g(t) dt

defines an inner product on E.

c) Apply the Gram-Schmidt procedure to the functions t−1, t−2.

Exercise 1.13. Let E be the space of polynomials of degree at most 2. On
E define

〈f, g〉 := f(−1)g(−1) + f(0)g(0) + f(1)g(1) (f, g ∈ E).

a) Show that this defines an inner product on E.

b) Describe {t2 − 1}⊥.

c) Show that the polynomials t2 − 1, t2 − t are orthogonal, and find a
nonzero polynomial p ∈ E that is orthogonal to both of them.

Exercise 1.14. Use the polarization identity to show that an inner product
is competely determined by its induced norm. More precisely, show that if
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〈·, ·〉1 and 〈·, ·〉2 are two inner products with ‖f‖2
1 = 〈f, f〉1 = 〈f, f〉2 = ‖f‖2

2

for all f ∈ E, then 〈f, g〉1 = 〈f, g〉2 for all f, g ∈ E. (Hint: start with real
scalars first. In the complex case, how is 〈·, ·〉 determined by Re 〈·, ·〉?)

Exercise 1.15. Let (en)n∈Z be any ONS in C([a, b]; C), with standard inner
product. Suppose further that e−n = en for all n ∈ Z. Show that

{e0} ∪ {
√

2 Re en | n ∈ N} ∪ {
√

2 Im en | n ∈ N}
is an ONS in the real inner product space C([a, b]; R).



Chapter 2

Normed Spaces

On an inner product space (E, 〈·, ·〉) we have defined the norm as ‖f‖ :=
〈f, f〉1/2. In this chapter we examine further properties of this mapping,
leading to the abstract definition of a norm on a vector space. Then we
shall see many examples of normed spaces, which are not inner product
spaces.

2.1. The Cauchy–Schwarz Inequality and the space `2

The following is a cornerstone in the theory of inner product spaces.

Theorem 2.1 (Cauchy–Schwarz Inequality). Let (E, 〈·, ·〉) be an inner
product space with induced norm

‖f‖ :=
√
〈f, f〉 (f ∈ E).

Then
|〈f, g〉| ≤ ‖f‖ ‖g‖ (f, g ∈ E),

with equality if and only if f and g are linearly dependent.

Proof. If g = 0 or f = 0 then the inequality reduces to the trivial equality
0 = 0. So we may suppose that f, g 6= 0. Hence ‖g‖2 > 0. We define
α := 〈f, g〉 / ‖g‖2 and

h := f − αg = f − 〈f, g〉
‖g‖2 g.

Then by linearity in the first component

〈h, g〉 = 〈f, g〉 − 〈f, g〉
‖g‖2 〈g, g〉 = 〈f, g〉 − 〈f, g〉 = 0.

13
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Now Lemma 1.5, part a) yields

‖f‖2 = ‖αg + h‖2 = ‖αg‖2 + 2 Re 〈h, αg〉+ ‖h‖2 = |α|2 ‖g‖2 + ‖h‖2 .

Multiplying this by ‖g‖2 yields

‖f‖2 ‖g‖2 = |〈f, g〉|2 + ‖g‖2 ‖h‖2 ≥ |〈f, g〉|2

with equality if and only if ‖h‖2 = 0.

Example 2.2. On Kd the Cauchy–Schwarz inequality takes the form∣∣∣∣∑d

j=1
xjyj

∣∣∣∣ ≤ (∑d

j=1
|xj |2

)1/2 (∑d

j=1
|yj |2

)1/2

and on C[a, b] it is∣∣∣∣∫ b

a
f(t)g(t) dt

∣∣∣∣ ≤ (∫ b

a
|f(t)|2 dt

)1/2 (∫ b

a
|g(t)|2 dt

)1/2

.

With the help of the Cauchy–Schwarz inequality we can establish an
important fact about the norm in an inner product space: the so-called
triangle inequality.

Corollary 2.3. The norm ‖·‖ induced by an inner product 〈·, ·〉 on a vector
space E satisfies

(2.1) ‖f + g‖ ≤ ‖f‖+ ‖g‖ (f, g ∈ E).

Proof. Let f, g ∈ E. Then, using Cauchy–Schwarz,

‖f + g‖2 = ‖f‖2 + 2 Re 〈f, g〉+ ‖g‖2 ≤ ‖f‖2 + 2 |〈f, g〉|+ ‖g‖2

≤ ‖f‖2 + 2 ‖f‖ ‖g‖+ ‖g‖2 = (‖f‖+ ‖g‖)2.

Taking square roots proves the claim.Ex.2.1

Ex.2.2

The Cauchy–Schwarz inequality also helps in constructing new examples
of inner product spaces.

Example 2.4. A scalar sequence (xn)n∈N ⊆ C is called square summable
if
∑∞

n=1 |xn|2 <∞. We let

`2 = `2(N) :=
{

(xn)n∈N ⊆ C |
∑

n≥1
|xn|2 <∞

}
the set of all square-summable sequences. We claim: The set `2 is a vector
space and

〈x, y〉`2 :=
∑∞

j=1
xjyj (x = (xj)j∈N, y = (yj)j∈N ∈ `2)
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is a well-defined inner product on `2 with induced norm

‖x‖`2 =
(∑∞

j=1
|xj |2

)1/2
(x = (xj)j∈N ∈ `2).

Proof. Let x, y ∈ `2. We first prove that the scalar series
∑∞

j=1 xjyj con-
verges absolutely. To this aim, fix N ∈ N. Then the Cauchy–Schwarz
inequality for the (standard) inner product space KN yields

∑N

j=1
|xjyj | ≤

(∑N

j=1
|xj |2

)1/2 (∑N

j=1
|yj |2

)1/2

≤
(∑∞

j=1
|xj |2

)1/2 (∑∞

j=1
|yj |2

)1/2
=: M.

The right-hand side is a finite number M <∞ (by hypothesis x, y ∈ `2) and
is independent of N . Taking the supremum with respect to N yields∑∞

j=1
|xjyj | ≤M <∞,

hence the series converges absolutely. Since every absolutely convergent
series in C converges ordinarily, our first claim is proved.

To show that `2 is a vector space, take x, y ∈ `2 and λ ∈ K. Then
λx = (λxj)j is again square-summable because∑

j≥1
|λxj |2 =

∑
j≥1

|λ|2 |xj |2 = |λ|2
∑

j≥1
|xj |2 <∞.

Note that x + y = (xj + yj)j∈N. Fixing N ∈ N and using the triangle
inequality in KN we estimate(∑N

j=1
|xj + yj |2

)1/2

≤
(∑N

j=1
|xj |2

)1/2

+
(∑N

j=1
|yj |2

)1/2

≤
(∑∞

j=1
|xj |2

)1/2
+
(∑∞

j=1
|yj |2

)1/2

= ‖x‖`2 + ‖y‖`2 .

The right-hand side is finite and independent of N , so taking the supremum
with respect to N yields∑∞

j=1
|xj + yj |2 ≤ (‖x‖`2 + ‖y‖`2)

2 <∞.

This proves that x+ y ∈ `2, thus `2 is a vector space. The proof that 〈·, ·〉`2
is an inner product, is left as an exercise. Ex.2.3

Ex.2.4
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2.2. Norms

We have seen that inner product spaces allow to assign a length to each of
their elements. This length is positive (as lengths should be), scales nicely if
you multiply the vector by a scalar and obeys the triangle inequality, which
in colloquial terms just says that the direct way is always shorter (or at
least not longer) than making a detour via a third stop. Let us put these
properties into an abstract definition.

Definition 2.5. Let E be a vector space over the field K ∈ {R,C}. A
mapping

‖·‖ : E −→ R+ := [0,∞)

is called a norm on E if it has the following properties:

1) ‖x‖ = 0 ⇐⇒ x = 0 for all x ∈ E (definiteness)

2) ‖λx‖ = |λ| ‖x‖ for all x ∈ E, λ ∈ K (homogeneity)

3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ E (triangle inequality).

A normed (linear) space is a pair (E; ‖·‖) where E is a vector space and
‖·‖ is a norm on it.

We have seen that the natural length function on an inner product space
satisfies the axioms of a norm, so we were justified to call it “norm” in
the first place. So any inner product space becomes a normed space in
a canonical way. However, there are many norms not coming from inner
products, and we shall exhibit some of them in the following. The first is
maybe well-known, for example from undergraduate numerical analysis.

Example 2.6. On Kd we consider the mappings ‖·‖1 , ‖·‖∞ defined by

‖x‖1 :=
∑d

j=1
|xj | , ‖x‖∞ := max{|xj | | j = 1, . . . , d}

for x = (x1, . . . , xd) ∈ Kd. The proof that these mapping (called the 1-norm
and the max-norm) are indeed norms, is left as an exercise.

The following is a perfect analogue.

Example 2.7. On C[a, b] we consider the mappings ‖·‖1 , ‖·‖∞ defined by

‖f‖1 :=
∫ b

a
|f(t)| dt, ‖f‖∞ := sup{|f(t)| | t ∈ [a, b]}

for f ∈ C[a, b]. We sketch a proof of the triangle inequality, leaving the
other properties of a norm as an exercise. Let f, g ∈ C[a, b]. Then for each
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t ∈ [a, b] one has

|(f + g)(t)| = |f(t) + g(t)| ≤ |f(t)|+ |g(t)| .

For the 1-norm, one simply integrates this inequality, leading to

‖f + g‖1 =
∫ b

a
|(f + g)(t)| dt ≤

∫ b

a
|f(t)|+ |g(t)| dt

=
∫ b

a
|f(t)| dt+

∫ b

a
|g(t)| dt = ‖f‖1 + ‖g‖1 .

For the sup-norm, note that one can estimate |f(t)| ≤ ‖f‖∞ and |g(t)| ≤
‖g‖∞ for all t ∈ [a, b], by definition of the sup-norm. This leads to

|(f + g)(t)| ≤ |f(t)|+ |g(t)| ≤ ‖f‖∞ + ‖g‖∞
for all t ∈ [a, b]. Taking the supremum over t ∈ [a, b] we obtain

‖f + g‖∞ = sup
t∈[a,b]

|(f + g)(t)| ≤ ‖f‖∞ + ‖g‖∞ .

Ex.2.5

Advice/Comment:
Certainly you recall that a continuous positive function on a compact
interval has a maximum, i.e., attains its supremum. So we can write
‖f‖∞ = max{|f(t)| | t ∈ [a, b]}. However, in the proofs above this prop-
erty is never used. With a view towards more general situations below, it
is better to use the supremum rather than the maximum.

Now, experience shows that many students have problems with the
notion of supremum. We have collected the relevant definitions in Appen-
dix A.3. It may consolate you that in these lectures only suprema and
infima over sets of positive real numbers occur. However, they will occur
quite frequently, hence in case you have difficulties, you have to get to
terms with it quickly.

Examining the sup-norm for C[a, b] we may realize that in the proof
of the norm properties the continuity of the functions actually does not
play any role whatsoever. The only property that was used, was that
sup{|f(t)| | t ∈ [a, b]} was a finite number. For continuous functions this is
automatically satisfied, since [a, b] is a compact interval. If we leave compact
domains, we must include this into the definition of the function space.

Example 2.8. Let Ω be any (non-empty) set. A function f : Ω −→ K is
called bounded if there is a finite number c = c(f) ≥ 0 such that |f(t)| ≤ c
for all t ∈ Ω. For a bounded function f , the number

‖f‖∞ := sup{|f(t)| | t ∈ Ω}
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is finite. Let
B(Ω) := {f : Ω −→ K | f is bounded}

be the set of bounded functions on Ω. Then E = B(Ω) is a linear subspace
of F(Ω) and ‖·‖∞ is a norm on it. (Proof as exercise.) The norm ‖·‖∞ isEx.2.6

usually called the sup-norm.

A special instance of B(Ω) occurs when Ω = N. For this we use the
symbol

`∞ := B(N) =
{

(xj)j∈N | sup
j∈N

|xj | <∞
}
.

Recall that a scalar sequence is the same as a scalar function on N!
Last, but not least (see exercises below), we treat a sequence analogue

of the 1-norm.

Example 2.9. A scalar sequence x = (xj)j∈N is called absolutely sum-
mable if the series

∑∞
j=1 xj converges absolutely, i.e., if

‖x‖1 :=
∑∞

j=1
|xj | <∞.

We denote by
`1 :=

{
(xj)j∈N |

∑∞

j=1
|xj | <∞

}
the set of all absolutely summable sequences.Ex.2.7

Remark 2.10. We claimed in the beginning that these norms do not come
from any inner product on the underlying space. How can one be so sure
about that? Well, we know that a norm coming from an inner product sat-
isfies the parallelogram law. A stunning theorem of von Neumann actually
states the converse: a norm on a vector space comes from an inner product
if and only if it satisfies the parallelogram law. See [4, p.65/66] for a proof.
And spaces such as C[a, b] with the sup-norm or the 1-norm do not satisfy
the parallelogram law, see Exercise 2.13.

2.3. Bounded Linear Mappings

We shall now learn how normed spaces give rise to new normed spaces.
Suppose that E,F are normed spaces. Then we can consider mappings
T : E −→ F which are linear, i.e., which satisfy

T (f + g) = Tf + Tg and T (λf) = λTf

for all f, g ∈ E, λ ∈ K. A linear mapping is also called linear operator, and
if the codomain space F = K is one-dimensional, they are called (linear)
functionals.
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One can add linear mappings and multiply them by scalars by

(T + S)f := Tf + Sf, (λT )f := λ(Tf) (f ∈ E, λ ∈ K)

and in this way the set of all linear mappings from E to F becomes a new
vector space, see Lemma A.7. Is there a natural norm on that space?

Advice/Comment:
Think a moment about the finite-dimensional situation. If E = Kn and
F = Km, then the linear mappings from E to F are basically the n×m-
matrices. As a vector space this is isomorphic to Km·n, and we know
already several norms here. But which of them relates naturally to the
chosen norms on E and F?

It turns out that if E is infinite-dimensional, then there is no chance
to define a norm on the space of all linear mappings. However, there is an
important subspace of linear mappings that allows for a norm.

Definition 2.11. Let (E, ‖·‖E) and (F, ‖·‖F ) be normed spaces. A linear
mapping T : E −→ F is called bounded if there is a real constant c ≥ 0
such that

‖Tf‖F ≤ c ‖f‖E for all f ∈ E.

We denote by L(E;F ) the space of bounded linear operators from
E to F . If E = F we simply write L(E).

Advice/Comment:
When considering linear mappings T : E −→ F , we should distinguish the
norms on E and on F . We have done this in the above definition explicitly
by writing ‖·‖E and ‖·‖F , but one often drops the subscripts when there
is no danger of confusion.

Remark 2.12. A linear mapping T : E −→ F is bounded if and only if its
operator norm

(2.2) ‖T‖L(E;F ) := sup
‖f‖E≤1

‖Tf‖F

is a finite number.

Proof. Indeed, if ‖Tf‖ ≤ c ‖f‖ for all f ∈ E, then obviously ‖T‖ ≤ c is
finite. And if ‖T‖ < ∞ then for a general f ∈ E, f 6= 0 we write λ := ‖f‖
and compute

‖Tf‖ =
∥∥T (λλ−1f)

∥∥ = λ
∥∥T (λ−1f)

∥∥ ≤ λ ‖T‖ = ‖T‖ ‖f‖ ,
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since
∥∥λ−1f

∥∥ = λ−1 ‖f‖ = 1. And for f = 0 the inequality ‖Tf‖ ≤ ‖T‖ ‖f‖
holds trivially, since T (0) = 0.

Sometimes one write ‖T‖E→F is place of ‖T‖L(E;F ), but if there is no
danger of confusion, one omits subscripts. The following result shows that
the name “operator norm” is justified.

Theorem 2.13. Let E,F be normed spaces. Then L(E;F ) is a vector space,
and the operator norm defined by (2.2) is a norm on it. Furthermore, one
has

(2.3) ‖Tf‖F ≤ ‖T‖E→F ‖f‖E (f ∈ E).

Proof. The inequality (2.3) has been established above. Suppose S, T ∈
L(E;F ). Then, for all f ∈ E we have

‖(T + S)f‖ = ‖Tf + Sf‖ ≤ ‖Tf‖+ ‖Sf‖ ≤ ‖T‖ ‖f‖+ ‖S‖ ‖f‖
= (‖T‖+ ‖S‖) ‖f‖ .

But this means that S + T is bounded, and ‖T + S‖ ≤ ‖T‖ + ‖S‖. If
T ∈ L(E;F ) and λ ∈ K, then

‖(λT )f‖ = ‖λTf‖ = |λ| ‖Tf‖ ≤ |λ| ‖T‖ ‖f‖

for all f ∈ E; and this means that λT is bounded, with ‖λT‖ ≤ |λ| ‖T‖.
Replacing T by λ−1T here yields ‖λT‖ = |λ| ‖T‖. Finally, if ‖T‖ = 0 then
‖Tf‖ ≤ ‖T‖ ‖f‖ = 0 and hence Tf = 0 for all f ∈ E, i.e., T = 0.

We write ST in place of S ◦T whenever the composition of the operators
makes sense. The next lemma shows that it is safe to compose bounded
linear operators.

Lemma 2.14. Let E,F,G be normed spaces, and let T : E −→ F and
S : F −→ G be bounded linear operators. Then ST := S ◦ T is again a
bounded linear operator, and one has

(2.4) ‖ST‖E→G ≤ ‖S‖F→G · ‖T‖E→F

Proof. It is clear that ST is again linear. For f ∈ E we have

‖(ST )f‖ = ‖S(Tf)‖ ≤ ‖S‖ ‖Tf‖ ≤ ‖S‖ ‖T‖ ‖f‖ = (‖S‖ ‖T‖) ‖f‖ .

This shows that ST ∈ L(E;G) and establishes (2.4).

We shall encounter many bounded linear mappings in these lectures, but
a more thourough study is postponed until Chapter 9. At this point we look
only at a few very simple examples.
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Example 2.15. A linear mapping T : E −→ F is called an isometry if

‖Tf‖F = ‖f‖E for all f ∈ E.
An isometry is obviously bounded. It has trivial kernel (only the zero vector
is mapped to 0), and hence is injective. If it is also surjective, i.e., if ran(T ) =
F , we call T an isometric isomorphism. In this case, T is invertible and
also T−1 : F −→ E is an isometric isomorphism.

Let E be a finite-dimensional inner product space with orthonormal basis
{e1, . . . , ed}. Then we have seen that the coordinatization with respect to
this basis is an isometric isomorphism T : E −→ Kd, where Kd carries the
standard inner product.

Example 2.16. Any linear mapping T : Kd −→ F is bounded, where F is
an arbitrary normed space and on Kd we consider the standard (Euclidean)
norm.

Proof. Let e1, . . . , ed denote the canonical basis of Kd. Then for arbitrary
x = (x1, . . . , xd)

‖Tx‖F =
∥∥∥∥T (

∑d

j=1
xjej)

∥∥∥∥
F

≤
∑d

j=1
‖xjT (ej)‖F

=
∑d

j=1
|xj | ‖T (ej)‖F ≤ c ‖x‖∞ ≤ c ‖x‖2

where c :=
∑d

j=1 ‖T (ej)‖F .

Example 2.17 (Point evaluation). Let E = `p with p = 1, 2,∞, and let
j0 ∈ N. The point evaluation at j0 is

`p −→ K, x = (xj)j∈N 7→ xj0

is linear and bounded with |xj0 | ≤ ‖x‖p. Ex.2.8

Ex.2.9

Ex.2.10Let us close this chapter with an equivalent description of boundedness
of linear mappings. This hinges on the following general concept.

Definition 2.18. A subset A of a normed space (E, ‖·‖) is called bounded
if there is c ≥ 0 such that

‖f‖ ≤ c for all f ∈ A.

The closed unit ball of a normed space E is

BE := {f ∈ E | ‖f‖ ≤ 1}.
Then BE is obviously a bounded set, and a subset A ⊆ E is bounded iff
there is a constant c > 0 such that A ⊆ cBE .
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Lemma 2.19. A linear mapping T : E −→ F between normed spaces E
and F is bounded if and only if the set T (BE) is bounded if and only if T
maps bounded sets from E into bounded sets from F .Ex.2.11

Exercises

Exercise 2.1. Make a picture illustrating the name “triangle inequality”.

Exercise 2.2. Write down the instances of the triangle inequality in the
standard inner product spaces Kd and C[a, b].

Exercise 2.3. Complete the proof of the claim in the Example 2.4.

Exercise 2.4. Mimic the proof in Example 2.4 to show that the set

E := {f ∈ C[0,∞) |
∫ ∞

0
|f(t)|2 dt <∞}

is a vector space and that

〈f, g〉L2 :=
∫ ∞

0
f(t)g(t) dt

defines an inner product on it.

Exercise 2.5. Show that 1-norm and max-norm on Kd are indeed norms.
Complete the proof of the norm properties of 1-norm and sup-norm on
C[a, b]. Where is continuity actually needed?

Exercise 2.6. Show that (B(Ω), ‖·‖∞) is indeed a normed vector space.
(Mimic the proof in the C[a, b]-case.)

Exercise 2.7. Show that `1 is a vector space and that ‖·‖1 is a norm on it.
(Mimic the `2-case treated in Example 2.4)

Exercise 2.8. Let E := C[a, b] with the sup-norm and let t0 ∈ [a, b].
Show that point evaluation f 7−→ f(t0) is a bounded linear mapping from
(C[a, b], ‖·‖∞) −→ (K, |·|).

Is this still true when one replaces ‖·‖∞ by ‖·‖2 or ‖·‖1?

Exercise 2.9. For a continuous function f ∈ C[a, b] let

(Jf)(t) :=
∫ t

a
f(s) ds (t ∈ [a, b]).

Show that
J : (C[a, b], ‖·‖1) −→ (C[a, b], ‖·‖∞)

is a bounded linear mapping. What is its kernel, what is its range?
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Exercise 2.10. Let E consist of all functions f : R+ −→ K constant on
each interval [n− 1, n), n ∈ N, and such that

‖f‖1 :=
∫ ∞

0
|f(t)| dt <∞.

Show that E is a vector space, ‖·‖1 is a norm on it and describe an isometric
isomorphism T : `1 −→ E.

Exercise 2.11. Prove Lemma 2.19.

Further Exercises

Exercise 2.12. Make a sketch of the unit balls of ‖·‖1 and ‖·‖∞ on R2.

Exercise 2.13. In the examples, Kd and C[a, b], find pairs of vectors vio-
lating the parallelogram law for the 1-norm, and the ∞-norm, respectively.

Exercise 2.14. Mimic the proof of Example 2.4 to show that the set

E := {f ∈ C(R) |
∫ ∞

−∞
|f(t)|2 dt <∞}

is a vector space and that

〈f, g〉L2 :=
∫ ∞

−∞
f(t)g(t) dt

defines an inner product on it.

Exercise 2.15. Mimic the proof of Example 2.4 to show that the set

E := {f ∈ C[0,∞) |
∫ ∞

0
|f(t)|2 e−t dt <∞}

is a vector space and that

〈f, g〉 :=
∫ ∞

0
f(t)g(t)e−t dt

defines an inner product on it.

Exercise 2.16. Let c0 := {x = (xj)j∈N ⊆ K | limj→∞ xj = 0} be the set of
scalar null sequences. Show that c0 is a linear subspace of `∞, containing
`2.

Exercise 2.17. Show that `1 ⊆ `2 and that this inclusion is proper.

Exercise 2.18. Let w : (0,∞) −→ R be continuous, w(t) > 0 for all t > 0.
Show that the set

E :=
{
f ∈ C(0,∞) |

∫ ∞

0
|f(t)|w(t) dt <∞

}
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is a vector space and

‖f‖1 :=
∫ ∞

0
|f(t)|w(t) dt

is a norm on it.

Exercise 2.19. Let w : (0,∞) −→ R be continuous, w(t) > 0 for all t > 0.
Show that the set

E :=
{
f ∈ C(0,∞) | sup

t>0
|f(t)|w(t) <∞

}
is a vector space and

‖f‖∞ := sup
t>0

|f(t)|w(t)

defines a norm on it.

Exercise 2.20. Fix a non-trivial interval [a, b] ⊆ R, and a number α ∈ (0, 1).
A function f : [a, b] −→ K is called Hölder continuous of order α if there
is a finite number c = c(f) ≥ 0 such that

|f(t)− f(s)| ≤ c |t− s|α

for all s, t ∈ [a, b]. Let

Cα[a, b] := {f : [a, b] −→ K | f is Hölder continuous of order α}.
Show that Cα[a, b] is a linear subspace of C[a, b], and that

‖f‖(α) := sup {|f(t)− f(s)| / |s− t|α | s, t ∈ [a, b], s 6= t}
satisfies the triangle inequality and is homogeneous. Is it a norm? How
about

‖f‖ := |f(a)|+ ‖f‖(α) ?

Exercise 2.21. Let (F, ‖·‖F ) be a normed space, let E be any vector space
and T : E −→ F an injective linear mapping. Show that

‖f‖E := ‖Tf‖F (f ∈ E)

defines a norm on E, and T becomes an isometry with respect to this norm.



Chapter 3

Distance and
Approximation

Approximation is at the heart of analysis. In this section we shall see how
a norm induces naturally a notion of distance, and how this leads to the
notion of convergent sequences.

3.1. Metric Spaces

Originally, i.e., in three-dimensional geometry, a “vector” is a translation of
(affine) three-space, and it abstracts a physical motion or displacement. So
the length of a vector is just the length of this displacement. By introducing
a coordinate system in three-space, points can be identified with vectors:
with each point P you associate the vector which “moves” the origin O to
P . Given this identification, vectors “are” points, and the length of the
vector x becomes the distance of the point x to the origin. More generally,
the distance of the two points x and y is the length of the vector x− y.

Now let (E, ‖·‖) be a normed space, and let f, g ∈ E. Then we call

dE(f, g) := ‖f − g‖

the distance of f and g in the norm ‖·‖. The function

dE : E × E −→ R+, (f, g) 7−→ ‖f − g‖

is called the induced metric and has the following properties:

dE(f, g) = 0 ⇐⇒ f = g,(3.1)

dE(f, g) = dE(g, f),(3.2)

dE(f, g) ≤ dE(f, h) + dE(h, g)(3.3)

25
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with f, g, h being arbitrary elements of E.Ex.3.1

Advice/Comment:
We should better write d‖·‖(x, y) instead of dE(x, y), since the distance
depends evidently on the norm. However our notation is more convenient,
and we shall take care that no confusion arises.

Definition 3.1. A metric on a set Ω is a mapping d : Ω × Ω −→ [0,∞)
satisfying the following three conditions:

1) d(x, y) = 0 if and only if x = y (definiteness)

2) d(x, y) = d(y, x) (symmetry)

3) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

for all x, y, z ∈ Ω. A metric space is a pair (Ω, d) with Ω being a set and
d a metric on it. If x ∈ Ω and r > 0 the set

Br(x) := {y ∈ Ω | d(x, y) < r}

is called the (open) ball of radius r around x.

We immediately note important examples.

Example 3.2. Every normed space (E, ‖·‖) is a metric space under the
induced metric dE(x, y) = ‖x− y‖, x, y ∈ E.

Example 3.3. Every set Ω becomes a metric space under the discrete
metric, defined by

d(x, y) :=

{
0 if x = y

1 if x 6= y.

(Check that the axioms of a metric are indeed satisfied!)

Example 3.4. The interval [0,∞] becomes a metric space under

d(x, y) :=
∣∣∣∣ 1
1 + x

− 1
1 + y

∣∣∣∣ (x, y ∈ [0,∞])

where we use the convention that 1/∞ = 0.

Example 3.5. If (Ω, d) is a metric space and A ⊆ Ω is an arbitrary subset,
then A becomes a metric space by just restricting the metric d to A×A. This
metric on A is called the induced metric. For example, the interval (0, 1]
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is a metric space in its own right by setting d(x, y) := |x− y|, x, y ∈ (0, 1].
This metric is induced by the usual metric on R.

3.2. Convergence

Recall from your undergraduate analysis course that a sequence of real num-
bers (xn)n∈N ⊆ R converges to a real number x ∈ R if

∀ ε > 0 ∃N ∈ N such that |xn − x| < ε (n ≥ N).

We now generalize this concept of convergence to general metric spaces.
Note that (xn)n∈N converges to x if and only if limn→∞ |xn − x| = 0, and
|xn − x| = dR(xn, x) is the natural distance (metric) on R.

Definition 3.6. Let (Ω, d) be a metric space. A sequence (xn)n∈N ⊆ Ω in
Ω converges to an element x ∈ Ω (in symbols: xn → x, limn→∞ xn = x) if

∀ ε > 0 ∃N ∈ N such that d(xn, x) < ε (n ≥ N).

If (xn)n∈N converges to x, we call x a limit of the sequence (xn)n∈N.
We say that a sequence (xn)n∈N ⊆ Ω is convergent (in Ω) if it has a

limit, i.e., if there is x ∈ Ω such that xn → x.

We can rephrase the convergence xn → x also in the following way: for
every r > 0 one has xn ∈ Br(x) eventually, (i.e., for all sufficiently large
n ∈ N).

Advice/Comment:
Compare the general definition with the one for real numbers, you will
realize that xn → x (in the metric space Ω) is equivalent to d(xn, x) → 0
(in R). This reduces the general concept of convergence to a special case,
convergence in R to 0.

Example 3.7. In a discrete metric space, a sequence is convergent if and
only if it is eventually constant.

Example 3.8. If (E, ‖·‖) is a normed space, then xn → x in E is equivalent
to ‖xn − x‖ → 0. For instance, if E = Kd with the Euclidean metric and
writing xn = (xn1, . . . , xnd) for all n ∈ N then (xn)n∈N is convergent in Kd

if and only if each coordinate sequence (xnj)n∈N, j = 1, . . . , d, is convergent
in K.

We shall see more examples of convergent and non-convergent sequences
shortly. Let us return to the theory.
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Lemma 3.9. Limits are unique. More precisely, let (xn)n∈N ⊆ Ω such that
xn → x ∈ Ω and xn → x′ ∈ Ω. Then x = x′.

Proof. By the triangle inequality we have

d(x, x′) ≤ d(x, xn) + d(xn, x
′)

for every n ∈ N. Since both d(x, xn) → 0 and d(xn, x
′) → 0, it follows that

d(x, y) = 0. By definiteness, x = x′.

By the lemma, we shall henceforth speak of “the” limit of a convergent
sequence.

Advice/Comment:
Note that the concept of convergence is always relative to a given metric
space. The assertion “The sequence (xn)n∈N is convergent” to be mean-
ingful (and answerable) requires a metric and a space Ω where this metric
is defined. When the reference space is in doubt, we may say for clarifica-
tion that (xn)n∈N is convergent in Ω. This remark is not as trivial as it
looks, see the following example.

Example 3.10. Consider the sequence xn = 1/n, n ∈ N. Does it converge?
The answer is: it depends. If you consider this sequence within R with the
standard metric, the answer is yes, and 0 is the limit. If you consider this
sequence in the metric space (0, 1] (again with the standard metric), the
answer is no. If you consider it in (0, 1] with the discrete metric, the answer
is again no. If you take the metric(!)

d(x, y) :=
∣∣e2πix − e2πiy

∣∣ (x, y ∈ (0, 1])

the answer is yes, and 1 is the limit.

3.3. Uniform, Pointwise and 2-Norm Convergence

We have seen above that each metric induces its own notion of convergence.
The same sequence may or may not converge, depending on the metric
one considers. In Kd the convergence with respect to the Euclidean norm
is equivalent to convergence in every component. The following example
shows that the infinite-dimensional analogon of this statement is false.

Example 3.11. Consider on the space E = `2 the sequence of standard
unit vectors (en)n∈N, defined by

en = (0, 0, . . . , 0, 1, 0, . . . )
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where the 1 is located at the nth place. (One could write en = (δnj)j∈N,
where δij is the Kronecker delta.) Then we have ‖en‖2 = 1 for every
n ∈ N.

Suppose that (en)n∈N converges in the 2-norm, and let f ∈ `2 be its
limit. Fix a component k ∈ N; then trivially

|f(k)− en(k)| ≤
(∑∞

j=1
|f(j)− en(j)|2

)1/2
= ‖f − en‖2 → 0.

Since en(k) = 0 for n > k, this forces f(k) = 0. As k ∈ N was arbitary,
f = 0. But this implies

1 = ‖en‖2 = ‖en − 0‖2 = ‖en − f‖2 → 0

and this is clearly false. Hence our assumption was wrong and the sequence
(en)n∈N of standard unit vectors does not converge in norm. However, it
obviously converges “componentwise” (i.e., in each component).

Advice/Comment:
Make sure that you understand the above examples completely. We are
dealing here with a sequence of sequences: each vector en is a scalar se-
quence, and so (en)n∈N is a sequence whose elements are scalar sequences.

Dealing with sequences of sequences is a notational challenge. To avoid
unnecessary confusion we shall often write points of a sequence space in
function notation x = (x(j))j∈N, or simply x : N −→ K. A sequence of
sequences is then (xn)n∈N = ((xn(j)j∈N)n∈N, avoiding double indices in
this way.

The example above shows, roughly speaking, that convergence in every
component does not imply the convergence in the (2-)norm. Clearly one
can replace the 2-norm here by the 1-norm or the sup-norm. On the other
hand, the trivial estimate

|f(k)| ≤
(∑∞

j=1
|f(j)|2

)1/2
= ‖f‖2 (k ∈ N, f ∈ `2)

yields as in the example that 2-norm convergence implies componentwise
convergence. Ex.3.2

Ex.3.3We now turn to the sup-norm ‖·‖∞ on the space B(Ω) of bounded
functions on some non-empty set Ω (introduced in Example 2.8). Recall
the definition

‖f‖∞ = sup{|f(t)| | t ∈ Ω}
of the sup-norm of a bounded function f : Ω −→ K. Then d(f, g) =
‖f − g‖∞ ≤ ε is equivalent to

|f(t)− g(t)| ≤ ε
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being true for all t ∈ Ω. So fn → f in the norm ‖·‖∞ may be written as

∀ε > 0 ∃N = N(ε) : |fn(t)− f(t)| ≤ ε (n ≥ N, t ∈ Ω).

Note that the chosen N may depend on ε but it is the same (= “uniform”)
for every t ∈ Ω. Therefore we say that (fn)n∈N converges to f uniformly
(on Ω) and call the norm ‖·‖∞ sometimes the uniform norm.

A weaker notion of convergence (and the analogue of componentwise
convergence above) is the notion of pointwise convergence. We say that
a sequence (fn)n∈N of functions on Ω converges pointwise to a function
f : Ω −→ K, if

fn(t) → f(t) in K as n→∞

for every t ∈ Ω. In logical notation

∀ t ∈ Ω ∀ε > 0 ∃N = N(t, ε) : |fn(t)− f(t)| ≤ ε (n ≥ N).

Here the N may depend on ε and the point t ∈ Ω.
Clearly, uniform convergence implies pointwise convergence, as follows

also from the (trivial) estimate

|f(t)| ≤ sup
s∈Ω

|f(s)| = ‖f‖∞

for each t ∈ Ω. The converse is not true.

Example 3.12. Consider Ω = (0,∞) and the functions fn(x) = e−nx.
Then clearly fn(x) → 0 as n→∞ for each x ∈ Ω. However,

‖fn‖∞ = sup
x>0

∣∣e−nx
∣∣ = 1

for each n ∈ N, and thus fn 6→ 0 uniformly.
If we consider gn := nfn, then ‖gn‖∞ = n→∞, but still gn(x) → 0 for

each x > 0. This shows that pointwise convergence of a sequence does not
even imply its boundedness in the sup-norm, let alone convergence in this
norm.Ex.3.4

Clearly the “obstacle” against uniform convergence is the behaviour of
the functions fn at 0. If we multiply fn by a bounded function h ∈ B(Ω)
such that limx→0 h(x) = 0, then their “bad” behaviour at 0 is tempered,
and we have indeed ‖hfn‖∞ → 0. (We ask for a formal proof in Exercise
3.5.)Ex.3.5

Example 3.13. For each interval [a, b] ⊆ R we have

(3.4) ‖f‖1 ≤
√
b− a ‖f‖2 and ‖f‖2 ≤

√
b− a ‖f‖∞
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for all f ∈ C[a, b]. The first inequality follows from Cauchy-Schwarz and

‖f‖1 =
∫ b

a
|f | = 〈|f | ,1〉 ≤ ‖f‖2 ‖1‖2 =

√
b− a ‖f‖2

where we have written 1 for the function which is constantly equal to 1.
The second inequality follows from

‖f‖2
2 =

∫ b

a
|f |2 ≤

∫ b

a
‖f‖2

∞ 1 = (b− a) ‖f‖2
∞ .

The inequalities (3.4) imply that uniform convergence implies 2-norm con-
vergence and 2-norm convergence implies 1-norm convergence. Ex.3.6

Now we are asking for the converse implications. Consider as an example
[a, b] = [0, 1] and in C[0, 1] the sequence of functions fn(t) := tn, for t ∈ [0, 1]
and n ∈ N. Then fn(t) → 0 as n → ∞ for each t < 1, but fn(1) = 1 for
all n ∈ N. This means that (fn)n∈N converges pointwise to the function f
given by

f(t) :=

{
0 (0 ≤ t < 1)
1 (t = 1)

which is, however, not contained in C[0, 1]. A fortiori, (fn)n∈N has also no
uniform (i.e., sup-norm) limit in C[0, 1].

Now let us consider the 1-norm and the 2-norm instead. For n ∈ N we
compute

‖fn‖1 =
∫ 1

0
tn dt =

1
n+ 1

→ 0 and

‖fn‖2
2 =

∫ 1

0
|fn(t)|2 dt =

∫ 1

0
t2n dt =

1
2n+ 1

→ 0.

This shows that fn → 0 in C[a, b] with the standard inner product and in
C[a, b] with respect to the 1-norm.

To complete the picture, let gn :=
√

2n+ 1fn. Then

‖gn‖2 =
√

2n+ 1√
2n+ 1

= 1, but ‖gn‖1 =
√

2n+ 1
n+ 1

→ 0.

Hence 1-norm convergence does not imply 2-norm convergence.

Advice/Comment:
The previous example shows also that 2-norm-convergence on an interval
[a, b] does not imply pointwise convergence.



32 3. Distance and Approximation

3.4. The Closure of a Subset

One of the major goals of analysis is to describe how a complicated object
may be approximated by simple ones. To approximate an object x is nothing
else than to find a sequence (xn)n∈N converging to it; this is of course only
meaningful if one has a surrounding metric space in which one wants the
convergence to happen.

The classical example is the approximation of real numbers by rationals
in the standard metric of R. Here is a similar example in infinite dimensions.

Example 3.14. The space of finite sequences is defined as

c00 := {(xj)j∈N | xj = 0 eventually} = span{ej | j ∈ N},

where {ej | j ∈ N} are the standard unit vectors introduced in Example
3.11. Clearly, it is a subspace of `2.
Claim: Every element f ∈ `2 is the ‖·‖2-limit of a sequence (fn)n∈N in c00.

Proof. Fix
f = (xj)j∈N = (x1, x2, x3, . . . ) ∈ `2.

Then it is natural to try as approximants the finite sequences created from
f by “cutting off the tail”; i.e., we define

fn := (x1, x2, . . . , xn, 0, 0, . . . ) ∈ c00

for n ∈ N. Now

‖f − fn‖2
2 =

∞∑
j=1

|fn(j)− fn(j)|2 =
∞∑

j=n+1

|xj |2 → 0 (n→∞)

since f ∈ `2. This yields ‖f − fn‖2 → 0 as claimed.

These considerations motivate the following definition.

Definition 3.15. Let (Ω, d) be a metric space, and let A ⊆ Ω. The closure
of A (in Ω) is the set

A := {x ∈ Ω | ∃ (xn)n∈N ⊆ A : xn → x}

of all the points in Ω that can be approximated by elements from A.

Advice/Comment:
This is analogous to the linear span of a subset B of a vector space E: In
span(A) one collects all the vectors that can be produced by performing
the operation “form a finite linear combination” on elements of A. And
in A one collects all elements of the metric space Ω that can be produced
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by performing the operation “take the limit of a convergent sequence” on
members of A.

Lemma 3.16. Let (Ω, d) be a metric space, and let A ⊆ Ω. Then the
following assertions are equivalent for x ∈ Ω:

(i) x ∈ A;

(ii) There exists (xn)n∈N ⊆ A such that xn → x;

(iii) Br(x) ∩A 6= ∅ for all r > 0.

Proof. The equivalence of (i) and (ii) is just the definition. If (ii) holds and
r > 0 then if for large n we have d(xn, x) < r, i.e., xn ∈ Br(x) ∩ A. This
proves (iii).

Conversely, if (iii) holds, then for each n ∈ N we take r = 1/n and
conclude that there is xn ∈ A∩B1/n(x). This means that (xn)n∈N ⊆ A and
d(xn, x) < 1/n, which implies that xn → x. And this is (ii).

Note that Example 3.14 can be reformulated as c00 = `2 with respect to
the 2-norm.

Advice/Comment:
As with convergence, the closure A of a set is taken with respect to a
surrounding metric space. Closures of the same set in different metric
spaces usually differ.

Lemma 3.17. The closure operation has the following properties:

a) ∅ = ∅, Ω = Ω;

b) A ⊆ A;

c) A ⊆ B =⇒ A ⊆ B;

d) A ∪B = A ∪B;

e) A = A.

Proof. Assertions a)–c) are pretty obvious, so we leave them as exercise.
For the proof of d), note that since A ⊆ A ∪ B it follows from c) that
A ⊆ A ∪B, and likewise for B. This yields the inclusion “⊇”. To prove the
converse inclusion, take x ∈ A ∪B; then by definition there is a sequence
(xn)n∈N such that xn → x and xn ∈ A∪B. One of the sets {n ∈ N | xn ∈ A}
and {n ∈ N | xn ∈ B} is infinite (as they partition N), and without loss of



34 3. Distance and Approximation

generality we may suppose it is the first one. Then this defines a subsequence
(xnk

)k∈N ⊆ A. Since also x = limk→∞ xnk
, we conclude that x ∈ A.

For the proof of e), note that A ⊆ A follows from b). For the converse,
suppose that x ∈ A, and let r > 0. By Lemma 3.16 there is y ∈ A∩Br/2(x);
again by Lemma 3.16 there is z ∈ A ∩ Br/2(y). Then d(x, z) ≤ d(x, y) +
d(y, z) < r/2 + r/2 = r and so z ∈ A ∩ Br(x). So x ∈ A, by Lemma 3.16.

Ex.3.7

Ex.3.8

3.5. Dense Subsets and Weierstrass’ Theorem

We have seen above that the 2-norm closure of c00 is the whole space `2.
This receives a special name.

Definition 3.18. Let (Ω, d) be a metric space. A subset A ⊆ Ω is called
dense (in Ω) if A = Ω.

So c00 is dense in `2 (with respect to the 2-norm).Ex.3.9

Ex.3.10

Advice/Comment:
Note that to say that “A is dense in Ω” always presupposes that A is
contained in Ω.

Advice/Comment:
The concept of a dense subset is one of the most important concepts in
analysis. Since Q is dense in R, every real number can be arbitrarily well
approximated by rational numbers, and when the difference is small it
will not matter in practice. This reasoning is at the heart of scientific
computing.

Passing from numbers to functions, a smooth curved shape may be
arbitrarily well approximated by polygonal shapes, and in practice it may
suffice to use the approximation instead of the original.

In the course of our lectures we shall need two famous and important
density results with respect to the uniform norm. The first is due to Weier-
strass and its proof can be found in Appendix B.1.

Theorem 3.19 (Weierstrass). Let [a, b] be a compact interval in R. Then
the space of polynomials P[a, b] is dense in C[a, b] with respect to the sup-
norm.
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We let, for k ∈ N or k = ∞,

Ck[a, b] := {f −→ K | f is k-times continuously differentiable}.

Since polynomials are infinitely differentiable, the Weierstrass theorem shows
that C∞[a, b] is dense in C[a, b].

Advice/Comment:
It is recommended that you work yourself through the proof of Weierstrass’
theorem at a later stage.

The second density result we quote without proof. It is a consequence
of Fejér’s theorem in Fourier analysis. We call it the “trigonometric Weier-
strass” because there is a formal analogy to Weierstrass’ theorem above.
(Actually, both theorems are special cases of the so-called Stone–Weierstrass
theorem; this is not part of these lectures.)

Recall the definition of the trigonometric system

en(t) := e2πin·t (t ∈ [0, 1], n ∈ Z)

from Chapter 1. Any linear combination of these functions en is called a
trigonometric polynomial. Clearly, each function en is 1-periodic, i.e.,
satisfies en(0) = en(1), and hence every trigonometric polynomial is periodic
too. Let

Cper[0, 1] := {f ∈ C[0, 1] | f(0) = f(1)}

be the space of 1-periodic continuous functions on [0, 1]. This is a linear
subspace of C[0, 1] with respect to the sup-norm.

Theorem 3.20 (“Trigonometric Weierstrass”). The space of trigonomet-
ric polynomials

span{en | n ∈ Z}

is dense in Cper[0, 1] with respect to the sup-norm.

Advice/Comment:
Theorem 3.20 is not due to Weierstrass, and we chose the name “Trigono-
metric Weierstrass” just because of the resemblance to Weierstrass’ theo-
rem 3.19.
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Exercises

Exercise 3.1. Let (E, ‖·‖) be a normed space, with associated distance
function dE defined by dE(f, g) = ‖f − g‖. Show that dE has the three
properties claimed for it on page 25.

Exercise 3.2. Show that

‖f‖∞ ≤ ‖f‖2 ≤ ‖f‖1

for any sequence f : N −→ K. Conclude that

`1 ⊆ `2 ⊆ `∞.

Conclude also that 1-norm convergence implies 2-norm convergence, and
that 2-norm convergence implies sup-norm convergence. Show that the in-
clusions above are all strict.

Exercise 3.3. Give an example of a sequence (fn)n∈N ⊆ `1 with ‖fn‖∞ → 0
and ‖fn‖2 →∞.

Exercise 3.4. Let fn(t) := (1 + nt)−1 for t ∈ (0,∞) and n ∈ N.

a) Show that for each ε > 0, (fn)n∈N is uniformly convergent on [ε,∞) (to
which function?).

b) Show that (fn)n∈N is not uniformly convergent on (0,∞).

Exercise 3.5. Prove the claim of Example 3.12, that is: Let h ∈ B(0,∞)
such that limt↘0 h(t) = 0. Define gn(t) := e−nth(t) for t > 0. Show that
fn → 0 uniformly on (0,∞).

Exercise 3.6. Show with the help of the inequalities (3.4) that uniform
convergence implies 2-norm convergence, and 2-norm convergence implies
1-norm convergence.

Exercise 3.7. Find an example of a metric space (Ω, d) and subsets A,B ⊆
Ω such that

A ∩B 6= A ∩B

Exercise 3.8. Let (Ω, d) be a metric space, and let A ⊆ Ω be dense in Ω.
Suppose that B ⊆ Ω such that A ⊆ B. Show that B is dense in Ω, too.

Exercise 3.9. Show that c00 is dense in `1 (with respect to the 1-norm).
Let 1 = (1, 1, 1, . . . ) be the sequence with all entries equal to 1. Show that
‖1− f‖∞ ≥ 1 for every f ∈ c00. Conclude that 1 /∈ c00 with respect to the
sup-norm. Then show that

c00 = c0 := {(xj)j∈N ⊆ K | lim
j→∞

xj = 0}

(closure with respect to the sup-norm) is the space of all null sequences.
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Exercise 3.10. Show that

C0[a, b] := {f ∈ C[a, b] | f(a) = f(b) = 0}
is 2-norm dense in C[a, b]. Is it also sup-norm dense?

Further Exercises

Exercise 3.11. Let (Ω, d) be a metric space, and let x, y, z, w ∈ Ω. Prove
the “complete second triangle inequality”:

|d(x, z)− d(y, w)| ≤ d(x, y) + d(z, w)

Exercise 3.12. Let (Ω, d) be a metric space, (xn)n∈N ⊆ Ω, x ∈ Ω. Show
that the following assertions are equivalent:

(i) xn 6→ x.

(ii) There is ε > 0 and a subsequence (xnk
)k such that d(x, xnk

) ≥ ε for all
k ∈ N.

Conclude that the following assertions are equivalent:

(i) xn → x

(ii) Each subsequence of (xn)n∈N has a subsequence that converges to x.

Exercise 3.13. Let (Ω, d) be a metric space. A subset A ⊆ Ω is called
bounded if

diam(A) := sup{d(x, y) | x, y ∈ A} <∞.

Show that a subset A of a normed space (E, ‖·‖) is bounded in this sense if
and only if sup{‖x‖ | x ∈ A} <∞.

Exercise 3.14. Let (xn)n∈N be a sequence in the metric space (Ω, d) and
let x ∈ Ω. Show that there is a subsequence of (xn)n∈N converging to x if
and only if

x ∈
⋂
n∈N

{xk | k ≥ n}.

Exercise 3.15. Give a prove of Weierstrass’ theorem by using its trigono-
metric version. (Hint: use power series expansions for the trigonometric
polynomials.)

Exercise 3.16. Let f ∈ C[0, 1] such that f(0) = 0. Define for n ∈ N

(Tnf)(t) :=
∫ t

0
e−n(t−s)f(s) ds (t ∈ [0, 1])

a) Show that ‖Tnf‖∞ ≤ (1− e−n) ‖f‖∞ /n.
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b) Show that

nTnf(t)− f(t) =
∫ t

0
ne−ns(f(t− s)− f(t)) ds+ e−ntf(t)

for all t ∈ [0, 1] and n ∈ N.

c) Show that limn→∞ nTnf = f uniformly on [0, 1]. (Hint: b) and Exam-
ple 3.12.)

d) Conclude that C1[0, 1] is dense in C[0, 1].



Chapter 4

Continuity

We continue our introduction to metric topology with the fundamental con-
cepts of open and closed sets, continuity of mappings and compactness of
metric spaces. Finally, we discuss equivalence of metrics.

4.1. Open and Closed Sets

You may know the concepts of open and closed set from undergraduate
analysis. Here is a definition valid for general metric spaces.

Definition 4.1. Let (Ω, d) be a metric space. A subset O ⊆ Ω is called
open if the following holds:

∀x ∈ O ∃ ε > 0 such that Bε(x) ⊆ O.

A subset A ⊆ Ω is closed if A ⊆ A.

Openness means that for each point x there is some critical distance
ε = ε(x) with the property that if you deviate from x not more than ε, you
will remain inside the set. Closedness means that every point that you can
approximate out of A is already contained in A. Note that since always
A ⊆ A, the set A is closed iff A = A.

Examples 4.2. 1) In every metric space both sets ∅ and Ω are both open
and closed!

2) The closure A of a subset A ⊆ Ω is always closed, since A = A, by
Lemma 3.17. If B ⊆ Ω is closed and A ⊆ B, then A ⊆ B. Hence A is
the “smallest” closed set that contains A.

3) In every metric space, any (open) ball Bε(x) is indeed open.

39
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Proof. Take y ∈ Bε(x). Let 0 < r := d(x, y) < ε. By the triangle
inequality, for each z ∈ Bε−r(y)

d(x, z) ≤ d(x, y) + d(y, z) = r + d(y, z) < r + (ε− r) = ε.

Hence z ∈ Bε(x), which shows that Bε−r(y) ⊆ Bε(x).

4) In a discrete metric space, every subset is both open and closed.

5) Consider Ω = `∞ with the metric induced by the norm ‖·‖∞. The open
ball with radius 1 around 0 is

B1(0) = {x ∈ `∞ | ‖x‖∞ < 1}
= {x = (xj)j∈N | ∃ δ ∈ (0, 1) : ∀ j ∈ N |xj | ≤ δ}.

Ex.4.1

Advice/Comment:
As with convergence, openness and closedness of a set are notions relative
to a metric space. To clarify this dependence on the surrounding space,
we often say that O is open in Ω, A is closed in Ω.

The following example illustrates this and it shows that in general a
set is neither open nor closed.

Example 4.3. Consider the set (0, 1]. Is it open or closed? As with con-
vergence, the answer is: it depends. In the metric space R with standard
metric, it is neither open nor closed. In the metric space [0, 1] with the
standard metric, it is open, but not closed! In the metric space (0, 1] (with
any metric), it is both open and closed. In the metric space [−1, 1] \ {0}
with the standard metric, it is also both open and closed.Ex.4.2

The following lemma tells us how openness and closedness are connected.

Lemma 4.4. Let (Ω, d) be a metric space. A subset O ⊆ Ω is open if and
only if its complement Oc := Ω \O is closed.Ex.4.3

We have the following “permanence properties” for open and closed sets.

Theorem 4.5. Let (Ω, d) be a metric space. The collection of closed subsets
of Ω has the following properties:

a) ∅, Ω are closed.

b) If (Aι)ι is any nonempty collection of closed sets, then
⋂

ιAι is closed.

c) If A,B are closed then A ∪B is closed.
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The collection of open subsets has the following properties.

d) ∅, Ω are open.

e) If (Oι)ι is any nonempty collection of open sets, then
⋃

ιOι is open.

f) If O,W are open then O ∩W is open.

Proof. The assertions about open sets follow from the ones about closed
sets by De Morgan’s laws from set theory. So we prove only the latter ones.
Assertion a) and b) follow directly from Lemma 3.17, a) and d) and the
definition of a closed set. For c), let A =

⋂
ιAι with closed sets Aι ⊆ Ω. To

show that A is closed, let (xn)n∈N ⊆ A and suppose that xn → x ∈ Ω. For
every ι, (xn)n∈N ⊆ Aι, and as Aι is closed, x ∈ Aι. As ι was arbitrary it
follows that x ∈ A, as was to show. Ex.4.4

4.2. Continuity

Continuity of a mapping f : Ω −→ Ω′ between metric spaces (Ω, d), (Ω′, d′)
can be defined in many ways. We choose the one most convenient for func-
tional analysis.

Definition 4.6. Let (Ω′, d′), (Ω, d) be two metric spaces. A mapping f :
Ω −→ Ω′ is called continuous at x ∈ Ω, if for every sequence (xn)n∈N ⊆ Ω
the implication

xn → x ⇒ f(xn) → f(x)

holds. The mapping f is simply called continuous if it is continuous at
every point x ∈ Ω.

Example 4.7 (Continuity of the Norm). Let (E, ‖·‖) be a normed space.
Then the norm-mapping E −→ R+, f 7−→ ‖f‖ is continuous, i.e.,

fn → f in E ⇒ ‖fn‖ → ‖f‖ in R.

Proof. We first establish the second triangle inequality

(4.1) |‖f‖ − ‖g‖| ≤ ‖f − g‖

for all f, g ∈ E. The triangle inequality yields ‖f‖ = ‖f − g + g‖ ≤
‖f − g‖+ ‖g‖, whence

‖f‖ − ‖g‖ ≤ ‖f − g‖ .

Reversing the roles of f and g we have

−(‖f‖ − ‖g‖) = ‖g‖ − ‖f‖ ≤ ‖g − f‖ = ‖f − g‖ .
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Taking the maximum establishes (4.1). Now, if fn → f then

|‖fn‖ − ‖f‖| ≤ ‖fn − f‖ → 0,

and hence ‖fn‖ → ‖f‖.

Lemma 4.8. For a mapping f : Ω −→ Ω′ the following assertions are
equivalent:

(i) f is continuous.

(ii) f−1(U) is open in Ω for each open set U ⊆ Ω′.

(iii) f−1(A) is closed in Ω for each closed set A ⊆ Ω′.

(iv) For each x ∈ Ω we have

∀ ε > 0 ∃ δ > 0 ∀ y ∈ Ω : d(x, y) < δ =⇒ d(f(x), f(y)) < ε.

Proof. We only prove that (i) implies (iii), the remaining implications we
leave as exercise. Suppose that f is continuous and that A ⊆ Ω′ is closed.
Take a sequence (xn)n∈N ⊆ f−1(A) such that xn → x ∈ Ω. Then f(xn) ∈ A
for all n ∈ N, and f(xn) → f(x) by continuity. As A is closed, f(x) ∈ A,
i.e., x ∈ f−1(A). This was to prove.Ex.4.5

Example 4.9. The unit ball BE = {f ∈ E | ‖f‖ ≤ 1} is closed. (It is the
inverse image of [0, 1] under the norm mapping.)

Advice/Comment:
Advice: if you want to show continuity of a mapping between metric
spaces, try first our definition via sequences. Try to avoid the (equivalent)
ε− δ formulation.

In normed spaces, the following theorem yields many continuous map-
pings.

Theorem 4.10. Let (E, ‖·‖) be a normed space. Then the addition mapping
and the scalar multiplication are continuous.

More explicitly, suppose that fn → f and gn → g in E and λn → λ in
K. Then

fn + gn → f + g and λnfn → λf.

If in addition the norm is induced by an inner product 〈·, ·〉, then

〈fn, gn〉 → 〈f, g〉 in K.
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Proof. Continuity of addition follows from

dE(fn + gn, f + g) = ‖(fn + gn)− (f + g)‖ = ‖(fn − f) + (gn − g)‖
≤ ‖fn − f‖+ ‖gn − g‖ = dE(fn, f) + dE(gn, g) → 0.

For the scalar multiplication note that

λnfn − λf = (λn − λ)(fn − f) + λ(fn − f) + (λn − λ)f ;

taking norms and using the triangle inequality yields

dE(λnfn, λf) ≤ |λn − λ| ‖fn − f‖+ |λ| ‖fn − f‖+ |λn − λ| ‖f‖ → 0.

Suppose that the norm is induced by an inner product. Then

〈fn, gn〉 − 〈f, g〉 = 〈fn − f, gn − g〉+ 〈f, gn − g〉+ 〈fn − f, g〉 .

Taking absolute values and estimating with the triangle and the Cauchy–
Schwarz inequality yields

|〈fn, gn〉 − 〈f, g〉| = |〈fn − f, gn − g〉|+ |〈f, gn − g〉|+ |〈fn − f, g〉|
≤ ‖fn − f‖ ‖gn − g‖+ ‖f‖ ‖gn − g‖+ ‖fn − f‖ ‖g‖ .

As each of these summands tend to 0 as n → ∞, so does the left-hand
side. Ex.4.6

Advice/Comment:
The previous proof is paradigmatic for convergence proofs in analysis.
One needs to prove that xn → x. To achieve this, one tries to estimate
d(xn, x) ≤ an with some sequence of real numbers (an)n∈N converging to
0. The sandwich theorem from undergraduate real analysis yields that
d(xn, x) → 0, i.e., xn → x by definition. Note that in this way tedious
ε−N arguments are avoided.

Corollary 4.11. The following assertions hold:

a) Let (E, ‖·‖) be a normed space, and let F ⊆ E be a linear subspace of
E. Then the closure F of F in E is also a linear subspace of E.

b) Let (E, 〈·, ·〉) be an inner product space and S ⊆ E. Then S⊥ is a closed
linear subspace of E and S⊥ = S

⊥.

Proof. The proof is an exercise. Ex.4.7

Ex.4.8

Here is a useful application of Theorem 4.10.
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Corollary 4.12. Let C0[a, b] := {f ∈ C[a, b] | f(a) = f(b) = 0} and

C1
0[a, b] := C1[a, b] ∩ C0[a, b] = {f ∈ C1[a, b] | f(a) = f(b) = 0}.

Then C1
0[a, b] is dense in C0[a, b] with respect to the uniform norm.

Proof. Let f ∈ C[a, b] with f(a) = f(b) = 0. By the Weierstrass theorem
we find a sequence (pn)n∈N of polynomials such that pn → f uniformly
on [a, b]. Since uniform convergence implies pointwise convergence, an :=
pn(a) → f(a) = 0 and bn := pn(b) → f(b) = 0. We subtract from pn a linear
polynomial to make it zero at the boundary:

qn(t) := pn(t)− an
b− t

b− a
− bn

t− a

b− a

Then qn(a) = 0 = qn(b) and qn is still a polynomial. But since an, bn → 0,
limn→∞ qn = limn→∞ pn = f uniformly.

Advice/Comment:
The results of Theorem 4.10 are so natural that we usually do not explicitly
mention when we use them.

Other examples are continuous linear mappings between normed spaces.

Theorem 4.13. A linear mapping T : E −→ F between two normed spaces
(E, ‖·‖E) and (F, ‖·‖F ) is continuous if and only if it is bounded.

Proof. Suppose that T is bounded. Then, if fn → f in E is an arbitrary
convergent sequence in E,

‖Tfn − Tf‖F = ‖T (fn − f)‖F ≤ ‖T‖E→F ‖fn − f‖E → 0

as n→∞. So Tfn → Tf , and T is shown to be continuous.
For the converse, suppose that T is not bounded. Then ‖T‖ as defined

in (2.2) is not finite. Hence there is a sequence of vectors (fn)n∈N ⊆ E such
that

‖gn‖ ≤ 1 and ‖Tgn‖ ≥ n (n ∈ N).

Define fn := (1/n)gn. Then ‖fn‖ = ‖gn‖ /n ≤ 1/n→ 0, but

‖Tfn‖ =
∥∥T (n−1gn)

∥∥ = n−1 ‖Tgn‖ > 1

for all n ∈ N. Hence Tfn 6→ 0 and therefore T is not continuous.
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Advice/Comment:
Although boundedness and continuity are the same for linear mappings be-
tween normed spaces, functional analysts prefer using the term “bounded
linear mapping” to “continuous linear mapping”.

If T : E −→ F is a bounded linear mapping between normed spaces, its
kernel

kerT = {f ∈ E | Tf = 0}
is a closed linear subspace of E, since kerT = T−1{0} is the inverse image
of the (closed!) singleton set {0}.

Example 4.14. The spaces C0[a, b] and Cper[a, b] are closed subspaces of
C[a, b] with respect to the uniform norm.

Proof. C0[a, b] is the kernel of the bounded linear mapping

T : C[a, b] −→ K2, T f := (f(a), f(b)).

and Cper[a, b] is the kernel of the bounded linear mapping

S : C[a, b] −→ K, T f := f(a)− f(b).

Ex.4.9

On the other hand, the range

ranT = {Tf | f ∈ E}

of a bounded linear mapping T need not be closed in F . One often writes
ran(T ) in place of ran(T ).

Example 4.15. Let E = c00 with the 2-norm, let F = `2 with the 2-norm,
and let T : E −→ F , Tx := x for x ∈ E. Since T is an isometry, it is
bounded. Its range is not closed, since ran(T ) = c00 = `2 is the whole of `2

(see Example 3.14).

4.3. (Sequential) Compactness

Already from undergraduate courses you know that compactness is an im-
portant feature of certain sets in finite dimensions. We extend the concept
to general metric spaces.

Definition 4.16. A subset A of a metric space (Ω, d) is called (sequen-
tially) compact if every sequence in A has a subsequence that converges
to a point in A.
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Advice/Comment:
It can be shown that for metric spaces sequential compactness is the same
as general compactness, a topological notion that we do not define here.
We therefore often use the word “compact” instead of “sequentially com-
pact”.

From elementary analysis courses the reader knows already a wealth of
examples of sequentially compact metric spaces.

Theorem 4.17 (Bolzano–Weierstrass). With respect to the Euclidean
metric on Kd a subset A ⊆ Kd is (sequentially) compact if and only if it
is closed and bounded.

This theorem is very close to the axioms of the real numbers. For the
reader’s convenience we have included a discussion of these axioms and a
proof of the Bolzano–Weierstrass theorem in Appendix A.5. The following
example shows that the finite-dimensionality in Theorem 4.17 is essential.

Example 4.18. The closed unit ball of `2 is not compact. Indeed, we have
seen that the canonical unit vectors (en)n∈N satisfy d(en, em) =

√
2δnm.

Hence no subsequence of this sequence can be convergent.

Let us return to the general theory.

Theorem 4.19. Let (Ω, d) be a metric space and let A ⊆ Ω be compact.
Then the following assertions hold.

a) A is closed in Ω.

b) If f : Ω −→ Ω′ is a continuous mapping into another metric space, the
image set f(A) is a compact subset of Ω′.

Proof. a) Let (xn)n∈N ⊆ A and xn → x ∈ Ω. By compactness, there is a
subsequence (xnk

)k∈N converging to some element y ∈ A. But also xnk
→ x,

and as limits are unique, x = y ∈ A.
b) Let (yn)n∈N ⊆ f(A). By definition, for each n ∈ N there is xn ∈ A

such that f(xn) = yn. By compactness of A there is a subsequence (xnk
)k∈N

converging to some x ∈ A. By continuity ynk
= f(xnk

) → f(x) ∈ f(A).

Here is a well-known corollary.

Corollary 4.20. Let f : Ω −→ R is continuous and A ⊆ Ω is compact.
Then f is bounded on A and indeed attains its supremum supx∈A f(x) and
infimum infx∈A f(x).



4.4. Equivalence of Norms and Metrics 47

Proof. By Theorem 4.19, f(A) ⊆ R is compact, hence bounded and closed.
In particular, it must contain its supremum and its infimum.

4.4. Equivalence of Norms and Metrics

Almost all of the concepts of metric space theory considered so far depend
only on convergence of sequences, but not on actual distances. This is
true for the concepts of closure of a set, of closed/open/compact set and of
continuity of mappings. That means that they are qualitative notions, in
contrast to quantitative ones, where one asks actually “how fast” a given
sequence converges. This motivates the following definition.

Definition 4.21. Two metrics d, d′ on a set Ω are called equivalent if one
has

d(xn, x) → 0 ⇐⇒ d′(xn, x) → 0
for every sequence (xn)n∈N ⊆ Ω and every point x ∈ Ω.

In short: two metrics are equivalent if they produce the same convergent
sequences. From our consideration above it is clear that with respect to two
equivalent metrics the same subsets are closed/open/compact, the closure of
a set is the same in either metric and a mapping is continuous with respect
to either metric or none of them.

Equivalence of the metrics d and d′ is the same as the mappings

I1 : (Ω, d) −→ (Ω, d′) x 7−→ x

I2 : (Ω, d′) −→ (Ω, d) x 7−→ x

being both continuous. (Check it!)
If Ω = E is a normed space and the metrics are induced by norms

‖·‖ , ‖| ·‖| , by Theorem 4.13 this amounts to the existence of constants m1,m2

such that
‖| f‖| ≤ m1 ‖f‖ and ‖f‖ ≤ m2 ‖| f‖|

for all f ∈ E. If this is the case, we say that ‖·‖ , ‖| ·‖| are equivalent
norms. Hence the induced metrics are equivalent if and only if the norms
are equivalent.

Example 4.22. Consider the 1-norm and max-norm on E = Kd. We have
|xj | ≤ ‖x‖1 for all j = 1, . . . , d, and hence ‖x‖∞ ≤ ‖x‖1. On the other hand,
we have

‖x‖1 =
∑d

j=1
|xj | ≤

∑d

j=1
‖x‖∞ = d · ‖x‖∞ .

Hence the two norms are equivalent.

The previous example is no coincidence, as the following result shows.
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Theorem 4.23. Let E be a finite dimensional linear space. Then all norms
on E are equivalent.

Proof. By choosing an algebraic basis in E we may suppose that E = Kd.
Let ‖·‖ be any norm on Kd. We want to find constants m1,m2 > 0 such
that

‖x‖ ≤ m1 ‖x‖2 and ‖x‖2 ≤ m2 ‖x‖
for all x ∈ Kd. The first inequality says that

I : (Kd, ‖·‖2) −→ (Kd, ‖·‖), x 7−→ x

is bounded, and this has been already shown in Example 2.16.
A consequence of the first inequality is that the mapping

(Kd, ‖·‖2) −→ R+, x 7−→ ‖x‖

is continuous. Indeed, continuity is immediate from

|‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤ m1 ‖x− y‖2 (x, y ∈ Kd)

which holds by the second triangle inequality for ‖·‖. As the Euclidean unit
sphere is compact (Theorem 4.17) we apply Corollary 4.20 to this continuous
mapping to conclude that it must attain its infimum there. That is, there
is x′ ∈ Kd such that∥∥x′∥∥

2
= 1 and

∥∥x′∥∥ = inf{‖x‖ | x ∈ Kd, ‖x‖2 = 1}.

Now, because ‖x′‖2 = 1 we must have x′ 6= 0 and since ‖·‖ is norm, also
‖x′‖ 6= 0. Define m2 := 1/ ‖x′‖. Then for arbitrary 0 6= x ∈ Kd we have

1/m2 =
∥∥x′∥∥ ≤ ‖x/ ‖x‖2‖ = ‖x‖ / ‖x‖2

since ‖x/ ‖x‖2‖2 = 1. And this is equivalent to

‖x‖2 ≤ m2 ‖x‖ .

As this inequality is trivially true if x = 0, we are done.

Corollary 4.24. Let E be a finite-dimensional normed space, and let F be
an arbitrary normed space. Then all norms on E are equivalent and every
linear mapping T : E −→ F is bounded.

Proof. This follows from the previous results via choosing a basis in E.

Example 4.25. No two of the norms ‖·‖1 , ‖·‖2 , ‖·‖∞ are equivalent on
C[0, 1]. This follows from Example 3.13.Ex.4.10
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Exercises

Exercise 4.1. Prove the assertions about the spaces in Examples 4.2.

Exercise 4.2. Show that the set

A := {f ∈ `∞ | ∃k ∈ N | |f(k)| = ‖f‖∞}

is not closed in `∞.

Exercise 4.3. Give a proof of Lemma 4.4; i.e., prove that a subset A of a
metric space (Ω, d) is closed if and only if its complement Ac = Ω \ A is
open.

Exercise 4.4. Prove assertions d)–f) of Theorem 4.5 directly from the def-
inition of an open set.

Exercise 4.5. Prove the remaining implications of Lemma 4.8.

Exercise 4.6. Let Ω be any set. Suppose that fn → f and gn → g uni-
formly, with all functions being contained in the space B(Ω). Show that
fngn → fg uniformly as well.

Exercise 4.7. Let F be a subset of a normed space (E, ‖·‖). Suppose that
F is a linear subspace. Show that F is a linear subspace as well.

Exercise 4.8. Let (E, 〈·, ·〉) be an inner product space and S ⊆ E. Then
S⊥ is a closed linear subspace of E and S⊥ = S

⊥.

Exercise 4.9. Consider the set E := {f ∈ C[a, b] |
∫ b
a f(t) dt = 0}. Show

that E is a closed linear subspace of C[a, b] and prove that the space P[a, b]∩
E is dense in E. (Here, P[a, b] is again the space of polynomials, and all
assertions are to be understood with respect to the sup-norm.)

Exercise 4.10. Show that no two of the norms ‖·‖1 , ‖·‖2 and ‖·‖∞ are
equivalent on c00. (Hint: Consider the vectors fn := e1 + · · · + en, n ∈ N,
where en denotes the n-th canonical unit vector.) See also Exercise 3.2.

Exercise 4.11. We define

c := {(xj)j∈N ⊆ K | lim
j→∞

xj exists in K}.

Show that c is closed in `∞ (with respect to the sup-norm).
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Further Exercises

Exercise 4.12. Use the “trigonometric Weierstrass” theorem to show that
{f | f is a trig. pol. and f(0) = 0} is sup-norm dense in C0[0, 1].

Exercise 4.13. Show that the discrete metric and the Euclidean metric on
Rd are not equivalent. Give an example of a set A ⊆ Rd that, with respect
to the discrete metric, is closed and bounded, but not sequentially compact.

Exercise 4.14. Let d be a metric on Ω. Show that

d′(x, y) := min{d(x, y), 1} (x, y ∈ Ω)

defines a metric equivalent to d.

Exercise 4.15. Let (Ω, d) and (Ω′, d′) be two metric spaces, and let f, g :
Ω −→ Ω′ be continuous mappings. Show that if A ⊆ Ω and f(x) = g(x) for
all x ∈ A, then f(x) = g(x) even for all x ∈ A.

Conclude: if E,F are normed space and T, S : E −→ F are bounded
linear mappings that coincide on the dense linear subspace E0 ⊆ E, then
T = S.

Exercise 4.16. Let (Ω, d) be a metric space, and let xn → x and yn → y
in Ω. Show that d(xn, yn) → d(x, y). (Hint: Exercise 3.11.)

Exercise 4.17. Let A be a compact subset of a metric space Ω, and let
f : Ω −→ Ω′ be continuous, where Ω′ is another metric space. Prove that
f
∣∣
A

is uniformly continuous, i.e., satisfies

∀ ε > 0 ∃δ > 0 ∀x, y ∈ A : d(x, y) < δ =⇒ d′(f(x), f(y)) < ε.

Exercise 4.18. Let (Ωj , dj) are metric space for j = 1, 2, 3. Let f : Ω1 −→
Ω2 be continuous and let g : Ω2 −→ Ω3 be continuous. Show that g ◦ f :
Ω1 −→ Ω3 is continuous.

Exercise 4.19. Show that “equivalence of norms” is indeed an equivalence
relation on the set of all norms on a given vector space E.

Exercise 4.20. On Kd consider the mapping

α(x) :=
∫ 1

0

∣∣∣∣∑d

j=1
xjt

j

∣∣∣∣ dt (x = (x1, . . . , xd) ∈ Kd).

Show that α is a norm on Kd. (You can use Exercise 2.21. Do you see,
how?) Then prove that

inf{α(x) | x1 + · · ·+ xd = 1} > 0.



Chapter 5

Banach Spaces

In this chapter we shall discuss the important concepts of a Cauchy sequence
and the completeness of a metric space. In the final section we see how com-
pleteness of a normed space leads to a useful criterium for the convergence
of infinite series.

5.1. Cauchy Sequences and Completeness

Look at the interval (0, 1], and forget for the moment that you know about
the existence of the surrounding space R. The sequence (1/n)n∈N does not
converge in (0, 1] neither with respect to the standard metric nor to the
discrete metric, but — in a sense — for different reasons. In the first case,
by looking at the distances d(xn, xm) for large n,m ∈ N one has the feeling
that the sequence “should” converge, however the space (0, 1] lacks a possible
limit point. In the second case (discrete metric) one has d(xn, xm) = 1 for
all n 6= m, and so one feels that there is no chance to make this sequence
convergent by enlarging the space. This leads to the following definition.

Definition 5.1. A sequence (xn)n∈N in a metric space (Ω, d) is called a
Cauchy sequence if d(xn, xm) → 0 as n,m→∞, i.e., if

∀ ε > 0 ∃N ∈ N such that d(xn, xm) < ε (n,m ≥ N).

Here are some properties.

Lemma 5.2. Let (Ω, d) be a metric space. Then the following assertions
hold.

a) Each convergent sequence in Ω is a Cauchy sequence.

b) Each Cauchy sequence is bounded.

51
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c) If a Cauchy sequence has a convergent subsequence, then it converges.

Proof. a) Let (xn)n∈N be convergent, with limit x ∈ Ω. Then by the
triangle inequality

d(xn, xm) ≤ d(xn, x) + d(x, xm) (n,m ∈ N).

If ε > 0 is fixed, by hypothesis one has d(xn, x) < ε/2 for eventually all
n ∈ N, and so d(xn, xm) < ε for eventually all n,m ∈ N.

b) By definition there is N ∈ N such that d(xN , xn) ≤ 1 for all n ≥ N .
Define

M := max{1, d(x1, xN ), . . . , d(xN−1, xN )} <∞.

If n,m ∈ N are arbitrary, then

d(xn, xm) ≤ d(xn, xN ) + d(xN , xm) ≤M +M = 2M.

This proves the claim.
c) Let (xn)n∈N be a Cauchy sequence and suppose that the subsequence

(xnk
)k∈N converges to x ∈ Ω. Fix ε > 0 and choose N ∈ N such that

d(xn, xm) < ε/2 for n, n ≥ N . Choose k so large that nk ≥ N and
d(x, xnk

) < ε/2. Then

d(xn, x) ≤ d(xn, xnk
) + d(xnk

, x) < ε/2 + ε/2 = ε

if n ≥ N .

Ex.5.1

Ex.5.2 Our introductory example shows that there are metric spaces where not
every Cauchy sequence converges. So this is a special case, worth an own
name.

Definition 5.3. A metric d on a set Ω is called complete if every d-
Cauchy sequence converges. A metric space (Ω, d) is called complete if d
is a complete metric on Ω.

Coming back to the introductory example, we may say that (0, 1] with
the standard metric is not complete. The space R with the standard metric
is complete. This is almost an axiom about real numbers, see Appendix A.5.
Using this fact, we go to higher (but finite) dimensions.

Theorem 5.4. The Euclidean metric on Kd is complete.

Proof. This follows from Corollary A.4 since Kd = R2d as metric spaces,
when considered with the Euclidean metrics.
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Ex.5.3

The following is a very useful fact when one wants to prove the com-
pleteness of a sub-space of a given metric space.

Lemma 5.5. Let (Ω, d) be a metric space, and let A ⊆ Ω.

a) If (Ω, d) is complete and A is closed in Ω, then A with respect to the
induced metric is complete.

b) If A is (sequentially) compact, then it is complete with respect to the
induced metric.

Proof. We prove a) and leave the proof of b) as an exercise. Suppose that
(xn)n∈N ⊆ A is a Cauchy sequence with respect to the induced metric. Then
it is (trivially) a Cauchy sequence in Ω. By assumption, it has a limit x ∈ Ω.
Since A ⊆ Ω is closed, it follows that x ∈ A, whence xn → x in A (again
trivially).

From the previous lemma we conclude immediately that every closed
subset of the Euclidean space Kd is complete with respect to the induced
(=Euclidean) metric.

5.2. Hilbert Spaces

Let (H, 〈·, ·〉) be an inner product space. Recall that the inner product
induces a natural norm ‖·‖ by

‖f‖ =
√
〈f, f〉 (f ∈ H)

and this norm induces a metric d via

d(f, g) := ‖f − g‖ =
√
〈f − g, f − g〉 (f, g ∈ H).

We call this the metric induced by the inner product. The discussion and
the example of the previous section motivate the following definition.

Definition 5.6. An inner product space (H, 〈·, ·〉) is called a Hilbert space
if H is complete with respect to the metric induced by the inner product.

From Theorem 5.4 from above we see that Kd with its standard inner
product is a Hilbert space. Here is the infinite-dimensional version of it.

Theorem 5.7. The space `2 with its standard inner product is a Hilbert
space.

Proof. For convenience we use function notation, i.e., we write elements
from `2 as functions on N.
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Take a Cauchy sequence f1, f2, f3 . . . in `2. Note that each fn is now a
function on N. The proof follows a standard procedure: First find the limit
function by looking at what the sequence does in each component. Then
prove that the alleged limit function is indeed a limit in the given metric.

Fix j ∈ N. Then obviously

|fn(j)− fm(j)| ≤ ‖fn − fm‖2 (n,m ∈ N).

Hence the sequence (fn(j))n∈N is a Cauchy sequence in K. By the complete-
ness of K, it has a limit, say

f(j) := lim
n→∞

fn(j).

This yields a candidate f : N −→ K for the limit of the sequence fn. But
we still have to prove that f ∈ `2 and ‖f − fn‖2 → 0.

Fix ε > 0 and M = M(ε) ∈ N such that ‖fn − fm‖2 < ε if n,m > M .
For fixed N ∈ N we obtain

N∑
j=1

|fn(j)− fm(j)|2 ≤
∞∑

j=1

|fn(j)− fm(j)|2 = ‖fn − fm‖2
2 ≤ ε2

for all n,m ≥M . Letting m→∞ yields

N∑
j=1

|fn(j)− f(j)|2 ≤ ε2

for all n ≥M and all N ∈ N. Letting N →∞ gives

‖fn − f‖2
2 =

∞∑
j=1

|fn(j)− f(j)|2 ≤ ε2,

i.e., ‖fn − f‖2 < ε for n ≥M . In particular, by the triangle inequality,

‖f‖2 ≤ ‖fM − f‖2 + ‖fM‖2 ≤ ε+ ‖fM‖2 <∞,

whence f ∈ `2. Moreover, since ε > 0 was arbitrary, ‖fn − f‖2 → 0 as
n→∞, as desired.

After this positive result, here is a negative one.

Theorem 5.8. The space C[a, b], endowed with the standard inner product,
is not complete, i.e., not a Hilbert space.

Proof. We show this for [a, b] = [−1, 1], the general case being similar. One
has to construct a ‖·‖2-Cauchy sequence that is not convergent. To this aim
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consider the functions

fn : [−1, 1] −→ R, fn(t) :=


0 t ∈ [−1, 0]
nt t ∈ [0, 1/n]
1 t ∈ [1/n, 1].

Then for m ≥ n we have fn = fm on [1/n, 1] and on [−1, 0], hence

‖fn − fm‖2
2 =

∫ 1

−1
|fn(t)− fm(t)|2 dt =

∫ 1/n

0
|fn(t)− fm(t)|2 dt ≤ 4/n

since |fn| , |fm| ≤ 1. It follows that (fn)n∈N is a ‖·‖2 Cauchy sequence. We
show by contradiction that it does not converge: Suppose that the limit is
f ∈ C[−1, 1]. Then∫ 0

−1
|f(t)|2 dt =

∫ 0

−1
|f(t)− fn(t)|2 dt ≤

∫ 1

−1
|f(t)− fn(t)|2 dt

= ‖f − fn‖2
2 → 0

as n→∞. Hence
∫ 0
−1 |f |

2 = 0, and by Lemma 1.3 f = 0 on [−1, 0]. On the
other hand, for 0 < a < 1 and n > 1/a we have∫ 1

a
|f(t)− 1|2 dt =

∫ 1

a
|f(t)− fn(t)|2 dt

≤
∫ 1

−1
|f(t)− fn(t)|2 dt = ‖f − fn‖2

2 → 0

as n→∞. Hence
∫ 1
a |f − 1|2 = 0, and again by Lemma 1.3 f = 1 on [a, 1].

Since a ∈ (0, 1) was arbitrary, f is discontinuous at 0, a contradiction.

Ex.5.4

5.3. Banach spaces

The notion of completeness of an inner product space is actually a property
of the norm, not of the inner product. So it makes sense to coin an analogous
notion for normed spaces.

Definition 5.9. A normed space (E, ‖·‖) is called a Banach space if it is
complete with respect to its induced metric.

So Hilbert spaces are special cases of Banach spaces. However, we
again want to stress that there are many more Banach spaces which are
not Hilbert, due to the failing of the parallelogranm law, cf. Remark 2.10.

Example 5.10. Every finite-dimensional normed space is a Banach space.



56 5. Banach Spaces

Proof. All norms on a finite-dimensional space are equivalent. It is easy to
see (Exercise 5.2) that equivalent norms have the same Cauchy sequences.
As we know completeness for the Euclidean norm, we are done.

Example 5.11. Let Ω be a non-empty set. Then (B(Ω), ‖·‖∞) is a Banach
space.

Proof. Let (fn)n∈N ⊆ B(Ω) be a Cauchy sequence with respect to ‖·‖∞.
We need to find f ∈ B(Ω) such that ‖fn − f‖∞ → 0. First we try to identify
a possible limit function f . Since we know that uniform convergence implies
pointwise convergence, we should find f by defining

f(x) := lim
n
fn(x) (x ∈ Ω).

This is possible for the following reason. For fixed x ∈ Ω we have

|fn(x)− fm(x)| = |(fn − fm)(x)| ≤ ‖fn − fm‖∞ → 0 as n,m→∞

by hypothesis. So (fn(x))n∈N is a Cauchy sequence in K, and since K is
complete, the limit (which we call f(x)) exists.

Having defined our tentative limit function f we have to show two things:
first that f ∈ B(Ω), i.e., f is indeed a bounded function; second that indeed
‖fn − f‖∞ → 0. To this end we can use no other information than the
Cauchy property of the sequence (fn)n∈N. So fix ε > 0. Then there is
N ∈ N such that

|fn(x)− fm(x)| ≤ ‖fm − fm‖∞ ≤ ε

for all x ∈ X and all n,m ≥ N . Now fix x ∈ Ω and n ≥ N ; let m→∞ we
get

|fn(x)− f(x)| = lim
m
|fn(x)− fm(x)| ≤ ε

since the function t 7−→ |fn(x)− t| is continuous on K. The inequality above
holds for all x ∈ Ω and all n ≥ N . Taking the supremum over x we therefore
obtain

‖fn − f‖∞ ≤ ε

for all n ≥ N . In particular, ‖fn − f‖∞ < ∞, and so f = fn − (fn − f) ∈
B(Ω). Summarizing the considerations above, we have shown that to each
ε > 0 there is N ∈ N such that ‖fn − f‖∞ ≤ ε for all n ≥ N ; but this is just
a reformulation of ‖fn − f‖∞ → 0, as desired.

Example 5.12. The space `∞ of bounded scalar sequences is a Banach
space with respect to the sup-norm ‖·‖∞.
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Ex.5.5

We have seen above that C[a, b] is not complete with respect to the
2-norm. (The same is true for the 1-norm.) Things are different for the Ex.5.6

uniform norm.

Example 5.13. The space C[a, b] is a Banach space with respect to the
sup-norm ‖·‖∞.

Proof. We know already that the space B[a, b] of bounded functions is
complete with respect to the uniform norm. By Lemma 5.5 it suffices hence
to show that C[a, b] is closed in (B[a, b], ‖·‖∞).

To this end, take (fn)n∈N ⊆ C[a, b] and fn → f uniformly on [a, b],
for some bounded function f ∈ B[a, b]. We fix an arbitrary x ∈ [a, b] and
have to show that f is continuous at x. Using our definition of continuity,
we take a sequence (xm)m∈N ⊆ [a, b] with xm → x and have to show that
f(xm) → f(x) as m→∞. By the scalar triangle inequality we may write

|f(x)− f(xm)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(xm)|+ |fn(xm)− f(xm)|
≤ 2 ‖fn − f‖∞ + |fn(x)− fn(xm)|

for all n,m ∈ N. Given ε > 0 choose n so large that ‖fn − f‖∞ < ε. For
this n, since fn is continuous at x, we find N such that

|fn(x)− fn(xm)| < ε whenever m ≥ N.

Then
|f(x)− f(xm)| ≤ 2 ‖fn − f‖∞ + |fn(x)− fn(xm)| < 3ε

for all m ≥ N .

Advice/Comment:
The heart of the proof above is called a “3ε”-argument. One can shorten
it a little, in the following way. As above one derives the inequality

|f(x)− f(xm)| ≤ 2 ‖fn − f‖∞ + |fn(x)− fn(xm)|
for all n,m ∈ N. We take the lim sup with respect to m and obtain

lim sup
m

|f(x)− f(xm)| ≤ 2 ‖fn − f‖∞ + lim sup
m

|fn(x)− fn(xm)|

= 2 ‖f − fn‖∞ .

The right-hand side does not depend on n, so letting n → ∞ shows that
it must be zero.

The following example generalizes Example 5.13.



58 5. Banach Spaces

Example 5.14. Let (Ω, d) be a metric space. Denote by

Cb(Ω) = Cb(Ω; K) := {f ∈ B(Ω) | f is continuous}

the space of functions on Ω that are bounded and continuous. Then Cb(Ω)
is a closed subspace of (B(Ω), ‖·‖∞), hence is a Banach space with respect
to the sup-norm.Ex.5.7

Ex.5.8

Ex.5.9

5.4. Series in Banach and Hilbert spaces

Let (E, ‖·‖) be a normed vector space and let (fn)n∈N ⊆ E be a sequence of
elements of E. As in the scalar case known from undergraduate courses the
formal series

(5.1)
∞∑

n=1

fn

denotes the sequence of partial sums (sn)n∈N defined by

sn :=
n∑

j=1

fj (n ∈ N).

If limn→∞ sn exists in E we call the series (5.1) (simply) convergent and
use the symbol

∑∞
n=1 fn also to denote its limit.

Definition 5.15. Let (E, ‖·‖) be a normed vector space and let (fn)n∈N ⊆ E
be a sequence of elements of E. The series

∑∞
n=1 fn converges absolutely

if
∞∑

n=1

‖fn‖ <∞.

It is known from undergraduate analysis that if E = K is the scalar
field, then absolute convergence implies (simple) convergence. This is due
to completeness, as the following result shows.

Theorem 5.16. Let (E, ‖·‖) be a Banach space and let (fn)n∈N ⊆ E be a
sequence in E such that

∑∞
n=1 ‖fn‖ <∞. Then

∑∞
n=1 fn converges in E.

Proof. The claim is that the sequence (sn)n∈N of partial sums converges in
E. Since E is a Banach space, i.e., complete, it suffices to show that (sn)n∈N
is a Cauchy sequence. To this end, take m > n and observe that

‖sm − sn‖ =
∥∥∥∑m

j=n+1
fj

∥∥∥ ≤ ∑m

j=n+1
‖fj‖ ≤

∑∞

j=n+1
‖fj‖ → 0

as n→∞.



5.4. Series in Banach and Hilbert spaces 59

Advice/Comment:
Conversely, a normed space in which every absolutely convergent series
converges, has to be a Banach space. A proof is given in Appendix B.2.

Example 5.17. The so-called Weierstrass M-test says that if (fn)n∈N ⊆
C[a, b] such that there is a real number M > 0 such that

∑∞
n=1 ‖fn‖∞ < M ,

then the series
∑∞

n=1 fn converges absolutely and uniformly to a continuous
function. This is just a special case of Theorem 5.16 since we know that
C[a, b] is complete with respect to the uniform norm.

A typical example for an application is the theory of power series. In-
deed, given a power series

∑∞
n=0 anz

n, let R be its radius of convergence
and suppose that R > 0. Then for 0 < r < R the Weierstrass M-test shows
that the series converges absolutely and uniformly on [−r, r].

Ex.5.10

Ex.5.11Already for real numbers one knows series that are convergent but not
absolutely convergent, e.g. the alternating harmonic series

∑∞
n=1(−1)n/n.

Different to the scalar case, there are not many good criteria for the con-
vergence of a series in a general Banach space. For orthogonal series in a
Hilbert space, however, we have the following inportant result.

Theorem 5.18. Let (H, 〈·, ·〉) be an inner product space and let (fn)n∈N ⊆
H be a sequence of pairwise orthogonal elements of H. Consider the state-
ments

(i) The series f :=
∑∞

n=1 fn converges in H.

(ii)
∑∞

n=1 ‖fn‖2 <∞.

Then (i) implies (ii) and one has Parseval’s identity.

(5.2) ‖f‖2 =
∞∑

n=1

‖fn‖2 .

If H is a Hilbert space, then (ii) implies (i).

Proof. Write sn :=
∑n

j=1 fj for the partial sums. If f = limm→∞ sn exists
in H, then by the continuity of the norm and Pythagoras one obtains

‖f‖2 =
∥∥∥ lim

m→∞
sm

∥∥∥2
= lim

m→∞
‖sm‖2 = lim

m→∞

∥∥∥∑m

j=1
fj

∥∥∥2

= lim
m→∞

∑m

j=1
‖fj‖2 =

∑∞

j=1
‖fj‖2 .

Since ‖f‖ <∞, this implies (ii).
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Conversely, suppose that (ii) holds and that H is a Hilbert space. Hence
(i) holds if and only if the partial sums (sn)n form a Cauchy sequence. If
m > n then by Pythagoras’ theorem

‖sm − sn‖2 =
∥∥∥∑m

j=n+1
fj

∥∥∥2
=
∑m

j=n+1
‖fj‖2 ≤

∑∞

j=n+1
‖fj‖2 → 0

as n→∞ by (ii), and this concludes the proof.

Example 5.19. Let (en)n∈N be the sequence of standard unit vectors in `2.
Then

∞∑
n=1

1
n
en

converges in `2 to (1, 1/2, 1/3, . . . ) ∈ `2. Note that this series does not
converge absolutely, since

∑∞
n=1 ‖(1/n)en‖2 =

∑∞
n=1(1/n) = ∞.

Example 5.19 is an instance of an abstract Fourier series. We shall return
to this in Chapter 7. Our next goal will be to remedy the non-completeness
of C[a, b] with respect to the 2-norm.

Exercises

Exercise 5.1. Let (E, ‖·‖E) and (F, ‖·‖F ) be normed spaces and let T :
E −→ F be a bounded linear mapping. Show that T maps Cauchy sequences
in E to Cauchy sequences in F .

Exercise 5.2. Let ‖·‖1 and ‖·‖2 be two equivalent norms on a vector space
E. Show that a sequence (xn)n∈N ⊆ E is ‖·‖1-Cauchy if and only if it is
‖·‖2-Cauchy.

Exercise 5.3. Show that every discrete metric space is complete.

Exercise 5.4. Prove that the space c00 of finite sequences is not a Hilbert
space with respect to the standard inner product.

Exercise 5.5. Show that c00 (the space of finite sequences) is not a Banach
space with respect to the sup-norm.

Exercise 5.6. Show that C[a, b] is not a Banach space with respect to the
1-norm.

Exercise 5.7. Prove the assertions from Example 5.14.

Exercise 5.8. Show that c0, the set of scalar null sequences, is a Banach
space with respect to the sup-norm.

Exercise 5.9. Show that `1 is a Banach space with respect to the 1-norm.
Show that c00 is not a Banach space with respect to the 1-norm.
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Exercise 5.10. Let (E, ‖·‖) be a normed space, and let (fn)n∈N be a se-
quence in E such that

∑∞
n=1 fn converges. Show that limn→∞ fn = 0.

Exercise 5.11. Let α = (αn)n∈Z such that
∑

n∈Z |αn| < ∞. Consider the
trigonometric double series

∞∑
n=−∞

αne2πin·t

and show that it converges uniformly in t ∈ R to a continuous and 1-periodic
function on R.

Further Exercises

Exercise 5.12. Prove assertion b) from Lemma 5.5. Prove also the follow-
ing assertion: Let (Ω, d) be a metric space and let A ⊆ Ω be a subset that is
complete with respect to the induced metric. Then A is closed in Ω.

Exercise 5.13. Let [a, b] ⊆ R be a non-empty interval and let α ∈ (0, 1).
Recall from Exercise 2.20 the space Cα[a, b] of functions which are Hölder
continuous of order α. Consider

E := Cα
0 [a, b] := {f ∈ Cα[a, b] | f(a) = 0}

Show that with respect to the norm ‖·‖(α) introduced in Exercise 2.20, E is
a Banach space.

Exercise 5.14. Let (E, ‖·‖E) and (F, ‖·‖F ) be Banach spaces and let T :
E −→ F be a bounded linear mapping. Suppose that there is c ≥ 0 such
that

‖f‖E ≤ c ‖Tf‖
for all f ∈ E. Show that kerT = {0} and ran(T ) is closed.

Exercise 5.15. Let (E, ‖·‖E) and (F, ‖·‖F ) be normed spaces. A linear
mapping T : E −→ F is called invertible or a topological isomorphism
if T is bounded and bijective, and T−1 is bounded too.

Suppose that T : E −→ F is invertible and E is a Banach space. Show
that F is a Banach space, too.

Exercise 5.16. Let d1(x, y) := |x− y| and

d2(x, y) := |arctan(x)− arctan(y)|

for x, y ∈ R. Show that d1 and d2 are equivalent metrics on R. Then show
that (R; d2) is not complete.
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Exercise 5.17 (The Fundamental Principle of Analysis). Let (Ω, d) be a
metric space, and let (xn,m)n,m∈N be a double sequence in Ω. Suppose that

xn,m → an (m→∞) and xn,m → bm (n→∞)

for certain an, bm ∈ Ω. Suppose further that a := limn→∞ an exists, too.
We indicate this situation with the diagram

xn,m
n //

m

��

bm

an
n // a

We are interested in the question whether bm → a as well. Show (by giving
an example) that in general bm 6→ a, even if b := limm→∞ bm exists. Then
show that either of the following hypotheses implies that bm → a:

(i) supm∈N d(xn,m, bm) → 0 as n→∞.

(ii) supn∈N d(xn,m, an) → 0 as m→∞.

(One can rephrase (i) as “limn→∞ xn,m = bm uniformly in m”, and (ii) as
“limm→∞ xn,m = an uniformly in n”.)

Exercise 5.18 (The Fundamental Principle of Analysis II). Let (Ω, d) be
a complete metric space, and let (xn,m)n,m∈N be a double sequence in Ω.
Suppose that for each n the sequence (xn,m)m∈N is Cauchy and that the
sequence (xn,m)n∈N is Cauchy uniformly in m ∈ N. By this we mean that

sup
m∈N

d(xk,m, xl,m) → 0 (k, l→∞)

Show that under these hypotheses there are elements an, bm, a ∈ Ω such
that

xn,m
n //

m

��

bm

m

��
an

n // a

Exercise 5.19. A function f : [a, b] −→ K is called of bounded variation if

‖f‖v := sup
n∑

j=1

|f(tj)− f(tj−1)| <∞

where the sup is taken over all decompositions a = t0 < t1 < · · · < tn = b
with n ∈ N arbitrary. Denote by

BV0[a, b] := {f : [a, b] −→ K | f(a) = 0, ‖f‖v <∞}.

Let us believe that BV0[a, b] is a linear space and ‖·‖v is a norm on it. Show
that (BV0[a, b], ‖·‖v) is a Banach space.
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(Hint: Show first that |f(t)| ≤ ‖f‖v for every f ∈ BV0[a, b] and t ∈ [a, b].

The following exercises presuppose the knowledge of the spaces L2(0, 1) and
L1(0, 1) from Chapter 6.

Exercise 5.20. Consider the series of functions
∞∑

n=1

cosπnt
nα

(t ∈ [0, 1]).

Determine for which values of α ≥ 0 the series converges

a) in C[0, 1] with respect to the sup-norm;

b) in L2(0, 1) with respect to the 2-norm.

Justify your answers.

Exercise 5.21. Define fn(t) := e(in2−n)t for t ≥ 0. Show that for every
α = (αn)n ∈ `2 the sum

∞∑
n=1

αnfn

is convergent in L1(R+). Given that,

T : `2 −→ L1(R+), Tα :=
∞∑

n=1

αnfn

is a well-defined linear mapping. (The proof of linearity is routine, so no
need to do this.) Is T bounded? (Justify your answer.)

Exercise 5.22. With a sequence α = (αk)k∈N ∈ `2 we associate the power
series

(Tα)(t) :=
∞∑

k=1

αkt
k−1 (0 < t < 1).

Show that this power series converges in L1(0, 1). Consequently, the mapping

T : `2 −→ L1(0, 1), α 7→ Tα

is well-defined (and obviously linear). Show that ‖T‖ ≤
√
π2/6.





Intermezzo: Density
Principles

In this short Intermezzo we state some easy but very effective results com-
bining the boundedness (of linear operators) with the density (of linear sub-
spaces). The results are mainly for later reference; since there will be many
examples and applications later, we do not give any here.

We also omit the proofs here, see Appendix B.3 instead. However, since
they are all quite elementary, we recommend to do them as exercises before
looking them up.

Theorem DP.1 (“dense in dense is dense”). Let E be a normed space,
let F,G be linear subspaces. If F is dense in E and F ⊆ G, then G is dense
in E.

Theorem DP.2 (“dense is determining”). Let E,F be normed spaces
and let T, S : E −→ F be bounded linear mappings. If G is dense in E and
Tf = Sf for all f ∈ G, then T = S.

(See also Exercise 4.15.)

Theorem DP.3 (“the image of dense is dense in the image”). Let E,F
be normed spaces and let T : E −→ F be a bounded linear mapping. If
G ⊆ E is dense in E, then T (G) is dense in T (E).

Theorem DP.4 (“dense implies dense in a weaker norm”). Let G be a
linear subspace of a linear space E, and let ‖·‖1 and ‖·‖2 be two norms on
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E such that there is a constant with ‖f‖1 ≤ c ‖f‖2 for all f ∈ G. If G is
‖·‖2-norm dense in E, then it is ‖·‖1-norm dense in E, too.

Theorem DP.5 (“dense convergence implies everywhere convergence”).
Let E,F be normed spaces and let (Tn)n∈N be a sequence of bounded linear
mappings Tn : E −→ F such that

(DP.3) sup
n∈N

‖Tn‖ <∞.

If G ⊆ E is dense in E and T : E −→ F is a bounded linear mapping such
that

(DP.4) Tf = lim
n→∞

Tnf

for all f ∈ G, then (DP.4) holds for all f ∈ E.

A sequence of linear operators that satisfies the conditions (DP.3) is
called uniformly bounded.

Theorem DP.6 (“densely defined and bounded extends”). Let E be a
normed spaces, let F be a Banach space and let G ⊆ E be a dense linear
subspace. Furthermore, let T : G −→ F be a bounded linear operator. Then
T extends uniquely to a bounded linear operator T∼ : E −→ F , with the
same operator norm.

By the theorem, there is no danger if we write again T in place of T∼.
Note that it is absolutely essential to have the completeness of the space F .

Finally, here is a slight variation of Theorem DP.5, but again: it is
essential that F is a Banach space.

Theorem DP.7 (“dense convergence implies everywhere convergence” (2)).
Let E be a normed space, let F be a Banach space and let (Tn)n∈N be a
uniformly bounded sequence of bounded linear mappings Tn : E −→ F . Then
if the limit

(DP.5) lim
n→∞

Tnf

exists for each f ∈ G, and if G is dense in E, then the limit (DP.5) exists
for each f ∈ E, and a bounded linear operator T : E −→ F is defined by
Tf := limn→∞ Tnf , f ∈ E.



Chapter 6

The spaces Lp(X)

We have seen in Chapter 5 that the space C[a, b] is not complete with respect
to the p-norm (p = 1, 2). In this chapter we shall remedy this situation by
exhibiting a natural “completion”.

The major tool to achieve this is to employ the theory of measure and
integration, rooting in the fundamental works of H. Lebesgue from the be-
ginning of the twentieth century. A full account of all the needed material
requires an own course, hence we shall give only a brief survey.

Evidently, the 1-norm and the 2-norm both use the notion of integral of
a continuous function, and this integral is to be understood in the Riemann
sense. To construct a “completion” of C[a, b] we (at least) must assign
to every ‖·‖1-Cauchy sequence in C[a, b] a natural limit function. In the
example used in the proof of Theorem 5.8 it is not hard to see what this
limit would be in this case, namely the function f that is 0 on [−1, 0] and 1
in (0, 1]. So we are still in the domain of Riemann integrable functions and
we could try to consider the space

R[a, b] := {f : [a, b] −→ K | f is Riemann-integrable}

together with the 1-norm ‖f‖1 =
∫ b
a |f(x)|dx.

A first difficulty arises here: the 1-norm is actually not a norm, since
there are many non-zero positive Riemann-integrable functions which have
zero integral. Below we shall encounter a very elegant mathematical method
which amounts to ignoring this fact most of the time.

The more urging problem is that the space R[a, b] is still not complete
with respect to ‖·‖1, a fact that is by no means obvious. (The proof uses
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so-called generalized Cantor sets.) So we are forced to go beyond Riemann-
integrable functions, and this means that a new notion of integral has to be
found that is defined on a larger class of functions and has better properties.
This is the so-called Lebesgue integral.

To understand the major shift in approach from Riemann to Lebesgue,
recall that Riemann’s approach uses “Riemann sums”

n∑
j=1

f(tj−1)(tj − tj−1) →
∫ b

a
f(x) dx

as approximations of the integral. The quantity tj−tj−1 is simply the length
l(Aj) of the interval Aj := (tj−1, tj ], and behind the approximation of the
integral is an approximation of functions

n∑
j=1

f(tj−1)1Aj (x) → f(x) (x ∈ [a, b]).

(This approximation is not pointwise everywhere, but in the 1-norm.) Here
we use the notation 1A to denote the characteristic function

1A(x) :=

{
1 (x ∈ A)
0 (x /∈ A).

of the set A. So in the Riemann approach, the domain of the function is
partitioned into intervals and this partion is then used for an approximation
of f and its integral.

In Lebesgue’s approach it is the range of the function that is partitioned
into intervals. Suppose for simplicity that we are dealing with a positive
function f . Then the range of f is contained in [0,∞). Every partition

0 = s0 < s1 < · · · < sn

induces a partition of the domain of f into the sets

{s0 ≤ f < s1}, . . . , {sn−1 ≤ f < sn} and {f ≥ sn}

where we use the abbreviation

{c ≤ f < d} := {x | c ≤ f(x) < c} = f−1[c, d).

Now this partition is used to give an approximation of f from below:

g := s01{s0≤f<s1} + · · ·+ sn−11sn−1≤f<sn} + sn1{f≥sn}

=
n∑

j=1

sj−11{sj−1≤f<sj} + sn1{f≥sn}.

This approximation is a “step function”, but with the usual intervals re-
placed by the more general sets Aj = {sj−1 ≤ f < sj}.
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Now, if all the sets Aj are intervals then we can integrate g and get∫ n∑
j=1

sj−11Aj (x) dx =
n∑

j=1

sj−1l(Aj)

as an approximation of
∫
f(x) dx. In general, however, the sets Aj will not

be intervals any more, and so we are led to search for a natural extension
of the length (= 1-dimensional volume) of an interval to more general sets.
This is the notion of the Lebesgue measure of the set.

6.1. Lebesgue measure and integral

We simply state the definition.

Definition 6.1. The Lebesgue (outer) measure of a set A ⊆ R is

λ∗(A) := inf
∑∞

n=1
l(Qn)

where the infimum is taken over all sequences of intervals (Qn)n∈N such that
A ⊆

⋃
n∈NQn.

Advice/Comment:
The new feature here is that infinite covers are used. In Riemann’s theory
and the volume theories based on it (like that of Jordan), the approxima-
tions are based on finite covers or sums.

We remark that λ∗(Q) = l(Q) if Q is an interval. (This is by no means
obvious, but we omit a proof.) The set function λ∗ is defined on the whole
power set of R

λ : P(R) −→ [0,∞]

and surely can take the value ∞. Unfortunately, its properties are not quite
as good as one wishes. For example, in general one cannot guarantee that

A,B ⊆ R, A ∩B = ∅ =⇒ λ∗(A ∪B) = λ∗(A) + λ∗(B).

(This property is called finite additivity.) Surprisingly, this is not a defect
of the set function λ∗ but its chosen domain. If one restricts its domain,
things become very nice, and one has even countable additivity.

Theorem 6.2. There is a set Σ ⊆ P(R) of subsets of R such that the
following statements hold

a) Every interval is contained in Σ.
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b) Σ is a σ-algebra, i.e., it satisfies

∅ ∈ Σ; A ∈ Σ =⇒ Ac ∈ Σ; (An)n∈N ⊆ Σ =⇒
⋃
n∈N

An ∈ Σ.

c) λ := λ∗
∣∣
Σ

is a measure, i.e., it satisfies

λ(∅) = 0; (An)n∈N ⊆ Σ, p.d. =⇒ λ(
∞⋃

n=1

An) =
∞∑

n=1

λ(An).

d) If λ∗(A) = 0 then A ∈ Σ.

Here we have used the notion of a pairwise disjoint (p.d.) sequence
(An)n∈N of sets, simply meaning that An ∩Am = ∅ whenever n 6= m.

An element A of the σ-algebra Σ from the theorem is called Lebesgue
measurable. The set function λ defined in Σ is called the Lebesgue
measure. It is very important to keep in mind that Σ 6= P(R) is not
the whole power set, i.e., there exist subsets of R that are not Lebesgue
measurable.

Definition 6.3. Let X be any interval. A function f : X −→ R is called
(Lebesgue) measurable if {a ≤ f < b} ∈ Σ for all a, b ∈ R. A complex-
valued function f is measurable if Re f, Im f are both measurable.

Example 6.4. If A ∈ Σ then 1A is measurable. Indeed, {a ≤ f < b} =
A,Ac, ∅,R, depending whether 0, 1 ∈ [a, b) or not.

In particular, characteristic functions of intervals are measurable, and it
turns out that also all continuous and even all Riemann-integrable functions
are measurable. We denote the class of measurable functions on an interval
X by

M(X) = M(X; K) := {f : X −→ K | f measurable}.
This class has nice properties:

Lemma 6.5. If f, g ∈M(X) then fg, f + g, |f | ,Re f, Im f ∈M(X); more-
over, if fn → f pointwise and each fn ∈M(X), then also f ∈M(X).

Now, by following the original idea of Lebesgue one can construct an
integral

M+(X) −→ [0,∞] f 7−→
∫

X
f dλ

on the cone M+(X) of positive measurable functions in such a way that∫
X 1A dλ = λ(A) for every A ∈ Σ and that the integral is additive and

positively-homogeneous:∫
X

(f + αg) dλ =
∫

X
f dλ+ α

∫
X
g dλ
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if f, g ∈M+(X), α ≥ 0. Moreover,∫
X
f dλ =

∫ b

a
f(x) dx

if 0 ≤ f ∈ R[a, b]. Ex.6.1

Note that the integral is (up to now) only defined for positive functions
and it may take the value infinity. A (not necessarily positive) measurable
function f ∈M(X) is called (Lebesgue) integrable if

‖f‖1 :=
∫

X
|f | dλ <∞.

Let us denote by

L1(X) := {f ∈M(X) | ‖f‖1 <∞}

the space of integrable functions.

Theorem 6.6. The space L1(X) is a vector space, and one has

‖f + g‖1 ≤ ‖f‖1 + ‖g‖1 , ‖αf‖1 = |α| ‖f‖1

for all f, g ∈ L1(X), α ∈ K. Moreover, ‖f‖1 = 0 if and only if λ{f 6= 0} = 0.

For a real-valued f ∈ L1(X) we define its integral by∫
X
f dλ :=

∫
X
f+ dλ−

∫
X
f− dλ

where

f+ :=
1
2
(|f |+ f) and f− :=

1
2
(|f | − f)

are the positive part and the negative part of f , respectively. For a
C-valued f we define∫

X
f dλ :=

∫
X

Re f dλ+ i
∫

X
Im f dλ.

Then we arrive at the following.

Lemma 6.7. Let X ⊆ R be an interval. The integral

L1(X) −→ K, f 7−→
∫

X
f dλ

is a linear mapping satisfying∣∣∣∣∫
X
f dλ

∣∣∣∣ ≤ ∫
X
|f | dλ = ‖f‖1

for every f ∈ L1(X).



72 6. The spaces Lp(X)

Proof. To show linearity is tedious but routine. Let us prove the second
statement. If f is real valued, then∣∣∣∣∫ f

∣∣∣∣ ≤ ∣∣∣∣∫ f+

∣∣∣∣+ ∣∣∣∣∫ f−
∣∣∣∣ = ∫ f+ +

∫
f− =

∫
f+ + f− =

∫
|f | .

In the case that f is C-valued, find c ∈ C with |c| = 1 such that c
∫
f ∈ R.

Then, taking real parts,∣∣∣∣∫ f

∣∣∣∣ = ∣∣∣∣c∫ f

∣∣∣∣ = Re
∫
cf =

∫
Re(cf) ≤

∫
|cf | =

∫
|f |

as claimed.

Advice/Comment:
The Lebesgue integral coincides with the Riemann integral for Riemann
integrable functions defined on an interval [a, b]. Therefore we may write∫ b

a

f(x) dx

in place of
∫
[a,b]

f dλ, and we shall usually do this.

6.2. Null sets

We call a set A ⊆ R a (Lebesgue) null set if λ∗(A) = 0. By Theorem 6.2.d)
each null set is Lebesgue measurable.

Example 6.8. If x ∈ R is a single point and ε > 0, then setting

Q1 :=
(
x− ε

2
, x+

ε

2

)
, Qn := ∅ (n ≥ 2)

shows that {x} is a null set.

To generate more null sets, may use the following lemma.

Lemma 6.9. a) Every subset of a null set is a null set.

b) If (An)n∈N is a sequence of null sets, then
⋃

n∈NAn is a null set, too.

Proof. The first assertion is trivial. To prove the second, fix ε > 0 and find
for Ak a cover (Qkn)n∈N such that

∑∞
n=1 |Qkn| < ε/2k. Then

A =
⋃
k∈N

Ak ⊆
⋃

k,n∈N
Qkn

and
∑∞

k,n=1 |Qkn| <
∑∞

k=1 ε/2
k = ε. Note that since N× N is countable, we

may arrange the Qnk into a single sequence.
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Example 6.10. Each countable subset of R is a null set. Indeed, if A =
{an | n ∈ N} ⊆ R is countable, then A =

⋃
n∈N{an} and as each {an} is a

null set (already seen), A is a null set, too.

Advice/Comment:
It is tempting to believe that each null set is countable. However, this is
far from true. A nice example of an uncountable null set is the so called
“Cantor middle thirds” set. It is constructed by removing from the interval
[0, 1] the open middel third interval (1/3, 2/3), then doing the same for
the two remaining intervals and proceed iteratively. What remains (i.e.,
the intersection of all the constructed sets) is clearly a null set. But it
contains exactly the real numbers r ∈ [0, 1] which can be written in a
tryadic notation as

r =
∞∑

j=1

dj

3j

with dj ∈ {0, 2} for all j ∈ N. These are obviously uncountably many.

Definition 6.11. We say that a property P of points of an interval X holds
almost everywhere (a.e.) if the set

{x ∈ X | P (x) is not true}

is a null set. For example, if f, g : X −→ K are two functions then we say
that

f = g almost everywhere
if the set {f 6= g} is a null set. In this case we write f ∼λ g.

Ex.6.2

Ex.6.3

Ex.6.4Example 6.12. According to our definition, a sequence of functions (fn)n∈N
on X converges to a function f almost everywhere, if fn(x) → f(x) except
for x from a set of measure zero.

For instance, if fn(x) := xn, x ∈ [0, 1], then fn → 0 almost everywhere.
(Note that this is false if we consider the fn as functions on R.)

Lemma 6.13. The relation ∼λ (“is equal almost everywhere to”) is an
equivalence relation on F(X). Moreover, the following statements hold.

a) If f = f̃ a.e. and g = g̃ a.e., then

|f | = |f̃ |, λf = λf̃ , f + g = f̃ + g̃, fg = f̃ g̃

almost everywhere.
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b) If fn = gn almost everywhere, for all n ∈ N and if limn fn = f a.e. and
limn gn = g a.e., then f = g almost everywhere.

Proof. Obviously one has f ∼λ f for every f since {f 6= f} = ∅ is a null
set. Symmetry is trivial, so let us show transitivity. Suppose that f = g
almost everywhere and g = h almost everywhere. Now {f 6= h} ⊆ {f 6=
g} ∪ {g 6= h}, and so this is a null set by Lemma 6.9.

The proof of a) is left as exercise. We prove b). Set An := {fn 6= gn}
and

A = {x | fn(x) 6→ f(x)}, B = {x | gn(x) 6→ g(x)}.
Then {f 6= g} ⊆ A ∪ B ∪

⋃
nAn, because if x /∈ An for each n and x /∈ A

and x /∈ B, then fn(x) = gn(x) and fn(x) → f(x) and gn(x) → g(x). But
that implies that f(x) = g(x). Now, by Lemma 6.9 the set {f 6= g} must
be a null set.

Ex.6.5

Recall that L1(X) misses a decisive property of a norm: definiteness.
Indeed, we know that ‖f − g‖1 = 0 if and only if f = g almost everywhere.
To remedy this defect, we pass to equivalence classes modulo equality almost
everywhere and define

L1(X) := L1(X)/∼λ.

Another way to view this is as a factor space of L1(X) with respect to
the linear subspace(!) N := {f ∈ L1(X) | ‖f‖1 = 0}. The computations
(addition, scalar multiplication, taking 1-norms, taking the integral) are
done by using representatives for the classes. Of course one must show that
these operations are well-defined.Ex.6.6

Advice/Comment:
We shall write f ∈ L1(X) and work with f as if it was a function. This
turns out to be very convenient, and after some time one tends to forget
about the fact that these objects are not really functions but are only
represented by functions.

The most annoying consequence of this is that for f ∈ L1(X) the
“value” f(x0) of f at a point x0 ∈ R is meaningless! Indeed, if we alter f
on the single point x0 then we remain still in the same equivalence class,
since {x0} is a null set.

Because finite sets are null set, in the definition of L1(X) it is inessential
whether one starts with closed or open intervals. For instance

L1[a, b] = L1(a, b) and L1[0,∞) = L1(0,∞).
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6.3. The Dominated Convergence Theorem

The advantage of the Lebesgue integral lies in its flexibility and especially
its convergence results. The most fundamental is the so-called Monotone
Convergence Theorem B.10. Using this result it is not hard to arrive at
the following central fact.

Theorem 6.14 (Dominated Convergence). Let (fn)n∈N ⊆ L1(X) and
suppose that f := limn→∞ fn exists pointwise almost everywhere. If there is
0 ≤ g ∈ L1(X) such that |fn| ≤ g almost everywhere, for each n ∈ N, then
f ∈ L1(X), ‖fn − f‖1 → 0 and∫

X
fn dλ→

∫
X
f dλ.

Proof. Note that the function f here is defined only almost everywhere.
But as such it defines a unique equivalence class modulo equality almost
everywhere. It is actually easy to see that f ∈ L1(X): since fn → f almost
everywhere and |fn| ≤ g almost everywhere, for every n ∈ N, by “throwing
away” the countably many null sets we see that |f | ≤ g almost everywhere.
And hence ∫

X
|f | dλ ≤

∫
X
g dλ <∞

since g ∈ L1(X). So indeed f ∈ L1(X).
Secondly, if we know already that ‖fn − f‖1 → 0, then the convergence

of the integrals is clear from∣∣∣∣∫
X
fn dλ−

∫
X
f dλ

∣∣∣∣ = ∣∣∣∣∫
X
fn − f dλ

∣∣∣∣ ≤ ‖fn − f‖1 → 0

(Lemma 6.7). In other words, the integral is a bounded linear mapping from
L1(X) to K.

So the real step in the Dominated Convergence Theorem is the assertion
that ‖f − fn‖1 → 0. We shall not give a proof of this here but refer to
Appendix B.4.

Advice/Comment:
In Appendix B.4 you can find a proof of the Dominated Convergence
Theorem based on the Monotone Convergence Theorem. On the other
hand, Exercise 6.17 shows that the latter is also a consequence of the
former.
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The dominated convergence theorem has a vast number of applications.
Examples are the continuity of the Laplace transform and the Fourier trans-
form of an L1-function, see Exercise 6.14 and 6.16. Here is a simple model
of how this works.

Example 6.15 (Integration Operator). For f ∈ L1(a, b) one defines the
function Jf by

(Jf)(t) :=
∫ b

a
1[a,t]f dλ =

∫ t

a
f(x) dx (t ∈ [a, b]).

Then Jf is continuous: indeed, if tn → t in [a, b] then 1[a,tn] → 1[a,t] point-
wise, except for the point t itself. So 1[a,tn]f → 1[a,t]f almost everywhere,
and since ∣∣1[a,tn]f

∣∣ ≤ |f | ∈ L1(a, b)
one can apply Dominated Convergence to conclude that Jf(tn) → Jf(t).

Hence J : L1(a, b) −→ C[a, b] is a linear operator. It is also bounded,
since

|Jf(t)| =
∣∣∣∣∫ t

a
f(s) ds

∣∣∣∣ ≤ ∫ t

a
|f(s)| ds ≤

∫ b

a
|f(s)| ds = ‖f‖1

for all t ∈ [a, b]. This yields ‖Jf‖1 ≤ ‖f‖∞ for all f ∈ L1(a, b).

Using the Dominated Convergence Theorem one can prove the complete-
ness. (See Appendix B.4 for a proof.)

Theorem 6.16 (Completeness of L1). The space L1(X) is a Banach space.
More precisely, let (fn)n∈N ⊆ L1(X) be a ‖·‖1-Cauchy sequence. Then there
are functions f, g ∈ L1(X) and a subsequence (fnk

)k such that

|fnk
| ≤ g a.e. and fnk

→ f a.e..

Furthermore ‖fn − f‖1 → 0.

Advice/Comment:
We have discussed the relation between pointwise convergence and con-
vergence in norm already in Section 3.3. We know that usually pointwise
convergence does not imply convergence in the 2-norm. This is also true
for the 1-norm, see Exercise 6.7. In case of the uniform norm, norm con-
vergence implies pointwise convergence trivially.

However, convergence in the 1-norm is so weak that it does not even
imply convergence almost everywhere. Indeed, consider the sequence
(fk)k∈N given by

1[0,1/2],1[1/2,1],1[0,1/3],1[2/3,1],1[0,1/4], . . .
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This sequence converges to 0 in the 1-norm, since
∥∥1[j/n,(j+1)/n]

∥∥
1

= 1/n.
On the other hand for every x ∈ [0, 1], the sequence (fk(x))k∈N is a {0, 1}-
sequence with both values occuring infinitely often. Hence (fk(x))k does
not converge at any point in [0, 1].

This failure is remedied by Theorem 6.16 which tells us that one must
at least have a subsequence that converges almost everywhere.

Ex.6.7

6.4. The space L2(X)

Even more important than the 1-norm is the 2-norm, since this leads to a
Hilbert space. For a f ∈M(X) we define

‖f‖2 :=
(∫

X
|f |2 dλ

)1/2

let

L2(X) := {f ∈M(X) | ‖f‖2 <∞}.

and L2(X) := L2(X)/∼λ. It is not trivial to see that L2(X) is a vector space
and ‖·‖2 is a norm on it. To this aim we need the following variant of the
Cauchy–Schwarz inequality.

Lemma 6.17 (Hölder’s inequality for p = 2). Let f, g ∈ L2(X) then
fg ∈ L1(X) and ∣∣∣∣∫

X
fg dλ

∣∣∣∣ ≤ ∫
X
|fg| dλ ≤ ‖f‖2 ‖g‖2 .

Proof. The proof is based on the easy-to-prove identity

ab = inf
t>0

t2

2
a2 +

t−2

2
b2

for real numbers a, b ≥ 0 (Exercise 6.22). Writing a = |f(x)| , b = |g(x)| we
obtain

|f(x)g(x)| ≤ t2

2
|f(x)|2 +

t−2

2
|g(x)|2 .

for all t > 0 and all x ∈ X. Integrating yields∫
X
|fg| dλ ≤ t2

2

∫
X
|f |2 dλ +

t−2

2

∫
X
|g|2 dλ
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for all t > 0. Taking the infimum over t > 0 again∫
X
|fg| dλ ≤ inf

t>0

[
t2

2

∫
X
|f |2 dλ +

t−2

2

∫
X
|g|2 dλ

]
=
(∫

X
|f |2 dλ

)1/2 (∫
X
|g|2 dλ

)1/2

= ‖f‖2 ‖g‖2 .

This shows that fg ∈ L1(X) and concludes the proof.

If f, g ∈ L2(X) we write

|f + g|2 ≤ |f |2 + 2 |f | |g|+ |g|2 ;

if we integrate and use Lemma 6.17, then we see that
∫
X |f + g|2 dλ < ∞.

Since αf ∈ L2(X) trivially, L2(X) becomes an inner product space with
respect to the inner product

〈f, g〉L2 =
∫

X
f g dλ (f, g ∈ L2(X)).

One can easily derive an L2-version of the Dominated Convergence Theorem
from Theorem 6.14. Using this, one arrives at completeness of L2 similar as
before.Ex.6.8

Theorem 6.18 (Completeness of L2). The space L2(X) is a Hilbert space.
More precisely, let (fn)n∈N ⊆ L1(X) be a ‖·‖2-Cauchy sequence. Then

there are functions f, g ∈ L2(X) and a subsequence (fnk
)k such that

|fnk
| ≤ g a.e. and fnk

→ f a.e..

Furthermore ‖fn − f‖2 → 0.

6.5. Density

Finally, we return to our starting point. Again, we have to quote the result
without being able to provide a proof here.

Theorem 6.19. The space C[a, b] is dense in L2(a, b) and in L1(a, b).

Advice/Comment:
Actually, the theorem is not formulated accurately, since if we speak of
density we must always say with respect to which norm/metric this is
meant. We make use of a widespread custom: when no norm is explicitly
mentioned, we take the one with respect to which the space is known to
be a Banach space. In our case, this means:
• the uniform norm ‖·‖∞ in case the space is Cb(X);
• the 1-norm ‖·‖1 in case the space is L1(X);
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• the 2-norm ‖·‖2 in case the space is L2(X).
So the theorem is to be read as: C[a, b] is dense in L1(a, b) w.r.t. the
1-norm, and in L2(a.b) w.r.t. the 2-norm.

Based on Theorem 6.19 one can prove various refinements, see the ex-
ercises. The theorem tells us that we have reached our goal, i.e., to find Ex.6.9

“natural completions” of the space C[a, b] with respect to ‖·‖1 and ‖·‖2. A
consequence of the density theorem is the following very useful characteri-
zation of Lp(a, b).

Corollary 6.20. Let X = [a, b] be a finite interval, let f : [a, b] −→ R be a
function and let p ∈ {1, 2}. Then f ∈ Lp(a, b) if and only if there is a ‖·‖p-
Cauchy sequence (fn)n∈N ⊆ C[a, b] such that fn → f almost everywhere.

Proof. For simplicity we shall confine to the case p = 1. Let f ∈ L1(a, b).
By Theorem 6.19 there is a sequence (fn)n∈N ⊆ C[a, b] such that fn → f
in 1-norm. By Theorem 6.16 one may pass to a subsequence (named (fn)n

again) that is almost everywhere convergent and in 1-norm to some h. As
limits are unique, we must have h = f almost everywhere.

Conversely, let (fn)n∈N ⊆ C[a, b] be a 1-norm Cauchy-sequence that
converges a.e. to f . By Theorem 6.16 there is h ∈ L1(a, b) such that fn → h
in 1-norm and a subsequence converges a.e. to h. This implies that f = h,
and so f ∈ L1(a, b).

If X = [a, b] is a finite interval, then one has

C[a, b] ⊆ L2(a, b) ⊆ L1(a, b)

with ‖f‖1 ≤
√
b− a ‖f‖2 for all f ∈ L2(a, b) (proof as exercise). It follows Ex.6.10

in particular that L2(a, b) is dense in L1(a, b) (how?).

Exercises

Exercise 6.1. Prove from the displayed facts about the integral and about
measurable functions, that the integral is monotone, i.e., satisfies:

f ≤ g =⇒
∫
f dλ ≤

∫
g dλ

for all f, g ∈M+(X).

Exercise 6.2. Show that if f : X −→ K is such that f = 0 a.e., then
f ∈ M(X). Conclude that if f ∈ M(X) and g = f a.e., then g ∈ M(X),
too.
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Exercise 6.3. Let f, g ∈ C[a, b] and f = g almost everywhere. Show that
then f = g, i.e., f(x) = g(x) for all x ∈ X.

Exercise 6.4. Show that A is a null set if and only if 1A = 0 almost
everywhere.

Exercise 6.5. Let X be an interval and let f, g, f̃ , g̃ be functions on X.
Show that f = f̃ a.e. and g = g̃ a.e., then

|f | = |f̃ |, λf = λf̃ , f + g = f̃ + g̃, fg = f̃ g̃, Re f = Re f̃

almost everywhere.

Exercise 6.6. Let f, g ∈ L1(X) such that f = g almost everywhere. Show
that ‖f‖1 = ‖g‖1 and ∫

X
f dλ =

∫
X
g dλ.

Exercise 6.7. Let X = R, and let fn := 1[n,n+1], n ∈ N. Show that fn → 0
everywhere, but (fn)n is not a ‖·‖p-Cauchy sequence for p = 1, 2.

Exercise 6.8. Formulate and prove a L2-version of the Dominated Conver-
gence Theorem, e.g., by using Theorem 6.14.

Exercise 6.9. Show that the space P[a, b] of polynomials is dense in L2(a, b).
(Use the Weierstrass theorem and Theorem 6.19.)

Exercise 6.10. Let X = [a, b] a finite interval. Show that

L2(X) ⊆ L1(X)

with ‖f‖1 ≤
√
b− a ‖f‖2 for all f ∈ L2(X). Then show that this inclusion

is proper. Show also that

L1(R) 6⊆ L2(R) and L2(R) 6⊆ L1(R).

Further Exercises

Exercise 6.11. Let α ∈ R and consider fn := nα1[0,1/n] for n ∈ N. Compute
‖fn‖p for p = 1, 2. What is the a.e. behaviour of the sequence (fn)n∈N?

Exercise 6.12. Let A ⊆ X be measurable and let p ∈ {1, 2}. Show that if
f ∈ Lp(X), then 1A · f ∈ Lp(X), too.

Exercise 6.13. Let (An)n∈N be an increasing sequence of measurable sub-
sets of X and let A :=

⋃
n∈NAn. Show that if f ∈ Lp(X) then 1Anf → 1Af

pointwise and in p-norm.
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Exercise 6.14 (Laplace transform). We abbreviate R+ := [0,∞). For
f ∈ L1(R+) define its Laplace transform

(Lf)(t) :=
∫ ∞

0
e−tsf(s) ds (t ≥ 0).

Show that ‖Lf‖∞ ≤ ‖f‖1, that Lf : R+ −→ K is continuous, and that
limt→∞(Lf)(t) = 0.

Exercise 6.15 (Laplace transform (2)). Similar to Exercise 6.14 we define
the Laplace transform of f ∈ L2(R+)

(Lf)(t) :=
∫ ∞

0
e−tsf(s) ds (t > 0).

(Note that Lf(0) is not defined in general.) Show that Lf : (0,∞) −→ K is
continuous with limt→∞(Lf)(t) = 0. (Cf. Example 9.7.)

Exercise 6.16 (Fourier transform). We define the Fourier transform of
f ∈ L1(R)

(Ff)(t) :=
∫ ∞

−∞
e−itsf(s) ds (t ∈ R).

Show that ‖Ff‖∞ ≤ ‖f‖1 and that Ff : R −→ K is continuous.

Exercise 6.17 (Monotone Convergence). Let (fn)n∈N ⊆ L1(X) be an
increasing sequence of positive integrable functions such that

sup
n∈N

∫
X
fn dλ <∞.

Use Theorem 6.14 show that there is f ∈ L1(X) such that fn → f almost
everywhere and in ‖·‖1.

Exercise 6.18. Show that the space

Cc(R) := {f ∈ C(R) | ∃ a < b : {f 6= 0} ⊆ [a, b]}

of continuous functions with compact support is dense in L1(R) and
in L2(R).

Exercise 6.19. Let X = [a, b] be a finite interval, and let

St[a, b] := {
n∑

j=1

αj1tj−1,tj | n ∈ N, a = t0 < t1 < · · · < tn = b, α ∈ Kn}

the space of all (interval) step functions. Show that St[a, b] is dense in
L2[a, b] and in L1[a, b].
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Exercise 6.20 (The space L∞). A measurable function f ∈ M(X) is
called essentially bounded if there is a real number c > 0 such that
|f | ≤ c almost everywhere. One defines

L∞(X) := {f ∈M(X) | f is essentially bounded}
and ‖f‖L∞ := inf{c > 0 | |f | ≤ c a.e.}.

a) Show that |f | ≤ ‖f‖L∞ almost everywhere.

b) Show that L∞(X) is a vector space and that

‖f + g‖L∞ ≤ ‖f‖L∞ + ‖g‖L∞ , ‖αf‖L∞ = |α| ‖f‖L∞

for all f, g ∈ L∞(X), α ∈ K.

c) Show that ‖f‖L∞ = 0 if and only if f = 0 almost everywhere.

d) Show that Cb(X) ⊆ L∞(X) with ‖f‖∞ = ‖f‖L∞ .

e) Show that if (fn)n∈N ⊆ L∞(X) is a ‖·‖L∞-Cauchy sequence, then there
is a null set N ⊆ R such that (fn)n converges uniformly on X \N .

f) Show that L∞(X) := L∞(X)/∼λ is a Banach space.

g) Let p ∈ {1, 2,∞}. Show that if f ∈ L∞(X) and g ∈ Lp(X) then
fg ∈ Lp(X) and

‖fg‖Lp ≤ ‖f‖L∞ ‖g‖Lp .

Exercise 6.21 (Affine transformations). For a set A ⊆ R, c ∈ R, α > 0
define

−A := {−a | a ∈ A}, c+A := {c+ a | a ∈ A}, {αa | a ∈ A}.
Show that λ∗(−A) = λ∗(A) = λ∗(c+A) = α−1λ∗(αA).
Remark: It should not come as a surprise that if A is measurable then also
−A, c + A,αA are measurable. It can further be shown that if f ∈ M(R)
then f(−·), f(c+ ·), f(α·) ∈M(R).

Exercise 6.22. Let p, q ∈ (1,∞) such that 1/p+ 1/q = 1, and let a, b ≥ 0.
Prove that

ab = inf
t>0

[
tp

p
ap +

t−q

q
bq
]
.

Use this to show that∫
X
fg dλ ≤

(∫
X
fp dλ

)1/p (∫
X
gq dλ

)1/q

for all f ∈M+(X). (This is the general form of Hölder’s inequality.)



Chapter 7

Hilbert Space
Fundamentals

Hilbert spaces have particularly nice properties that make them the favourite
tool in the study of partial differential equations.

7.1. Best Approximations

Let (Ω, d) be a metric space, A ⊆ Ω be a subset and x ∈ Ω. We call

d(x,A) = inf{d(x, y) | y ∈ A}

the distance of x to the set A. The function d(·, A) is continuous (Exercise
7.9) but we shall not need this fact. Any element a ∈ A which realizes this
distance, i.e., such that

d(x,A) = d(x, a),

is called a best approximation of x in A.

Advice/Comment:
A special case of this concept occurs when A is a closed subset of a normed
space and x = 0 is the zero vector. Then a best approximation is just an
element of A with minimal norm. Abstract as it may seem, this concept
has a very applied side. The actual state of a physical system is usually
that with the smallest energy. In many cases, the energy is a certain norm
(adapted to the problem one is considering) and so “minimal energy”
becomes “minimal norm”, hence a best approximation problem. We shall
see a concrete example in the next chapter.

83
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A best approximation a of x in A is a minimizer of the function

(a 7−→ d(x, a)) : A −→ R+.

In general situations such minimizers do not necessarily exist and when they
exist, they need not be unique.

Example 7.1. By Lemma 3.16, d(x,A) = 0 if and only if x ∈ A. Hence, if
A is not closed then for x ∈ A \A there cannot be a best approximation in
A: since d(x,A) = 0, a best approximation a would satisfy d(x, a) = 0 and
a ∈ A, and hence x = a ∈ A which is false by choice of x.

A special case of this is A = c00 the space of finite sequences and Ω = `2

and x = (1/n)n∈N.

If the set A is closed and we are in a finite dimensional setting, then a
best approximation always exists (Exercise 7.1). This is not true in infinite-Ex.7.1

dimensional situations.

Example 7.2 (Non-existence). Let E := {f ∈ C[0, 1] | f(0) = 0} with the
sup-norm. (This is a Banach space!). Let

A := {f ∈ E |
∫ 1

0
f(t) dt = 0}.

Then A is a closed subspace of E. Let f(t) := t, t ∈ [0, 1]. Then f ∈ E \A,
since f(0) = 0 but

∫ 1
0 f(t) dt = 1/2 6= 0. Hence

1
2

=
∫ 1

0
f(t)− g(t) dt ≤

∫ 1

0
|f(t)− g(t)| dt ≤ ‖f − g‖∞

for every g ∈ A. One can show that d(f,A) = 1/2 but there exists no best
approximation of f in A. (Exercise 7.14)

So existence can fail. On the other hand, the following example shows
that in some cases there are several different best approximations.

Example 7.3 (Non-Uniqueness). Let E = R2 with the ‖·‖1-norm, and
A := R(1,−1) the straight line through the points (−1, 1), (0, 0), (1,−1). If
x := (1, 1), then d(x,A) = 2 and every a = (λ,−λ) with λ ∈ [−1, 1] is a
distance minimizer since

‖(λ,−λ)− (1, 1)‖1 = |1− λ|+ |1 + λ| = 2

for −1 ≤ λ ≤ 1.

We shall show that in Hilbert spaces, unique best approximations exist
under a (relatively weak) condition for the set A, namely convexity.
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Definition 7.4. A subset A of a normed vector space E is called convex if

f, g ∈ A, t ∈ [0, 1] ⇒ tf + (1− t)g ∈ A.

Hence a set A is convex if it contains with any two points also the whole
straight line segment joining them.

Theorem 7.5. Let H be an inner product space, and let A 6= ∅ be a complete
convex subset of H. Furthermore, let f ∈ H. Then there is a unique vector
PAf := g ∈ A with ‖f − g‖ = d(f,A).

Proof. Let us define d := d(f,A) = inf{‖f − g‖ | g ∈ A}. For g, h ∈ A we
have (g + h)/2 ∈ A as A is convex, and hence by the parallelogram identity

‖g − h‖2 = ‖(g − f)− (h− f)‖2

= 2 ‖g − f‖2 + 2 ‖h− f‖2 − 4
∥∥∥∥g + h

2
− f

∥∥∥∥2

≤ 2 ‖g − f‖2 + 2 ‖h− f‖2 − 4d2.

If both h, g minimize ‖· − f‖ then ‖f − g‖2 = d2 = ‖f − h‖2 and we obtain

‖g − h‖ ≤ 2d2 + 2d2 − 4d2 = 0,

whence g = h. This proves uniqueness. To show existence, let (gn)n∈N be a
minimizing sequence in A, i.e. gn ∈ A and dn := ‖f − gn‖ ↘ d. For m ≥ n
we replace gn, gm in the above and obtain

‖gn − gm‖2 ≤ 2 ‖gn − f‖2 + 2 ‖gm − f‖2 − 4d2 ≤ 4(d2
n − d2).

Since dn → d, also d2
n → d2. Therefore, (gn)n∈N is a Cauchy sequence in A,

and since A is complete, there is a limit g := limn→∞ gn ∈ A. But the norm
is continuous, and so

‖g − f‖ = lim
n
‖f − gn‖ = lim

n
dn = d,

and we have found our desired minimizer.

Note that the proof shows actually that every minimizing sequence con-
verges to the best approximation! The conditions of Theorem 7.5 are in
particular satisfied if A is a closed convex subset of a Hilbert space. It is in
general not easy to compute the best approximation explicitly. (See Exercise
7.2 for an instructing example.) Ex.7.2

7.2. Orthogonal Projections

Let H be a Hilbert space, and let F ⊆ H be a closed linear subspace of H.
Then F is in particular convex and complete, so for every f ∈ H there exists
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the best approximation PF f ∈ F to f in F . Here is a second characterization
of the vector PF f .

Lemma 7.6. Let H be a Hilbert space, let F ⊆ H be a closed linear subspace
of H, and let f, g ∈ H. Then the following assertions are equivalent.

(i) g = PF f .

(ii) g ∈ F and f − g ⊥ F .

Proof. (ii) ⇒ (i): Take h ∈ F . Since f − g ⊥ F and g ∈ F , one has
f − g ⊥ g − h, and hence Pythagoras yields

‖f − h‖2 = ‖f − g‖2 + ‖g − h‖2 ≥ ‖f − g‖2 .

Taking square roots and the infimum over h ∈ F yields d(f, F ) ≥ d(f, g),
and this shows that g is a best approximation of f in F , i.e., g = PF f .

(i) ⇒ (ii): Suppose g = PF f . Then ‖f − g‖2 ≤ ‖f − h‖2 for all h ∈ F .
Since F is a linear subspace, we may replace h by g − h in this inequality,
i.e.,

‖f − g‖2 ≤ ‖(f − g) + h‖2 = ‖f − g‖2 + 2 Re 〈f − g, h〉+ ‖h‖2

for all h ∈ F . Now we replace h by th with t > 0 and divide by t. We obtain

0 ≤ 2 Re 〈f − g, h〉+ t ‖h‖2 (h ∈ F ).

Since this is true for all t > 0, we can let t↘ 0 to get

0 ≤ Re 〈f − g, h〉 (h ∈ F ).

Finally we can replace h by −h to see that Re 〈f − g, h〉 = 0 for all h ∈ F .
So if K = R we are done; in the complex case we replace h by ih to finally
obtain (ii).

Lemma 7.6 facilitates the computation of best approximations. We nowEx.7.3

have a closer look at the mapping PF if F is a closed subspace of a Hilbert
space.

Definition 7.7. If F is a closed subspace of a Hilbert space, then the
mapping

PF : H −→ F

is called the orthogonal projection onto F .

The following lemma summarizes the properties of the orthogonal pro-
jection.

Theorem 7.8. Let F be a closed subspace of a Hilbert space H. Then the
orthogonal projection PF has the following properties:
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a) PF f ∈ F and f − PF f ⊥ F for all f ∈ H.

b) PF f ∈ F and ‖f − PF f‖ = d(f, F ) for all f ∈ H.

c) PF : H −→ H is a bounded linear mapping satisfying P 2
F = PF and

‖PF f‖ ≤ ‖f‖ (f ∈ H).

d) ranPF = F and kerPF = F⊥.

Proof. b) is true by definition, a) by Lemma 7.6. By a), ranPF ⊆ F .
Furthermore, if f ∈ F then d(f, F ) = 0, so f is the best approximation of f
in F . This shows that PF f = f for f ∈ F ; in particular, F ⊆ ranF . Again
by a), kerPF ⊆ F⊥. On the other hand, if f ⊥ F then g := 0 satisfies (ii)
of Lemma 7.6, so PF f = 0, i.e., f ∈ kerPF . Hence d) is proved.

To prove c), fix f ∈ H and note first that PF f ∈ F . But PF acts
as the identity on F , which means that P 2

F f = PF (PF f) = PF f . Since
f − PF f ⊥ PF f , Pythagoras yields

‖f‖2 = ‖f − PF f‖2 + ‖PF f‖2 ≥ ‖PF f‖2

To show that PF is a linear mapping, let f, g ∈ H and α ∈ K. Let h :=
PF f + αPF g. Then h ∈ F and

(f + αg)− h = (f − PF f) + α(g − PF g) ⊥ F,

cf. Lemma 1.8. By Lemma 7.6 we obtain h = PF (f + αg), and this is
linearity.

Remark 7.9. It follows from Theorem 7.8.a) that our new concept of or-
thogonal projection coincides with the one for finite-dimensional F , intro-
duced in Chapter 1.

Advice/Comment:
A prominent example of an orthogonal projection appears in probability
theory. If (Ω,Σ,P) is a probability space and F ⊆ Σ is a sub-σ-algebra,
then L2(Ω,F ,P) is in a natural way a closed subspace of L2(Ω,Σ,P).
Then the orthogonal projection P : L2(Ω,Σ,P) −→ L2(Ω,F ,P) is just
the conditional expectation operator E( · | F).

Corollary 7.10 (Orthogonal Decomposition). Let H be a Hilbert space,
and let F ⊆ H be a closed linear subspace. Then every vector f ∈ H can be
written in a unique way as f = u+ v where u ∈ F and v ∈ F⊥.
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Proof. Uniqueness: if f = u + v = u′ + v′ with u, u′ ∈ F and v, v′ ∈ F⊥,
then

u− u′ = v′ − v ∈ F ∩ F⊥ = {0}
by the definiteness of the scalar product. Hence u = u′, v = v′ as claimed.
Existence: Simply set u = PF f and v = f − PF f .

Using terminology from linear algebra (see Appendix A.7), we may say
that H is the direct sum

H = F ⊕ F⊥

of the subspaces F, F⊥.
Ex.7.5

Corollary 7.11. Let F be a subspace of a Hilbert space H. Then F⊥⊥ = F .
Moreover,

F = H if and only if F⊥ = {0}.

Proof. As F⊥ = F
⊥ by Corollary 4.11b), we may replace F by F in the

statement, and suppose without loss of generality that F is closed. The
inclusion F ⊆ F⊥⊥ is trivial, because it just says that F ⊥ F⊥. For the
converse inclusion, let g ⊥ F⊥. Then g − PF g ∈ F⊥⊥ ∩ F⊥ and this means
that g − PF g ⊥ g − PF g which is equivalent to g − PF g = 0. This shows
that g = PF g ∈ F as claimed.

The remaining assertions follows easily by taking orthogonals.

7.3. The Riesz–Fréchet Theorem

Let H be a Hilbert space. If we fix g ∈ H as the second component in the
inner product, we obtain a linear functional

ϕg : H −→ K, f 7−→ ϕg(f) := 〈f, g〉

By Cauchy–Schwarz, one has

|ϕg(f)| = |〈f, g〉| ≤ ‖f‖ ‖g‖

for all f ∈ H, hence ϕg is bounded. The Riesz–Fréchet theorem asserts that
every bounded linear functional on H is of this form.

Theorem 7.12 (Riesz–Fréchet). Let H be a Hilbert space and let ϕ :
H −→ K be a bounded linear functional on H. Then there exists a unique
g ∈ H such that ϕ = ϕg, i.e.,

ϕ(f) = 〈f, g〉 (f ∈ H).
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Proof. Uniqueness: If ϕg = ϕh for some g, h ∈ H then

〈f, g − h〉 = 〈f, g〉 − 〈f, h〉 = ϕg(f)− ϕh(f) = 0 (f ∈ H).

Hence g − h ⊥ H which is only possible if g = h. Existence: If ϕ = 0, we
can take g := 0. Otherwise, let

F := kerϕ = {f | ϕ(f) = 0}

which is a closed subspace of H, since ϕ is bounded. Since we suppose that
ϕ 6= 0, we must have F 6= H. To get an idea how to find g, we observe that
if ϕ = ϕg then

f ∈ F ⇐⇒ 0 = ϕ(f) = ϕg(f) = 〈f, g〉 ⇐⇒ f ⊥ g,

which means that F ⊥ g. Since F 6= H, the orthogonal decomposition of
H = F ⊕ F⊥ tells us that F⊥ 6= {0}. So we can find h ⊥ F , ‖h‖ = 1, and
it remains to show that we can take g as a multiple of h.

For general f ∈ H consider

u := ϕ(f)h− ϕ(h)f.

Then ϕ(u) = ϕ(f)ϕ(h)− ϕ(f)ϕ(f) = 0, whence u ∈ F . So

0 = 〈u, h〉 = 〈ϕ(f)h− ϕ(h)f, h〉 = ϕ(f) ‖h‖2 − ϕ(h) 〈f, h〉

which yields ϕ(f) = ϕ(h) 〈f, h〉 = 〈f, g〉 = ϕg(f), with g := ϕ(h)h.

We shall see a prototypical application of the Riesz–Fréchet theorem to
differential equations in Chapter 8.

7.4. Abstract Fourier Expansions

Let H be a Hilbert space and let (ej)j∈N be an ONS in H. Analogous to
the finite-dimensional situation considered in Chapter 1 we study now the
infinite abstract Fourier series

Pf :=
∑∞

j=1
〈f, ej〉 ej

for given f ∈ H. Of course, there is an issue of convergence here.

Theorem 7.13. Let H be a Hilbert space , let (ej)j∈N be an ONS in H, and
let f ∈ H. Then one has Bessel’s inequality

(7.1)
∑∞

j=1
|〈f, ej〉|2 ≤ ‖f‖2 <∞.

Moreover, the series

Pf :=
∑∞

j=1
〈f, ej〉 ej
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is convergent in H, and Pf = PF f is the orthogonal projection of f onto
the closed subspace

F := span{ej | j ∈ N}.

Finally, one has Parseval’s identity ‖Pf‖2 =
∑∞

j=1
|〈f, ej〉|2.

Proof. For Bessel’s inequality it suffices to establish the estimate∑n

j=1
|〈f, ej〉|2 ≤ ‖f‖2

for arbitrary n ∈ N. This is immediate from Lemma 1.10. By Bessel’s
inequality and the fact that H is complete (by assumption) Theorem 5.18
(on the convergence of orthogonal series in Hilbert spaces) yields that the
sum Pf :=

∑∞
j=1 〈f, ej〉 ej is indeed convergent in H with Parseval’s identity

being true.
To see that Pf = PF f we only need to show that Pf ∈ F and f −Pf ⊥

F . Since Pf is a limit of sums of vectors in F , and F is closed, Pf ∈ F .
For the second condition, note that

〈f − Pf, ek〉 = 〈f, ek〉 −
∑∞

j=1
〈f, ej〉 〈ej , ek〉 = 〈f, ek〉 − 〈f, ek〉 = 0

for every k. Hence f − Pf ⊥ F by Corollary 4.11.

Corollary 7.14. Let H be a Hilbert space space, let (ej)j∈N be an ONS in
H. Then the following assertions are equivalent.

(i) {ej | j ∈ N}⊥ = {0};
(ii) span{ej | j ∈ N} is dense in H;

(iii) f =
∑∞

j=1
〈f, ej〉 ej for all f ∈ H;

(iv) ‖f‖2 =
∑∞

j=1
|〈f, ej〉|2 for all f ∈ H;

(v) 〈f, g〉H =
∑∞

j=1
〈f, ej〉 〈g, ej〉 for all f, g ∈ H.

Proof. We use the notation from above. Then (i) just says that F⊥ = {0}
which is (by orthogonal decomposition) equivalent to F = H, i.e., (ii). Now,
(iii) simply expresses that f = Pf for all f ∈ H, and since P = PF is the
orthogonal projection onto F , this is equivalent to F = H. If (iii) holds , the
(iv) is also true, by Parseval’s identity. On the other hand, by Pythagoras
and since P is an orthogonal projection,

‖f‖2 = ‖Pf‖2 + ‖f − Pf‖2
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which implies that ‖f‖2 = ‖Pf‖2 if and only if f = Pf . This proves the
equivalence (iii)⇐⇒(iv). The equivalence of (iv) and (v) is established in
Exercise 7.6. Ex.7.6

Definition 7.15. An ONS (ej)j∈N in the inner product space H is called
maximal or complete or an orthonormal basis of H, if it satisfies the
equivalent conditions of Corollary 7.14.

Advice/Comment:
Attention: In algebraic terminology, a basis of a vector space is a linearly
independent subset such that every vector can be represented as a finite
linear combination of basis vectors. Hence an orthonormal basis in our
sense is usually not an (algebraic) basis. To distinguish the two notion of
bases, in analytic contexts one sometimes says Hamel basis for an algebraic
basis, to avoid confusion.

We shall not use the term “complete ONS” since it is outdated.

Example 7.16. Let us apply these results to the space H = `2 with its
standard ONS (en)n∈N. We have seen in Example 3.14 that their linear
span c00 is dense in `2. That amounts to say that (en)n∈N is indeed an
orthonormal basis of `2.

The following results tells that `2 is prototypical.

Theorem 7.17. Let H be a Hilbert space, and let (ej)j∈N be an orthonormal
basis of H. Then the map

T : H −→ `2, f 7−→ (〈f, ej〉)j∈N

is an isometric isomorphism.

Proof. It follows directly from Theorem 7.13 and Corollary 7.14 that T is
a well-defined linear isometry. The surjectivity is left as (easy) exercise. Ex.7.7

Advice/Comment:
Theorem 7.17 says that — in a sense — `2 is the only Hilbert space with a
countable orthonormal basis. However, the choice of basis is not canonical
in most cases.
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Example 7.18. Let us apply these results to the trigonometric system

en = e2iπn· (n ∈ Z)

in L2(0, 1), introduced in Chapter 1. By the trigonometric Weierstrass the-
orem 3.20, the space of trigonometric polynomials

S := span{en | n ∈ Z}

is uniformly dense in Cper[0, 1]. On the other hand, this space is dense in
L2(0, 1) in the 2-norm (Exercise 7.8). Since sup-norm convergence implies
2-norm convergence, S is 2-norm dense in L2(0, 1), and hence the trigono-
metric system forms an orthonormal basis therein. This means that every
continuous function f ∈ L2(0, 1) can be represented by the Fourier series

f =
∑∞

n=−∞
cne

2πint, cn = 〈f, en〉 =
∫ 1

0
f(t)e−2πint dt

(convergence in the 2-norm). Of course one has to make sense of the doubly
infinite summation, see Exercise 7.13 and Appendix C.

Finally and at last, we turn to the question of existence of orthonormal
bases. By employing the Gram–Schmidt procedure (Lemma 1.11), we obtain
the following.

Lemma 7.19. A Hilbert space has a countable orthonormal basis if and only
if there is a sequence (fn)n∈N ⊆ H such that

span{fn | n ∈ N}

is dense in H.

Proof. By discarding succesively linearly dependent vectors from the se-
quence, one ends up with a linearly independent one. Then one can apply
literally the Gram–Schmidt Lemma 1.11 to find a countable orthonormal
basis.

A Banach space satisfying the condition of Lemma 7.19 is called sepa-
rable.

Exercises

Exercise 7.1. Let A ⊆ E be closed subset of a normed space E, and let
x ∈ E. Show that if A is (sequentially) compact then a best approximation
of x exists in A. Conclude that if E is finite-dimensional then there is a best
approximation of x in A even if A is not compact. (Hint: Consider the set
A ∩ Br(x) for large enough r > 0.)
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Exercise 7.2. Let X ⊆ R be an interval and let H := L2(X; R). Let
L2

+ := {f ∈ L2(X; R) | f ≥ 0 a.e.} be the positive cone. Show that for
f, g ∈ L2(X) with g ≥ 0 one has

|f − g| ≥ f− =
∣∣f − f+

∣∣ a.e..

Conclude that f+ is the best approximation of f in L2
+.

Exercise 7.3. Let H = L2(0, 1) and f(t) = et, t ∈ [0, 1]. Find best approx-
imations of f within F in the following cases:

a) F is the space of polynomials of degree at most 1.

b) F is the space {at+ bt2 | a, b ∈ C}.

c) F is the space {g ∈ L2(0, 1) |
∫ 1
0 g = 0}.

Exercise 7.4 (Characterization of Orthogonal Projections). Let H be a
Hilbert space, and let P : H −→ H be a linear mapping satisfying P 2 = P .
Show that Q := I−P satisfies Q2 = Q, and that kerP = ranQ. Then show
that the following assertions are equivalent:

(i) ranP ⊥ kerP .

(ii) 〈Pf, g〉 = 〈f, Pg〉 for all f, g ∈ H.

(iii) ‖Pf‖ ≤ ‖f‖ for all f ∈ H.

(iv) F := ranP is closed and P = PF .

(Hint for the implication (iii) ⇒ (i): if (iii) holds then ‖P (f + cg)‖2 ≤
‖f + cg‖2 for all c ∈ K and f, g ∈ H; fix f ∈ ranP , g ∈ kerP , use Lemma
1.5 and vary c to conclude that 〈f, g〉 = 0.)

Exercise 7.5. For this exercise we assume the results mentioned in Exercise
6.21. Let E := L1(−1, 1) and consider the mapping

(Tf)(t) := f(−t) f ∈ L1(−1, 1).

A function f ∈ L1(−1, 1) is called even if f = Tf almost everywhere.

a) Show that if f ∈ L1(−1, 1) then Tf ∈ L1(−1, 1) as well and
∫ 1
−1 Tfdλ =∫ 1

−1 fdλ. (Hint: Show first that it is true for f ∈ C[−1, 1]. Then use
Corollary 6.20.)

b) Show that Tf ∈ L2(−1, 1) and ‖Tf‖2 = ‖f‖2 for all f ∈ L2(−1, 1).
(Hint: use a))

c) Let H = L2(−1, 1). Show that the space

F := {f ∈ L2(−1, 1) | f is even}
is a closed linear subspace of H and show that PF = 1/2(I + T ) is the
orthogonal projection onto F .
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d) Describe F⊥ and the orthogonal projection onto F⊥.

Exercise 7.6. Let H be an inner product space with an ONS (en)n and
vectors f, g ∈ H. Show that the series∑∞

j=1
〈f, ej〉 〈g, ej〉

converges absolutely. Then prove the equivalence of (iii) and (iv) in Theorem
7.13. (Hint: see Exercise 1.8.)

Exercise 7.7. Let (ej)j∈N an ONS in a Hilbert space H. Show that for
every α ∈ `2 there is a (unique) f ∈ H such that 〈f, ej〉 = αj for all j ∈ N.

Exercise 7.8. Prove that Cper[a, b] is ‖·‖2-dense in C[a, b].

Further Exercises

Exercise 7.9. Let (Ω, d) be a metric space and let A ⊆ Ω be any subset.
Show that

|d(x,A)− d(y,A)| ≤ d(x, y)
for all x, y ∈ Ω, and conclude that d(·, A) is a continuous function on Ω.

Exercise 7.10 (Minimal Norm Problems). Let F be a closed subspace
of a Hilbert space H and f0 ∈ H. Show that there is a unique element of
minimal norm. in the affine subspace G := f0 + F .

Then, in each of the cases

a) H = L2(0, 1), G := {f ∈ L2(0, 1) |
∫ 1
0 tf(t) dt = 1},

b) H = L2(0, 1), G := {f ∈ L2(0, 1) |
∫ 1
0 f(t) dt = 1/3,

∫ 1
0 t

2f(t) dt =
1/15}

find F, f0 such that G = F +f0, and determine an element of minimal norm
in G.

Exercise 7.11. Let α = (αj)j∈N be a scalar sequence. Suppose that the
series ∑∞

j=1
λjαj

converges for every λ ∈ `2 and that there is a constant c ≥ 0 such that∣∣∣∑∞

j=1
λjαj

∣∣∣ ≤ c

for all λ ∈ `2 with ‖λ‖2 ≤ 1. Show that α ∈ `2 and ‖α‖2 ≤ c.

Exercise 7.12. Let H be a separable Hilbert space and let F ⊆ H be a
closed subspace. Show that F is also separable. (Hint: use the orthogonal
projection PF .)
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Exercise 7.13. Let (ej)j∈Z be an ONS in a Hilbert space H. For f ∈ H
define

fn :=
∑∞

j=−n
〈f, ej〉 ej .

This series converges, by Theorem 7.13. Show that Qf := limn→∞ fn exists
in H. Prove that Qf = PGf , where

G = span{ej | j ∈ Z}.

Exercise 7.14. Let E := {f ∈ C[0, 1] | f(0) = 0} with the ∞-norm. Let

A := {f ∈ E |
∫ 1

0
f(t) dt = 0},

and let f(t) := t, t ∈ [0, 1].

a) Show that E is a closed subspace of C[0, 1] and that A is a closed
subspace of E.

b) For given ε > 0, find g ∈ A such that ‖g − f‖∞ ≤ 1/2 + ε. (Hint:
modify the function f − 1/2 appropriately.)

c) Conclude from this and Example 7.2 that d(f,A) = 1/2.

d) Show that for each g ∈ A one must have ‖f − g‖∞ > 1/2.

Exercise 7.15. Show that a Banach space E is separable if there is a
sequence (fn)n∈N ⊆ E such that {fn | n ∈ N} is dense in E. (This weakens
Lemma 7.19.) (Hint: Use that Q is countable and dense in R.)





Chapter 8

Sobolev Spaces and the
Poisson Problem

In this chapter we shall see a first application of Hilbert space methods to
differential equations. More precisely, we shall present a first approach to
Poisson’s problem

u′′ = −f on (a, b), u(a) = u(b) = 0.

Classically, f is a continuous function on [a, b], and one can easily solve the
equation by successive integration. This approach leads to the concept of
Green’s function and is treated in Chapter 9.

In the present chapter we take a different way, namely we shall apply
the Riesz-Fréchet theorem to obtain existence and uniqueness of solutions.
To be able to do this, we have to pass from the “classical” C[a, b]-setting to
the L2(a, b)-setting; in particular, we need the notion of a derivative of an
L2(a, b)-”function”. Since L2-elements are not really functions, we cannot do
this by using the elementary definition via differential quotients.

8.1. Weak Derivatives

Let [a, b] ⊆ R be a finite interval. Each function ψ ∈ C1[a, b] such that
ψ(a) = ψ(b) = 0 is called a test function. The space of test functions is
denoted by

C1
0[a, b] = {ψ ∈ C1[a, b] | ψ(a) = ψ(b) = 0}.

Note that if ψ is a test function, then so is ψ and (ψ)′ = ψ′.

97
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Lemma 8.1. The space of test functions C1
0[a, b] is dense in L2(a, b). If

g, h ∈ L2(a, b) are such that∫ b

a
g(x)ψ(x) dx =

∫ b

a
h(x)ψ(x) dx,

for all test functions ψ ∈ C1
0[a, b], then g = h (almost everywhere).

Proof. It was shown in Corollary 4.12 that D := C1
0[a, b] is dense in C0[a, b]

in the sup-norm. By Example 3.13 convergence in sup-norm implies con-
vergence in 2-norm, and so D is 2-norm dense in C0[a, b] (Theorem DP.4).
This space is 2-norm dense in C[a, b], by Exercise 3.10, and C[a, b] is 2-norm
dense in L2[a, b]. By Theorem DP.1, D is dense in L2(a, b), as claimed. If
g, h are as in the lemma, then g − h ⊥ D. Hence g − h ⊥ D = L2(a, b), and
so g − h = 0.

Advice/Comment:
At this point it is strongly recommended to look at the Density Principles
DP.1–DP.4 and their proofs.

Given a function f ∈ L2(a, b) we want to define its derivative function
f ′ without using a differential quotient (since this is the classical approach)
but still in such a way that for f ∈ C1[a, b] the symbol f ′ retains its classical
meaning. Now, if f ∈ C1[a, b] then the integration by parts formula gives

(8.1)
∫ b

a
f ′(x)ψ(x) dx = −

∫ b

a
f(x)ψ′(x) dx

for all test functions ψ ∈ C1
0[a, b]. (The condition ψ(a) = 0 = ψ(b) makes the

boundary terms vanish.) This is the key observation behind the following
definition.

Definition 8.2. Let f ∈ L2(a, b). A function g ∈ L2(a, b) is called a weak
derivative of f if

(8.2)
∫ b

a
g(x)ψ(x) dx = −

∫ b

a
f(x)ψ′(x) dx

for all functions ψ ∈ C1
0[a, b]. If f has a weak derivative, we call f weakly

differentiable. The space

H1(a, b) := {f ∈ L2(a, b) | f has a weak derivative}

and is called the (first) Sobolev space.
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Note that the condition for a weak derivative can be equivalently written
as

〈g, ψ〉 = −
〈
f, ψ′

〉
(ψ ∈ C1

0[a, b]).

By what we said just before the definition, if f ∈ C1[a, b] then its classical
derivative f ′ is also its weak derivative. We shall see below that not every
L2-function has a weak derivative. However, if f has a weak derivative, then
it can have only one: indeed if g, h ∈ L2(a, b) are weak derivatives then they
satisfy (8.2) for every test function ψ, and hence g = h by Lemma 8.1. It is
therefore unambiguous to write f ′ for a (the) weak derivative of f , provided
such a weak derivative exists in the first place. Ex.8.1

Ex.8.2The next example shows that there exist weakly differentiable functions
that are not (classically) differentiable.

Example 8.3. Let [a, b] = [−1, 1] and f(t) := |t|, t ∈ [−1, 1]. Then f has
weak derivative g := 1(0,1) − 1(−1,0); indeed,

−
∫ 1

−1
f(t)ψ′(t) dt = −

∫ 0

−1
(−t)ψ′(t) dt−

∫ 1

0
tψ′(t) dt

= tψ(t)
∣∣∣0
−1
−
∫ 0

−1
ψ(t) dt− tψ(t)

∣∣∣1
0
+
∫ 1

0
ψ(t) dt

= 0−
∫ 0

−1
ψ(t) dt− 0 +

∫ 1

0
ψ(t) dt =

∫ 1

−1
g(t)ψ(t) dt.

for all ψ ∈ C1
0[−1, 1]. See also Exercise 8.3. Ex.8.3

8.2. The Fundamental Theorem of Calculus

Before we can work with weak derivatives, we have to establish their basic
properties. And of course it is interesting to see to which extent classical
results involving derivatives extend to the weak setting. To facilitate com-
putations with weak derivatives we shall employ the integration operator
J defined by

(Jf)(t) :=
∫ t

a
f(x) dx =

〈
f,1(a,t)

〉
(t ∈ [a, b], f ∈ L2(a, b)),

cf. Example 6.15.

Advice/Comment:
Note that in general this is not a Riemann- integral, even if it looks like
one.
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Classically, J is a right inverse to differentiation:

(8.3) (Jf)′(t) =
d

dt

∫ t

a
f(s) ds = f(t) (t ∈ [a, b])

for f ∈ C[a, b]. The next result shows that this is still true for weak differ-
entiation.

Lemma 8.4. The operator J : L2(a, b) −→ C[a, b] is linear and bounded.
Moreover, (Jf)′ = f in the weak sense for all f ∈ L2(a, b).

Proof. If f ∈ L2(a, b), then f ∈ L1(a, b) and

‖f‖2 ≤
√
b− a ‖f‖1

by Exercise 6.10 (cf. also Example 3.13). By Example 6.15, we have Jf ∈
C[a, b] and henceEx.8.4

‖Jf‖∞ ≤ ‖f‖1 ≤
√
b− a ‖f‖2 .

This is the boundedness of J as an operator from L2(a, b) (with the 2-norm)
to C[a, b] (with the sup-norm). The claim (Jf)′ = f is, by definition, equiv-
alent to

(8.4)
〈
Jf, ψ′

〉
= −〈f, ψ〉

for all test functions ψ. To establish (8.4) we employ a density argument.
Fix a test function ψ and consider the linear mappings

T : f 7−→
〈
Jf, ψ′

〉
, S : f 7−→ −〈f, ψ〉

from L2(a, b) to the scalar field. An elementary estimation (do it!) yields
that both S, T are bounded. Moreover, Tf = Sf for all f ∈ C1[a, b], by
classical integration by parts. Since C1[a, b] is dense in L2(a, b) (by, e.g.,
Lemma 8.1) Theorem DP.2 yields that S = T , and thus (8.4) holds for all
f ∈ L2(a, b). As ψ ∈ C1

0[a, b] was arbitrary, the proof is complete.

Classically, i.e. for f ∈ C1[a, b] one has that J(f ′) − f is a constant
function. This comes from the fundamental theorem of calculus, and implies
that if the (classical) derivative of a function is zero, then the function is
constant. Let us see whether we can recover these results in the setting of
weak derivatives.

We write 1 for the function being constant to one on [a, b]. Then a
constant function has the form f = c1 for some number c ∈ K, and hence
C1 is the one-dimensional subspace of constant functions. A spanning unit
vector for this space is e := (b− a)−1/21, and so

PC1f = 〈f, e〉 e =
〈f,1〉
b− a

1 (f ∈ L2(a, b))
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is the orthogonal projection onto C1. In particular, if a function f is constant
to c (almost everywhere) then this constant is given by

c =
〈f,1〉
b− a

.

We are interested in the orthogonal complement 1⊥ of C1.

Lemma 8.5. The space L2(a, b) decomposes orthogonally into

L2(a, b) = C1⊕ {ψ′ | ψ ∈ C0[a, b]},

the closure on the right-hand side being taken with respect to the 2-norm.

Proof. We let G := 1⊥ and F := {ψ′ | ψ ∈ C1
0[a, b]}. Then it is to show

that G = F . Now 1 ⊥ F , since∫ b

a
1 · ψ′(s) ds = ψ(b)− ψ(a) = 0− 0 = 0

for each ψ ∈ C1
0[a, b]. This yields F ⊆ 1⊥ = G, and hence F ⊆ G, because

G is closed.
For the other inclusion, note that the orthogonal projection onto G is

PG = I− PC1, and hence

PGf = f − 〈f,1〉
b− a

1 (f ∈ L2(a, b)).

Now, PG has ran(PG) = G and so we have to show that ran(PG) ⊆ F . To
this aim, fix f ∈ C[a, b]. Then PGf is obviously continuous as well, hence

JPGf = Jf − 〈f,1〉
b− a

J1

is in C1[a, b]. Moreover, JPGf(a) = 0 (by definition of J) and also

(JPGf)(b) = (Jf)(b)− 〈f,1〉
b− a

(J1)(b) =
∫ b

a
f(s) ds− 〈f,1〉

b− a

∫ b

a
1 ds

= 〈f,1〉 − 〈f,1〉 = 0.

But this means that JPGf is a test function, so PGf = (JPGf)′ ∈ F .
For a general f ∈ L2(a, b) we find a sequence (fn)n∈N ⊆ C[a, b] with fn →

f in L2(a, b). Then, since orthogonal projections are bounded operators,
PGfn → PGf , which shows that PGf ∈ F . (This is an instance of Theorem
DP.3.)

Corollary 8.6. Let f ∈ L2(a, b) such that f has weak derivative 0. Then f
is a constant (a.e.).
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Proof. Let f ∈ L2(a, b) and suppose that f ′ = 0 in the weak sense. By
definition, this means∫ b

a
f(s)ψ′(s) ds = 0 (ψ ∈ C1

0[a, b]),

and this can be rephrased as f ⊥ F , with F being as in the previous proof.
Hence f ⊥ F = (C1)⊥, and thus f ∈ C1, by Corollary 7.11.

Let us formulate an interesting corollary.

Corollary 8.7. One has H1(a, b) ⊆ C[a, b]. More precisely, f ∈ H1(a, b) if
and only if f has a representation

f = Jg + c1

with g ∈ L2(a, b) and c ∈ K. Such a representation is unique, namely

g = f ′, c =
〈
f − Jf ′,1

〉
/(b− a).

Moreover, the Fundamental Theorem of Calculus∫ d

c
f ′(x) dx = f(d)− f(c)

holds for every interval [c, d] ⊆ [a, b].

Proof. If f = Jg + c1 is represented as described, then f ′ = (Jg)′ + 0 = g
and f ∈ H1(a, b). Conversely let f ∈ H1(a, b) and set g := f ′ and h := Jg.
Then (f − h)′ = f ′ − (Jg)′ = f ′ − g = 0, and by Corollary 8.6 there exists
c ∈ K such that f − Jg = c1. The remaining statement follows from∫ d

c
f ′(x) dx = (Jg)(d)− (Jg)(c) = f(d)− f(c).

In particular, a function which does not coincide almost everywhere with
a continuous function, cannot have a weak derivative. For example, within
(−1, 1) the caracteristic function 1(0,1) does not have a weak derivative, see
Exercise 8.5.

8.3. Sobolev Spaces

On H1(a, b) we define the inner product(!)

〈f, g〉H1 := 〈f, g〉L2 +
〈
f ′, g′

〉
L2 =

∫ b

a
f(x)g(x) dx+

∫ b

a
f ′(x)g′(x) dx

for f, g ∈ H1(a, b).



8.3. Sobolev Spaces 103

Advice/Comment:
If one writes out the norm of f ∈ H1(a, b) one obtains:

‖f‖H1 =
(
‖f‖22 + ‖f ′‖22

)1/2

.

This shows that convergence of a sequence (fn)n∈N in H1(a, b) is the same
as the L2-convergence of (fn)n∈N and of (f ′n)n∈N.

Theorem 8.8. The first Sobolev space H1(a, b) is a Hilbert space, and the
mapping

H1(a, b) −→ L2(a, b), f 7−→ f ′

is linear and bounded. Moreover, the inclusion H1(a, b) ⊆ C[a, b] is contin-
uous, i.e., there is a constant c > 0 such that

‖f‖∞ ≤ c ‖f‖H1 (f ∈ H1(a, b)).

Proof. By Exercise 8.2, H1(a, b) is a vector space, and the derivative is a
linear mapping. By definition of the norm∥∥f ′∥∥2

2
≤ ‖f‖2

2 +
∥∥f ′∥∥2

2
= ‖f‖2

H1 ,

and so (f 7−→ f ′) is a bounded mapping.
Suppose that (fn)n∈N ⊆ H1(a, b) is a Cauchy sequence, i.e. ‖fn − fm‖H1 →

0 as n,m → ∞. This means that both sequences (fn)n∈N and (f ′n)n∈N are
Cauchy sequences in L2(a, b). By the completeness of L2(a, b), there are
functions f, g ∈ L2(a, b) such that

‖fn − f‖2 → 0, and
∥∥f ′n − g

∥∥
2
→ 0

as n → ∞. It suffices to show that g is a weak derivative of f . In order to
establish this, let ψ ∈ C1

0[a, b]. Then

〈g, ψ〉L2 = lim
n

〈
f ′n, ψ

〉
L2 = lim

n
−
〈
fn, ψ

′〉 = −〈f, ψ〉 ,

where we used that f ′n is a weak derivative of fn. The remaining statement
is an exercise. Ex.8.6

Corollary 8.9. The space C1[a, b] is dense in H1(a, b) (with respect to its
proper norm).

Proof. Let f ∈ H1(a, b) and g := f ′. Then f = Jg + c1 for some c ∈ K, by
Corollary 8.7. Since C[a, b] is dense in L2(a, b), there is a sequence (gn)n∈N ⊆
C[a, b] such that ‖gn − g‖2 → 0. By Exercise 8.8, J : L2(a, b) −→ H1(a, b)
is bounded, and hence Jgn → Jg in H1(a, b). But then fn := Jgn + c1 →
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Jg + c1 = f in H1(a, b) as well. Evidently fn ∈ C1[a, b] and the proof is
complete.

When one has digested the definition of H1 and the fact that some
classically non-differentiable functions are weakly differentiable, it is then
only a small step towards higher (weak) derivatives. One defines recursively

Hn+1(a, b) := {f ∈ H1(a, b) | f ′ ∈ Hn(a, b)} (n ∈ N)

with norm

‖f‖2
Hn := ‖f‖2

2 + ‖f ′‖2
2 + · · ·+ ‖f (n)‖2

2 (f ∈ Hn(a, b)).

It can be shown by induction on n that Hn(a, b) is a Hilbert space withEx.8.7

respect to the inner product

〈f, g〉H1 :=
∑n

k=0

〈
f (k), g(k)

〉
L2

(f, g ∈ Hn(a, b))

The space Hn(a, b) are called (higher) Sobolev spaces.

8.4. The Poisson Problem

We shall give a typical application in the field of (partial) differential equa-
tions. (Actually, no partial derivatives here, but that’s a contingent fact,
because we are working in dimension one.) For simplicity we work with
K = R here. Consider again for given f ∈ L2(a, b) the boundary value
problem (“Poisson problem”)

u′′ = −f, u(a) = u(b) = 0

to be solved within H2(0, 1). We shall see in a later chapter how to do
this with the help of an integral operator; here we present the so-called
variational method. Since the differential equation above is to be understood
in the weak sense, we can equivalently write〈

u′, ψ′
〉
L2 = 〈f, ψ〉L2 (ψ ∈ C1

0[a, b]).

The idea is now readily sketched. Define

H1
0(a, b) := {u ∈ H1(a, b) | u(a) = u(b) = 0}.

This is a closed subspace of H1(a, b) since H1(a, b) ⊆ C[a, b] continuously
(Theorem 8.8) and the point evaluations are bounded on C[a, b]. Thus H :=
H1

0(a, b) is a Hilbert space with respect to the (induced) scalar product

〈f, g〉H :=
〈
f ′, g′

〉
L2 + 〈f, g〉L2 =

∫ b

a
f ′(x)g′(x) dx+

∫ b

a
f(x)g(x) dx.

It is an important fact that we may leave out the second summand here.
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Lemma 8.10 (Poincaré inequality). There is a constant C ≥ 0 depending
on b− a such that

‖u‖L2 ≤ C
∥∥u′∥∥

L2

for all u ∈ H1
0(a, b).

Note that a similar estimate cannot hold for H1(a, b), since for a constant
function f one has f ′ = 0. It is not at all easy to determine the optimal
constant c, see Chapter 11.

Proof. Let u ∈ H1
0(a, b). We claim that u = Ju′. Indeed, if (Ju′)′ = u′ and

by Corollary 8.6 Ju′ − u = c is a constant. But Ju′ − u vanishes at a and
so the constant is zero. Using Ju′ = u we finally obtain

‖u‖L2 =
∥∥Ju′∥∥

L2 ≤ C
∥∥u′∥∥

L2 .

for some constant C, since by Lemma 8.4 the integration operator J :
L2(a, b) −→ L2(a, b) is bounded.

As a consequence, we see that 〈u, v〉H := 〈u′, v′〉L2 is an inner product
on H, and the norm induced by it is equivalent to the orginal norm. Indeed,
for u ∈ H = H1

0(a, b)

‖u‖2
H =

∥∥u′∥∥2

L2 ≤ ‖u‖2
L2 +

∥∥u′∥∥2

L2 = ‖u‖2
H1

and

‖u‖2
H1 = ‖u‖2

L2 +
∥∥u′∥∥2

L2 ≤ (C2 + 1)
∥∥u′∥∥2

L2 = (C2 + 1) ‖u‖2
H

by Poincaré’s inequality.
In particular, (H, 〈·, ·〉H) is a Hilbert space. The Poincaré inequality

shows also that the inclusion mapping

H = H1
0(a, b) −→ L2(a, b), v 7−→ v

is continuous. Hence the linear functional

ϕ : H −→ K, v 7−→ 〈v, f〉L2

is bounded. By the Riesz–Fréchet theorem 7.12 there exists a unique u ∈ H
such that 〈

v′, u′
〉
L2 = 〈v, u〉H = ϕ(v) = 〈v, f〉L2

for all v ∈ H1
0(a, b). In particular, this is true for all v ∈ C1

0[a, b], whence u
is a solution of our original problem. Ex.8.9
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8.5. Further Reading: The Dirichlet Principle

Our treatment of the Poisson problem is just a one-dimensional version of
the so-called Dirichlet principle in arbitrary dimensions. We shall only
give a rough sketch without any proofs. One starts with a bounded, open
set Ω ⊆ Rd. On Ω one considers the d-dimensional Lebesgue measure and
the Hilbert space L2(Ω). Then one looks at the Poisson problem

∆u = −f, u
∣∣
∂Ω

= 0.

Here, ∆ is the Laplace operator defined by

∆u =
d∑

j=1

∂2u

∂x2
j

.

In the classical case, f ∈ C(Ω), and one wants a solution u ∈ C2(Ω)∩C(Ω)
satisfying literally the PDE above. The functional analytic way to treat
this is a two-step procedure: first find a solution within L2(Ω), where the
derivatives are interpreted in a “weak” manner, then try to find conditions
on f such that this solution is a classical solution. The second step belongs
properly to the realm of PDE, but the first step can be done by our abstract
functional analysis methods.

As the space of test functions one takes

C1
0(Ω) := {ψ ∈ C1(Ω) | ψ

∣∣
∂Ω

= 0}.

A weak gradient of a function f ∈ L2(Ω) is a d-tuple g = (g1, . . . , gd) ∈
L2(Ω)d such that∫

Ω
f(x)

∂ψ

∂xj
(x) dx = −

∫
Ω
gj(x)ψ(x) dx (j = 1, . . . , d)

for all ψ ∈ C1
0 (Ω). One proves that such a weak gradient is unique, and

writes ∇f = g and ∂f/∂xj := gj . One defines

H1(Ω) := {u ∈ L2(Ω) | u has a weak gradient}

which is a Hilbert space for the scalar product

〈u, v〉H1 = 〈u, v〉L2 +
∫

Ω
〈∇u(x),∇v(x)〉Rd dx

=
∫

Ω
u(x)v(x) dx+

d∑
j=1

∫
Ω

∂u

∂xj
(x)

∂v

∂xj
(x) dx.

The boundary condition is incorporated into a closed subspace H1
0(Ω) of

H1(Ω):
H1

0(Ω) = C1
0(Ω)



Exercises 107

(closure within H1(Ω).) One then shows Poincaré’s inequality:∫
Ω
|u|2 dx ≤ c

∫
Ω
|∇u|2 dx (u ∈ H1

0(Ω))

for some constant c depending on Ω. In the end, Riesz–Fréchet is applied
to obtain a unique u ∈ H1

0(Ω) such that∫
Ω
〈∇u(x),∇ψ(x)〉 dx = −

∫
Ω
f(x)ψ(x) dx (ψ ∈ C1

0(Ω)),

that is ∆u = −f in the weak sense. (Of course one would like to have
u ∈ H2(Ω), but this will be true only if Ω is sufficiently regular, e.g., if ∂Ω
is smooth.)

Exercises

Exercise 8.1. Let f ∈ H1(a, b) with weak derivative g ∈ L2(a, b). Show
that g is a weak derivative of f .

Exercise 8.2. Show that H1(a, b) is a vector space and that

H1(a, b) −→ L2(a, b), f 7−→ f ′

is a linear mapping.

Exercise 8.3. Consider [a, b] = [−1, 1] and f(t) = |t|q for some 1/2 < q.
Show that f ∈ H1(−1, 1) and compute its weak derivative. Is q = 1/2 also
possible?

Exercise 8.4. Show that for f ∈ L2(a, b) one has

|Jf(t)− J(s)| ≤
√
t− s ‖f‖2 (s, t ∈ [a, b]).

I.e., Jf is Hölder continuous with exponent 1/2. (This improves on the mere
continuity of Jf established in Example 6.15.)

Exercise 8.5. Show that there is no f ∈ C[−1, 1] such that f = 1(0,1)

almost everywhere. (This is somehow similar to the proof of Theorem 5.8.)
Conclude that 1(0,1) does not have a weak derivative in L2(−1, 1).

Exercise 8.6. Find a constant c ≥ 0 such that

‖f‖∞ ≤ c ‖f‖H1 (f ∈ H1(a, b)).

(Hint: Corollary 8.7).

Exercise 8.7. Show that, for every n ∈ N, Hn(a, b) is a Hilbert space with
respect to the inner product

〈f, g〉Hn :=
∑n

k=0

〈
f (k), g(k)

〉
L2

(f, g ∈ Hn(a, b)).
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Exercise 8.8. Consider the integration operator J on the interval [a, b]. In
the proof of Lemma 8.4 it was shown that

‖Jf‖∞ ≤
√
b− a ‖f‖2 (f ∈ L2(a, b)).

Show that
‖Jf‖2 ≤

b− a√
2
‖f‖2 (f ∈ L2(a, b)).

Then determine c ≥ 0 such that

‖Jf‖H1 ≤ c ‖f‖2 (f ∈ L2(a, b)).

Exercise 8.9. Show that C1
0[a, b] is dense in H1

0(a, b). Conclude that the
solution in H1

0(a, b) of Poisson’s equation is unique.

Further Exercises

Exercise 8.10. Show that on H2(a, b),

‖| f‖| :=
(
‖f‖2 +

∥∥f ′′∥∥
2

)1/2

is an equivalent Hilbert space norm, i.e., is a norm which comes from an
inner product, and this norm is equivalent to the norm given in the main
text.

Exercise 8.11 (Product Rule). For f, g ∈ C1[a, b] we know that

(8.5) (fg)′ = f ′g + fg′.

The aim of this exercise is to show that this is still true in the weak sense,
for f, g ∈ H1(a, b). It will be done in two steps.

a) For fixed g ∈ H1(a, b) define

Tgf := fg and Sgf := f ′g + fg′ (f ∈ H1(a, b)).

Show that T, S : H1(a, b) −→ L2(a, b) are well-defined bounded opra-
tors.

b) Let g ∈ H1(a, b) and f ∈ C1[a, b]. Show that f ′g + fg′ is a weak
derivative of fg. (Hint: if ψ ∈ C1[a, b] then ψg ∈ C1

0[a, b] as well.)

c) Fix ψ ∈ C1
0[a, b] and g ∈ H1(a, b), and consider

q(f) :=
〈
fg, ψ′

〉
+
〈
f ′g + gf ′, ψ

〉
=
〈
Tgf, ψ

′〉+ 〈Sgf, ψ〉
for f ∈ H1(a, b)). Show that q(f) = 0 for all f ∈ H1(a, b). (Hint: use
b) and Exercise 8.9.)

d) Conclude from c) that for all f, g ∈ H1(a, b) one has fg ∈ H1(a, b) and
(fg)′ = f ′g + fg′ and the integration by parts formula∫ b

a
f(s)g′(s) ds = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(s)g(s) ds.
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Exercise 8.12 (The general Poincaré inequality). a) Determine a constant
c such that

‖Jf − 〈Jf,1〉L2 1‖2 ≤ c ‖f‖2

for all f ∈ L2(0, 1).

b) Use a) to establish the general Poincaré inequality

(8.6) ‖u− 〈u,1〉L2 1‖2 ≤ c
∥∥u′∥∥

2
(u ∈ H1(0, 1)).

(Hint: Corollary 8.7.)

c) How would (8.6) have to be modified if the interval (0, 1) is replaced by
a general interval (a, b)?

Exercise 8.13 (Neumann boundary conditions). Fix real numbers λ > 0
and a < b.

a) Show that

‖u‖λ :=
(
λ ‖u‖2

2 +
∥∥u′∥∥2

2

)1/2
(u ∈ H1(a, b))

is a norm on H1(a, b) which is induced by an inner product 〈·, ·〉λ.
Then show that this norm is equivalent to the standard norm ‖·‖H1

on H1(a, b).

b) Let f ∈ L2(a, b). Show that there is a unique u ∈ H1(a, b) satisfying

λ

∫ b

a
u(s)v(s) ds+

∫ b

a
u′(s)v′(s) ds =

∫ b

a
f(s)v(s) ds

for all v ∈ H1(a, b).

c) Let f and u as in b). Show that u satisfies

u ∈ H2(a, b), λu− u′′ = f, u′(b) = u′(a) = 0

(Hint for c): Take first v ∈ C1
0[a, b] in b), then v ∈ C1[a, b] and use the

product rule from Exercise 8.11.)





Chapter 9

Bounded Linear
Operators

Bounded linear mappings (=operators) have been introduced in Chapter
2, and we have seen already a few examples, for instance the orthogonal
projections in Hilbert spaces. In this chapter we have a closer look at the
abstract concept and encounter more examples.

9.1. Integral Operators

In the previous section we introduced the integration operator J , which
maps L1(a, b) into C[a, b] and L2(a, b) into H1(a, b). We have

Jf(t) =
∫ t

a
f(s) ds =

∫ b

a
1[a,t](s)f(s) ds (t ∈ [a, b]).

Let us introduce the function k : [a, b]× [a, b] −→ K

k(t, s) = 1[a,t](s) =

{
1 if a ≤ s ≤ t ≤ b,

0 if a ≤ t < s ≤ b.

Then we have

Jf(t) =
∫ b

a
k(t, s)f(s) ds

for every function f ∈ L1(a, b). Hence J is an integral operator in the
following sense.

111
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Definition 9.1. Let X,Y be intervals of R. An operator A is called an
integral operator if there is a function

k : X × Y −→ K

such that A = Ak is given by

(9.1) (Af)(t) =
∫

Y
k(t, s)f(s) ds (t ∈ X)

for functions f where this is meaningful. The function k is called the inte-
gral kernel or the kernel function of Ak.

Advice/Comment:
Attention: the integral kernel k of the integral operator Ak has nothing to
do with the kernel (= null space) ker(Ak).

Remark 9.2 (Lebesgue measure in R2 and Fubini’s theorem). To work
with integral operators properly, one has to know something about the the-
ory of product measure spaces and in particular the Fubini-Tonelli theo-
rem. Roughly speaking, one defines Lebesgue outer measure on R2 as in
Definition 6.1, replacing intervals by rectangles, i.e., cartesian products of
intervals. Then Theorem 6.2 holds if R is replaced by R2 and one obtains
the two-dimensional Lebesgue measure λ2. The notion of measurable
functions (Definition 6.3) carries over, with the interval X being replaced
by the rectangle X×Y . (A function f ∈M(X×Y ) is then called product
measurable.) Then the whole theory of null sets, Lp and Lp-spaces carries
over to the 2-dimensional setting. In particular, we can form the Banach
spaces

L1(X × Y ) and L2(X × Y )

and one has a Dominated Convergence and a Completeness Theorem.
The integral of an integrable function f ∈ L1(X × Y ) with respect to

two-dimensional Lebesgue measure is computed via iterated integration in
either order: ∫

X×Y
f(·, ·) dλ2 =

∫
X

∫
Y
f(x, y) dy dx.

This is called Fubini’s theorem and it includes the statement that if one
integrates out just one variable, the function

x 7−→
∫

Y
f(x, y) dy

is again measurable.
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Advice/Comment:
Actually, it is not that simple, and there are quite some measure-
theoretical subtleties here. However, we shall boldly ignore them and
refer to a book on measure theory instead.

For measurable functions f ∈ M(X) and g ∈ M(Y ) we define the
function

(9.2) f ⊗ g : X × Y −→ K, (f ⊗ g)(x, y) := f(x)g(y).

Then f ⊗ g is product measurable and the space

span{f ⊗ g | f ∈ L2(X), g ∈ L2(Y )}

is dense in L2(X × Y ). By Density Principle DP.1 one can then conclude
that

span{f ⊗ g | f ∈ C[a, b], g ∈ C[c, d]}
is dense in L2([a, b]× [c, d]).

For future reference we note the following simple fact.

Lemma 9.3. Let f ∈ L1(a, b) and n ∈ N. Then

(Jnf)(t) =
1

(n− 1)!

∫ t

a
(t− s)n−1f(s) ds

for all t ∈ [a, b]. In particular, Jn is also an integral operator with kernel
function

Gn(t, s) =
1

(n− 1)!
1[a,t](s)(t− s)n−1 (s, t ∈ [a, b]).

Proof. This is induction and Fubini’s theorem. Ex.9.1

Example 9.4 (Green’s function for the Poisson problem). Consider again
the Poisson problem

u′′ = −f, u(a) = u(b) = 0.

We have seen in the previous chapter that for each f ∈ L2(a, b) there is a
unique solution u ∈ H2(a, b). Now we want to derive a more explicit formula
how to compute the solution u from the given data f . For simplicity we
shall work on [a, b] = [0, 1], but see also Exercise 9.2. Ex.9.2

Applying the integration operator J we find successively

u′(t) = −(Jf)(t) + c, u(t) = −(J2f)(t) + tc+ d (t ∈ [0, 1])
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for certain constants c, d ∈ K. Using the boundary conditions we obtain
d = 0 and

c = (J2f)(1) =
∫ 1

0
(1− s)f(s) ds.

Inserting c, d back into the formula for u one obtains

u(t) = −
∫ t

0
(t− s)f(s) ds+ t

∫ 1

0
(1− s)f(s) ds

=
∫ 1

0
[(s− t)1{s≤t}(t, s) + t(1− s)]f(s) ds =

∫ 1

0
g0(t, s)f(s) ds

with

(9.3) g0(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1
t(1− s), 0 ≤ t ≤ s ≤ 1.

This is the so-called Green’s function for the Poisson problem.Ex.9.3

The Green’s function for the Poisson problem is product square in-
tegrable, i.e., ∫ b

a

∫ b

a
|g0(t, s)|2 dsdt <∞,

since |g0(t, s)| ≤ 1 for all s, t. This property has a special name.

Definition 9.5. Let X,Y ⊆ R be intervals and let k : X × Y −→ K be
product measurable. If k ∈ L2(X × Y ), i.e., if∫

X

∫
Y
|k(x, y)|2 dy dx <∞.

then k is called a Hilbert-Schmidt kernel function. The associated
integral operator Ak is called a Hilbert–Schmidt integral operator.

The next result shows that a Hilbert–Schmidt kernel function induces
indeed a bounded operator on the L2-spaces.

Theorem 9.6. Let k ∈ L2(X × Y ) be a Hilbert-Schmidt kernel function.
Then the associated Hilbert–Schmidt integral operator Ak (given by (9.1))
satisfies

‖Akf‖L2(X) ≤ ‖k‖L2(X×Y ) ‖f‖L2(Y )

for all f ∈ L2(Y ), hence Ak is a bounded operator

Ak : L2(Y ) −→ L2(X).

Moreover, the kernel function k is uniquely determined (λ2-a.e.) by the
associated operator Ak.
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Proof. Let f ∈ L2(Y ). By Cauchy–Schwarz∣∣∣∣∫
Y
k(x, y)f(y) dy

∣∣∣∣ ≤ ∫
Y
|k(x, y)f(y)| dy ≤

[∫
Y
|k(x, y)|2 dy

]1/2

‖f‖L2(Y )

for all x ∈ [a, b]. Hence

‖Akf‖2
L2(X) =

∫
X

∣∣∣∣∫
Y
k(x, y)f(y) dy

∣∣∣∣2 dx

≤
(∫

X

∫
Y
|k(x, y)|2 dy dx

)
‖f‖2

L2(Y ) .

Taking square-roots we arrive at

‖Akf‖L2(X) ≤
(∫

X

∫
Y
|k(x, y)|2 dy dx

)1/2

‖f‖L2(Y )

and this was to prove.
That k is determined by Ak amounts to saying that if Ak = 0 then k = 0

in L2(X × Y ). This can be proved by using the density result mentioned in
Remark 9.2, see Exercise 9.4. Ex.9.4

We shall deal mostly with Hilbert–Schmidt integral operators. However,
there are other ones.

Example 9.7 (The Laplace Transform). Consider the case X = Y = R+

and the kernel function

k(x, y) := e−xy (x, y > 0).

The associated integral operator is the Laplace transform

(Lf)(x) =
∫ ∞

0
e−xyf(y) dy (x > 0).

In Exercise 6.14 it is shown that L is a bounded operator from L1(R+) to
Cb(R+). Here we are interested in its behaviour on L2(R+). Letting aside
(as usual) the measurability questions, we estimate

|Lf(x)| ≤
∫ ∞

0
e−xy/2y−1/4 · e−xy/2y1/4 |f(y)| dy

and hence by Cauchy–Schwarz

|Lf(x)|2 ≤
∫ ∞

0
e−xyy−1/2 dy ·

∫ ∞

0
e−xyy1/2 |f(y)|2 dy.
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We evaluate the first integral by change of variables (y 7→ y/x, y 7→ y2)∫ ∞

0
e−xyy−1/2 dy = x−1/2

∫ ∞

0
e−yy−1/2 dy = x−1/22

∫ ∞

0
e−y2

dy

=
√
πx−1/2.

If we use this information and integrate, we obtain

‖Lf‖2
2 =

∫ ∞

0
|Lf(x)|2 dx ≤

√
π

∫ ∞

0

∫ ∞

0
x−1/2e−xyy1/2 |f(y)|2 dy dx

=
√
π

∫ ∞

0

∫ ∞

0
x−1/2e−xy dx y1/2 |f(y)|2 dy = π ‖f‖2

2 .

This shows that L : L2(R+) −→ L2(R+) is a bounded operator, with ‖Lf‖2 ≤√
π ‖f‖2 for each f ∈ L2(R+).

However, the Laplace transform is not a Hilbert–Schmidt operator.Ex.9.5

9.2. The Space of Operators

Recall from Section 2.3 that a linear operator T : E −→ F is bounded if
there is a constant c ≥ 0 such that

‖Tf‖ ≤ c ‖f‖

for all f ∈ E, which is precisely the case if its operator norm

‖T‖ := sup{‖Tf‖ | f ∈ E, ‖f‖ ≤ 1} <∞.

is a finite number. And in this case we have the important formula

(9.4) ‖Tf‖ ≤ ‖T‖ · ‖f‖ (f ∈ E).

If there is ‖f‖ = 1 such that ‖T‖ = ‖Tf‖, then we say that the norm is
attained. (This is not always the case, cf. Example 9.8.6 below.)

In Theorem 2.13 we have proved that the operator norm turns the space
L(E;F ) of bounded linear operators from E to F into a normed vector space.
However, we have not yet dealt so far neither with computing operator norms
nor with convergent sequences in the space of operators.

Examples 9.8. 1) (Zero and identity) The zero operator 0 maps the
whole space E to 0, so ‖0‖L(E;F ) = 0. The identity mapping I ∈ L(E)
satisfies If = f and so ‖I‖ = 1.

2) (Isometries) More generally, if T : E −→ F is an isometry, then
‖Tf‖ = ‖f‖, and so ‖T‖ = 1 (unless E = {0}).

3) (Orthogonal Projections) If P 6= 0 is an orthogonal projection on a
Hilbert space H, then ‖P‖ = 1.
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4) (Point Evaluations) If [a, b] is an interval and x0 ∈ [a, b] then the
point-evaluation or Dirac functional in x0

δx0 := (f 7−→ f(x0)) : C[a, b] −→ K

is a bounded linear functional on C[a, b] with norm ‖δx0‖ = 1. Analo-
gously, point evaluations are bounded linear functionals on the spaces
B(Ω) (Ω an arbitrary set) and `p, p ∈ {1, 2,∞}.

However, point evaluations on E = (C[a, b], ‖·‖p) (with p ∈ {1, 2})
are not bounded, see Exercise 2.8. And point evaluations cannot even
be defined in a reasonable way on L2(a, b), since singletons are null-sets
and ‘functions’ are determined only up to equality almost everywhere.

5) (Inner Products) If H is an inner product space, and g ∈ H then

ψg : H −→ K, ψg(f) := 〈f, g〉

is a linear functional with norm ‖ψg‖ = ‖g‖, i.e.,

sup
‖f‖≤1

|〈f, g〉| = ‖g‖

Hence, if A : H −→ K is a bounded linear operator, then

(9.5) ‖A‖ = sup
‖g‖≤1

‖Ag‖ = sup
‖g‖≤1,‖f‖≤1

|〈f,Ag〉|

6) (Multiplication Operators) A bounded sequence λ = (λn)n∈N ∈ `∞

induces a multiplication operator Aλ : `2 −→ `2 by

(Aλf)(n) := λnf(n) (n ∈ N, f ∈ `2).

The sequence λ is called is called the multiplier. Since it is bounded,
we obtain

(9.6) ‖Aλf‖2
2 =

∑∞

n=1
|λnf(n)|2 ≤

∑∞

n=1
‖λ‖2

∞ |f(n)|2 = ‖λ‖2
∞ ‖f‖

2
2

for every f ∈ `2. Therefore Aλ is bounded and ‖Aλ‖ ≤ ‖λ‖∞. On the
other hand,

‖Aλen‖2 = ‖λnen‖2 = |λn| ‖en‖2

where en is the n-th unit vector. Hence ‖Aλ‖ ≥ |λn| for every n ∈ N,
and thus ‖Aλ‖ ≥ supn |λ| = ‖λ‖∞. Combining both estimates yields
‖Am‖ = ‖m‖∞.

Similarly, one can define multiplication operators on `1 and `∞ and
on the spaces C[a, b], Lp(a, b) with p ∈ {1, 2,∞}. Ex.9.6

Ex.9.7
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Advice/Comment:
In order that the norm of the multiplication operator Am from above is
attained at f , say, one must have equality in the estimate (9.6). But this
requires |λn| = ‖λ‖∞ wherever f(n) 6= 0. So the norm is attained if and
only if |λ| attains its supremum. More examples of operators which do
not attain their norms are in Exercises 9.6 and 9.7.

7) (Shifts) On E = `2 the left shift L and the right shift R are defined
by

L : (x1, x2, x3 . . . ) 7−→ (x2, x3, . . . )

R : (x1, x2, x3 . . . ) 7−→ (0, x1, x2, x3, . . . ).

Thus, in function notation,

(Lf)(n) := f(n+ 1), (Rf)(n) =

{
0 if n = 1
f(n− 1) if n ≥ 2.

It is easy to see that

‖Rf‖2 = ‖f‖2 (f ∈ `2)

so R is an isometry and hence ‖R‖ = 1. Turning to L we obtain for
f ∈ `2

‖Lf‖2
2 =

∑∞

n=1
|(Lf)(n)|2 =

∑∞

n=1
|f(n+ 1)|2

=
∑∞

n=2
|f(n)|2 ≤

∑∞

n=1
|f(n)|2 = ‖x‖2

2

which implies that ‖L‖ ≤ 1. Inserting e2, the second unit vector, we
have Le2 = e1 and so ‖Le2‖2 = ‖e1‖2 = 1 = ‖e2‖2, which implies that
‖L‖ = 1.

Note that LR = I, R is injective and L is surjective. But R is not
surjective, and L is not injective. (Such a situation cannot occur in
finite dimensions!)

Shift operators can be defined also on the sequence spaces `1, `∞.
Moreover there are continuous analogues, for instance on the spaces
L1(R+) and L2(R+).

8) (Hilbert–Schmidt operators) Let X,Y ⊆ R be intervals and let k ∈
L2(X × Y ) be a Hilbert–Schmidt kernel. This determines a Hilbert–
Schmidt operator Ak by (9.1). We call

‖Ak‖HS := ‖k‖L2(X×Y ) =
(∫

X

∫
Y
|k(x, y)|2 dy dx

)1/2
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the Hilbert–Schmidt norm of the operator Ak. By Theorem 9.6 one
has ‖Ak‖L ≤ ‖Ak‖HS , i.e., the operator norm is always smaller than
the Hilbert–Schmidt norm. Ex.9.8

Advice/Comment:
In general one has ‖Ak‖L < ‖Ak‖HS , i.e., the operator norm is usually
strictly smaller than the Hilbert–Schmidt norm. One example is the inte-
gration operator J on L2(a, b). Its HS-norm is ‖J‖HS = (b − a)/

√
2, but

its operator norm is ‖J‖ = 2(b− a)/π, cf. Chapter 11.

Recall from Lemma 2.14 that the multiplication (=composition) of bounded
linear operators is again a bounded linear operator, and one has

‖ST‖ ≤ ‖S‖ ‖T‖

whenever S ∈ L(F ;G) and T ∈ L(E;F ). If E = F then we can iterate T ,
and by induction obtain

‖Tn‖ ≤ ‖T‖n (n ∈ N0).

Attention: In general one has ‖Tn‖ 6= ‖T‖n!

Example 9.9 (Integration Operator). The n-th power of the integration
operator J on E = C[a, b] is induced by the integral kernel

kn(t, s) = 1{s≤t}(t, s)
(t− s)n−1

(n− 1)!
.

From this it follows that ‖Jn‖L(E) = 1/n! 6= 1n = ‖J‖n. (See Exercise 9.9.) Ex.9.9

9.3. Operator Norm Convergence

In the next section we shall see convergence in operator norm at work. But
before, we have to establish some formal properties.

Theorem 9.10. If F is complete, i.e., a Banach space, then L(E;F ) is also
a Banach space.

Proof. Let (Tn)n∈N be a Cauchy sequence in L(E;F ). For each f ∈ E by
(9.4) we have

(9.7) ‖Tnf − Tmf‖ = ‖(Tn − Tm)f‖ ≤ ‖Tn − Tm‖ ‖f‖

for all n,m ∈ N. This shows that (Tnf)n∈N is a Cauchy sequence in F , and
since F is complete there exists the limit

Tf := lim
n→∞

Tnf.
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The linearity of T follows by letting n→∞ in the equation

Tn(αf + βg) = αTnf + βTng

(where α, β ∈ K and f, g ∈ E). Since every Cauchy sequence is bounded
(Lemma 5.2), there is M ≥ 0 such that ‖Tn‖ ≤ M for all n ∈ N. If we let
n→∞ in the inequality

‖Tnf‖ ≤M ‖f‖ (f ∈ E)

we see that T is also bounded, with ‖T‖ ≤M .
Now fix ε > 0 and find N ∈ N so that ‖Tn − Tm‖ ≤ ε for all n,m ≥ N .

This means that

‖Tnf − Tmf‖ ≤ ε

for all f with ‖f‖ ≤ 1, and n,m ≥ N . Letting m→∞ yields

‖Tnf − Tf‖ ≤ ε

for all n ≥ N and unit vectors f , and taking the supremum over the f we
arrive at

‖Tn − T‖ ≤ ε

for n ≥ N . Since ε > 0 was arbitrary, we find that Tn → T in L(E;F ).

The following lemma tells us that both operator multiplication and ap-
plication of operators to vectors are continuous operations.

Lemma 9.11. Let E,F,G be normed space, T, Tn ∈ L(E;F ), S, Sn ∈
L(F ;G) and f, fn ∈ E for n ∈ N. Then

Tn → T, Sn → S =⇒ SnTn → ST and(9.8)

Tn → T, fn → f =⇒ Tnf → Tf.(9.9)

Proof. This is proved analogously to Theorem 4.10. Write

SnTn − ST = (Sn − S)(Tn − T ) + S(Tn − T ) + (Sn − S)T,

then take norms and estimate

‖SnTn − ST‖ ≤ ‖(Sn − S)(Tn − T )‖+ ‖S(Tn − T )‖+ ‖(Sn − S)T‖
≤ ‖Sn − S‖ ‖Tn − T‖+ ‖S‖ ‖Tn − T‖+ ‖Sn − S‖ ‖T‖ → 0.

The proof of the second assertion is analogous, see also Exercise 9.35.
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9.4. The Neumann Series

Let us begin with an example. Consider on [0, 1] the initial-value problem

(9.10) u′′ − pu = g u ∈ C2[0, 1], u(0) = 0, u′(0) = 1

for the unknown function u, where g ∈ C[0, 1] and p ∈ C[0, 1] are given data.
If we integrate twice and respect the initial conditions, we see that (9.10) is
equivalent to

u ∈ C[0, 1], u(t) = J2(g + pu)(t) + t t ∈ [0, 1].

If we write f(t) := t + (J2g)(t) then the problem becomes the abstract
fixed-point problem

u = f +Au, u ∈ E,
where E := C[0, 1] and A : E −→ E is given by Au := J2(pu).

To solve the fixed-point problem, one has the reflex to find a solution by
applying the iteration

un+1 := f +Aun.

starting from u0 := 0, say. By continuity of A, if the sequence un converges
to some u, then this u must solve the problem. The first iterations here are

u0 = 0, u1 = f, u2 = f +Af, u3 = f +Af +A2f . . .

so
un =

∑n−1

j=0
Ajf (n ∈ N).

In effect, we have proved the following lemma.

Lemma 9.12. Let E be a normed space and A ∈ L(E). If f ∈ E is such
that the series u :=

∑∞
n=0A

nf converges in E, then u−Au = f .

Let us call a bounded operator T ∈ L(E) invertible if T is bijective
and T−1 is again bounded. If we want to have a unique solution u to the
problem

u−Au = f

for each f ∈ E and in such a way that the solution f depends continuously
on y, then this amounts to the invertibility of the operator I−A. Here is a
useful criterion.

Theorem 9.13. Let E be a Banach space and let A ∈ L(E) be such that∑∞

n=0
‖An‖ <∞.

Then the operator I−A is invertible and its inverse is given by the so-called
Neumann series

(I−A)−1 =
∑∞

n=0
An.
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Proof. The space L(E) is a Banach space, since E is a Banach space (The-
orem 9.10). Therefore S :=

∑∞
n=0A

n exists in L(E), cf. Theorem 5.16. Now
Lemma 9.12 shows that (I − A)S = I, whence I − A is surjective and S is
injective. But S(I − A) = (I − A)S since S = limn Sn where Sn is the n-th
partial sum, which satisfies (I − A)Sn = Sn(I − A). Altogether we have
shown that S is the inverse of I−A.

The Neumann series is absolutely convergent for instance in the case
that A is a strict contraction, i.e., ‖A‖ < 1; indeed,∑∞

n=0
‖An‖ ≤

∑∞

n=0
‖A‖n <∞.

However this is not a necessary condition: the integration operator J on
C[a, b] is a counterexample, see Example 9.9.Ex.9.10

Volterra Operators. Recall the example we started with: E = C[0, 1] and
Au = J2(pu) where p ∈ C[0, 1] is given. If we write this out, we obtain

(Au)(t) =
∫ t

0
(t− s)p(s)u(s) ds.

In general, we call an operator V : C[a, b] −→ C[a, b] an abstract Volterra
operator if it has the form

(9.11) (V f)(t) =
∫ t

a
k(t, s)f(s) ds (t ∈ [a, b], f ∈ C[a, b])

where k : [a, b] × [a, b] −→ K is a continuous function. One can show that
V f is indeed a continuous function, see Exercise 9.33. The following lemma
is fundamental.

Lemma 9.14. Let k : [a, b] × [a, b] −→ K is continuous and let V be the
associated Volterra operator, given by (9.11). Then

|V nf(t)| ≤
‖k‖n

∞ (t− a)n

n!
‖f‖∞

for all f ∈ C[a, b], t ∈ [a, b], n ∈ N. Consequently

‖V n‖L(C[a,b]) ≤ ‖k‖∞
(b− a)n

n!
for every n ∈ N.

Proof. The proof is an easy induction and left as an exercise.Ex.9.11
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Advice/Comment:
Note that an abstract Volterra operator V as above is an integral operator
with kernel function

1{s≤t}(t, s)k(t, s),
which is in general not continuous on [a, b]× [a, b]!

If V is an abstract Volterra operator, then by the previous lemma∑∞

n=0
‖V n‖ ≤

∑∞

n=1

‖k‖∞ (b− a)n

n!
= e‖k‖∞(b−a) <∞.

Hence by Theorem 9.13 the operator I − V is invertible. This leads to the
following corollary.

Corollary 9.15. If k : [a, b] × [a, b] −→ K is continuous, then for every
f ∈ C[a, b] the equation

u(t)−
∫ t

a
k(t, s)u(s) ds = f(t) (t ∈ [a, b])

has a unique solution u ∈ C[a, b].

Hence for given p, f ∈ C[0, 1] our initial-value problem (9.10) has a
unique solution. Ex.9.12

Ex.9.13

9.5. Adjoints of Hilbert Space Operators

Suppose X,Y ⊆ R are intervals, k ∈ L2(X × Y ) is square-integrable and Ak

is the associated Hilbert–Schmidt operator. Then if f ∈ L2(Y ), g ∈ L2(X),∫
X×Y

∣∣∣k(x, y)f(y)g(x)
∣∣∣ dλ2(x, y) =

∫
X×Y

|k · (g ⊗ f)| dλ2

≤ ‖k‖L2(X×Y ) ‖f‖L2(Y ) ‖g‖L2(X) <∞.

by Cauchy–Schwarz. So one can apply Fubini’s theorem:∫
X

∫
Y
k(x, y)f(y) dy g(x) dx =

∫
Y
f(y)

∫
X
k(x, y)g(x) dxdy

=
∫

Y
f(y)

(∫
X
k(x, y)g(x) dx

)
dy

=
∫

Y
f(y)

(∫
X
k∗(y, x)g(x) dx

)
dy

where k∗ ∈ L2(Y ×X) is defined as

k∗(y, x) := k(x, y) (x ∈ X, y ∈ Y ).
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The function k∗ is called the adjoint kernel function and our computa-
tions above amount to the formula

〈Akf, g〉 = 〈f,Ak∗g〉 .

Actually, there is an abstract concept behind this.

Theorem 9.16. Let H,K be Hilbert spaces, and let A : H −→ K be a
bounded linear operator. Then there is a unique operator A∗ : K −→ H
such that

〈Af, g〉K = 〈f,A∗g〉H for all f ∈ H, g ∈ K.
Furthermore, one has ‖A∗‖ = ‖A‖.

Proof. Fix g ∈ K. Then the mapping

H −→ K, f 7−→ 〈Af, g〉

is a bounded linear functional, because

|〈Af, g〉| ≤ ‖Af‖ ‖g‖ ≤ ‖A‖ ‖f‖ ‖g‖

by Cauchy–Schwarz. By the Riesz–Fréchet theorem, there is a unique vector
h ∈ H such that 〈Af, g〉 = 〈f, h〉 for all f ∈ H. We write A∗g := h, so that

〈Af, g〉 = 〈f,A∗g〉 (f ∈ H, g ∈ K)

It is routine to show that A∗ : K −→ H is linear. Moreover, A∗ is again
bounded and one has

‖A∗‖ = sup
‖f‖≤1,‖g‖≤1

|〈f,A∗g〉| = sup
‖f‖≤1,‖g‖≤1

|〈Af, g〉| = ‖A‖

by (9.5).

The new operator A∗ is called the (Hilbert space) adjoint of A. The
formal properties of adjoints are as follows:

(A+B)∗ = A∗ +B∗, (αA)∗ = αA∗, (A∗)∗ = A, (AB)∗ = B∗A∗

(where we suppose that H = K in the last identity in order to render the
composition meaningful). The proof these identities is left as Exercise 9.14.Ex.9.14

Lemma 9.17. If A ∈ L(H;K) then

H = ran(A∗)⊕ ker(A)

is an orthogonal decomposition.

Proof. Observe that

f ⊥ ran(A∗) ⇐⇒ f ⊥ ran(A∗) ⇐⇒ 〈f,A∗g〉 = 0 for all g ∈ K
⇐⇒ 〈Af, g〉 = 0 for all g ∈ K ⇐⇒ Af = 0 ⇐⇒ f ∈ ker(A).
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Hence ker(A) is the orthogonal complement of ran(A∗).

Examples 9.18. 1) If H = Kd is finite-dimensional with the canonical
scalar product, then A ∈ L(H) is given by a d× d-matrix M = (aij)i,j .
Writing the elements of Kd as column vectors we have

(Mx)ty = xtM ty = xt(M t
y) (x, y ∈ Kd).

This shows that A∗ corresponds to the conjugate-transposed matrix
M∗ = M

t = (aji)i,j .

2) Consider the shifts L,R on H = `2(N). Then

〈Ren, ek〉 = 〈en+1, ek〉 = δn+1,k = δn,k−1 = 〈en, Lek〉

for all n, k ∈ N. Since span{em | m ∈ N} is dense in H, by sesqui-
linearity and continuity we conclude that 〈Rx, y〉 = 〈x, Ly〉 for all x, y ∈
H, whence L∗ = R and R∗ = L.

3) The adjoint of a Hilbert–Schmidt operator with kernel function k ∈
L2(X × Y ) is given by the Hilbert-Schmidt operator induced by the
adjoint kernel function k∗. This has been shown above. Ex.9.15

Ex.9.16

9.6. Compact Operators on Hilbert Spaces

Look (again) at the Poisson problem

u′′ = −f u ∈ H2(0, 1), u(0) = u(1) = 0

for given f ∈ L2(0, 1). We know that there is a unique solution given by

u(t) = (G0f)(t) :=
∫ 1

0
g0(t, s)f(s) ds

where g0 is the Green’s function (see (9.3)). Since numerically one can
handle only finite data sets, in actual computations one wants to replace
the original problem by a finite-dimensional one, with controllable error.
This amounts to approximating the operator L by operators Ln that have
finite-dimensional ranges.

Definition 9.19. An operator T : E −→ F is called of finite rank or a
finite-dimensional operator, if ranT is of finite dimension. Ex.9.17

That (Ln)n∈N is an approximation of L can mean at least two things:

1) strong convergence: Lnf → Lf in the norm of L2(0, 1), for each
input data f ∈ L2(0, 1);

2) norm convergence: Ln → L in the operator norm.
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In the second sense, the error ‖Lnf − Lf‖ ≤ ‖Ln − L‖ ‖f‖ is controlled by
‖f‖ only. In the first sense, no such control is implied, and the speed of
convergence Lnf → Lf might be arbitrarily low for unit vectors f .

Advice/Comment:
Strong convergence is “pointwise convergence” and norm convergence is
“uniform convergence on the unit ball”. So clearly (2) is the stronger
notion. It should not surprise us that the two notions really differ.

Example 9.20. Suppose that (ej)j∈N is an orthonormal basis of the Hilbert
space H. The orthogonal projection onto Fn := span{e1, . . . , en} is

Pn :=
∑n

j=1
〈·, ej〉 ej

and we know from Chapter 7 that Pnf → f for each f ∈ H. So (Pn)n∈N
approximates the identity operator I strongly. However, I − Pn is the pro-
jection onto F⊥n and so ‖I− Pn‖ = 1. In particular, Pn 6→ I in operator
norm.

Now, let A : H −→ H be a bounded operator. Then APnf → Af for
each f ∈ H by continuity, and hence (APn)n∈N approximates A strongly.
Clearly, each APn is a finite-dimensional operator.

The previous example shows that at least on separable Hilbert spaces
strong approximation of an operator by finite-dimensional ones is always
possible by choosing any orthonormal basis. The norm approximability
deserves an own name.

Definition 9.21. A bounded operator A : H −→ K between two Hilbert
spaces is called compact if there is a sequence (An)n∈N of finite dimensional
operators in L(H;K) such that ‖An −A‖ → 0.

We denote by

C(H,K) := {A ∈ L(H,K) | A is compact}

the space of compact operators. To show that an operator is compact, one
uses the definition or the following useful theorem.

Theorem 9.22. Let H,K,L be Hilbert spaces. Then C(H;K) is a closed
linear subspace of L(H;K). If A : H −→ K is compact, C ∈ L(K;L) and
D ∈ L(L;H), then CA and AD are compact. Moreover, A∗ ∈ L(K;H) is
also compact.Ex.9.18
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Proof. The set C(H,K) is the operator-norm closure of the linear sub-
space(!) of L(H;K) consisting of all finite-rank operators. Hence it is a
closed subspace, by Example 4.2.1. Let A : H −→ K be compact. Then
by definition there is a sequence of finite rank operators (An)n∈N such that
An → A in operator norm. Hence

AnD −→ AD and CAn → CA

in norm, by (9.8). However, CAn and AnD clearly are of finite rank, so
AD and CA are compact. To see that the adjoint A∗ is compact as well,
note that ‖A∗ −A∗n‖ = ‖(A−An)∗‖ = ‖A−An‖ → 0 as n → ∞. Also, by
Exercise 9.17, A∗n is of finite rank for each n ∈ N.

Example 9.23 (Hilbert–Schmidt operators). Let X,Y ⊆ R be intervals
and k ∈ L2(X × Y ). Then the associated Hilbert–Schmidt integral operator

Ak : L2(Y ) −→ L2(X), (Akh)(x) =
∫

Y
k(x, y)h(y) dy

is compact.

Proof. We use that the space

E := span{f ⊗ g | f ∈ L2(X), g ∈ L2(Y )}
is dense in L2(X×Y ). (Another proof is given in Exercise 9.39.) If k = f⊗g
then Akh = 〈h, g〉 · f and so ranAk is one-dimensional. Hence if k ∈ E
then Ak is of finite rank. If k ∈ L2(X × Y ) we can find kn ∈ E with
‖k − kn‖L2 → 0. Then

‖Ak −Akn‖L ≤ ‖Ak −Akn‖HS = ‖Ak−kn‖HS = ‖k − kn‖L2 → 0

and so Ak is compact.

Theorem 9.24. Let H,K be Hilbert spaces, let A : H −→ K be a compact
operator, and let (xn)n∈N be a bounded sequence in H. Then the sequence
(Axn)n∈N ⊆ K has a convergent subsequence.

To put it differently, the theorem says that if an operator A is compact, the
image of the unit ball {Ax | ‖x‖ ≤ 1} is relatively (sequentially) compact
in F .

Advice/Comment:
Recall that a subsequence of a sequence (xn)n∈N is determined by a strictly
increasing map π : N −→ N, the subsequence then being (xπ(n))n∈N. See
Appendix A.1.
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Proof. First of all we note that the theorem is true if A is of finite rank.
Indeed, by the boundedness of A, the sequence (Axn)n∈N is a bounded
sequence in the finite-dimensional space ranA. By the Bolzano-Weierstrass
theorem, it must have a convergent subsequence.

In the general case we shall employ a so-called diagonal argument. We
can find a sequence (Am)m∈N of finite-rank operators such that ‖Am −A‖ →
0 as m → ∞. Now take the original sequence (xn)n∈N and pick a subse-
quence (x1

n)n∈N of it such that (A1x
1
n)n∈N converges. Then pick a sub-

sequence (x2
n)n∈N of the first subsequence such that (A2x

2
n)n∈N converges.

Continuing in this way, we get a nested sequence of subsequences (xk
n)n∈N,

each a subsequence of all its predecessors.
The ”diagonal sequence” (xn

n)n∈N is therefore (eventually) a subsequence
of every subsequence constructed before. In particular: (Amx

n
n)n∈N con-Ex.9.19

verges for every m ∈ N.
Finally, we show that (Axn

n)n∈N converges. Since K is a Hilbert space,
it suffices to show that the sequence is Cauchy. The usual estimate yields

‖Axn
n −Axm

m‖ ≤ ‖Axn
n −Alx

n
n‖+ ‖Alx

n
n −Alx

m
m‖+ ‖Alx

m
m −Axm

m‖
≤ 2M ‖A−Al‖+ ‖Alx

n
n −Alx

m
m‖

where M := supj∈N ‖xj‖. Given ε > 0 we can find an index l so large
that 2M ‖A−Al‖ < ε and for that l we can find N ∈ N so large that
‖Alx

n
n −Alx

m
m‖ < ε for m,n ≥ N . Hence

‖Axn
n −Axm

m‖ ≤ ε+ ε = 2ε

for m,n ≥ N .

Example 9.25. Let (ej)j∈N be an orthonormal basis for the Hilbert space
H, and let A ∈ L(H) be given by

Af =
∑∞

j=1
λj 〈f, ej〉 ej (f ∈ H)

for some sequence λ = (λj)j∈N ∈ `∞. Then A is compact if and only if
limj→∞ λj = 0.

Proof. If λj 6→ 0, there is ε > 0 and a subsequence (λjn)n∈N such that
|λjn | ≥ ε. Define xn := λ−1

jn
ejn . Then (xn)n∈N is a bounded sequence and

Axn = ejn for each n ∈ N. Since this has no convergent subsequence (see
Example 4.18), the operator A cannot be compact, by Theorem 9.24.

Now suppose that limj→∞ λj = 0. Define the “truncation”

Anf :=
∑n

j=1
λj 〈f, ej〉 ej (f ∈ H).
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Then by Parseval and Bessel

‖Af −Anf‖2 =
∥∥∥∑∞

j=n+1
λj 〈f, ej〉 ej

∥∥∥2
=
∑∞

j=n+1
|λj |2 |〈f, ej〉|2

≤
(

sup
j>n

|λj |2
)∑∞

j=n+1
|〈f, ej〉|2 ≤

(
sup
j>n

|λj |2
)
‖f‖2 .

Taking the supremum over all f from the unit ball of H yields

‖A−An‖2 ≤
(

sup
j>n

|λj |2
)
→ 0

as n → ∞, since λj → 0. So A is a norm-limit of finite rank operators,
hence compact. Ex.9.20

Exercises

Exercise 9.1. Prove Lemma 9.3.

Exercise 9.2. Determine the Green’s function for the general Poisson prob-
lem

u′′ = −f, (u ∈ H2(a, b), u(a) = u(b) = 0).

Exercise 9.3. Show that for each f ∈ L2(a, b) there is exactly one solution
u ∈ H2(a, b) of the problem

u′′ = −f, u(a) = 0 = u′(b).

Determine the corresponding Green’s function.

Exercise 9.4. Use the fact that

span{f ⊗ g | f ∈ C[a, b], g ∈ C[c, d]}
is dense in L2([a, b]× [c, d]) to show that each kernel function

k ∈ L2([a, b]× [c, d])

is uniquely determined by its associated integral operator Ak : L2[c, d] −→
L2[a, b].

Exercise 9.5. Show that the Laplace transform (Example 9.7) is not a
Hilbert–Schmidt operator.

Exercise 9.6. Let E := {f ∈ C[0, 1] | f(1) = 0}, with supremum norm.
This is a closed subspace of C[0, 1] (why?). Consider the functional ϕ on E
defined by

ϕ(f) :=
∫ 1

0
f(x) dx (f ∈ E).

Show that ϕ is bounded with norm ‖ϕ‖ = 1. Then show that for every
0 6= f ∈ E one has |ϕ(f)| < ‖f‖∞.
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Exercise 9.7. Let, as in Exercise 9.6, E := {f ∈ C[0, 1] | f(1) = 0}
with supremum norm. Consider the multiplication operator A defined by
(Af)x = xf(x), x ∈ [0, 1]. Show that ‖Af‖∞ < 1 for every f ∈ E such that
‖f‖∞ ≤ 1, but nevertheless ‖A‖ = 1.

Exercise 9.8. Let H = L2(−1, 1), e1 = 1(−1,0) and e2 = 1(0,1), and let
P : H −→ span{e1, e2} be the orthogonal projection. Show that P is
a Hilbert–Schmidt operator, determine its integral kernel and its Hilbert–
Schmidt norm ‖P‖HS . Compare it to the operator norm ‖P‖L(H) of P .

Exercise 9.9. Determine the operator norm ‖Jn‖ of Jn, n ∈ N, acting on
C[a, b] with the sup-norm.

Exercise 9.10. Then determine the Hilbert–Schmidt norm ‖Jn‖HS of the
operator Jn, n ∈ N acting on L2(a, b). Show that I − J is invertible and
show that (I− J)−1 − I is again a Hilbert–Schmidt operator. Determine its
integral kernel.

Exercise 9.11. Prove Lemma 9.14.

Exercise 9.12. Let α, β ∈ K and p ∈ C[a, b] be given. Show that for each
f ∈ C[a, b] there is a unique solution u of the initial-value problem

u′′ − pu = f, u ∈ C2[a, b], u(0) = α, u′(0) = β.

Exercise 9.13. Let p ∈ C[a, b] be a positive function, and let u ∈ C[a, b]
be the solution of u′′ = pu with u(0) = 0 and u′(0) = 1. Show that u(t) ≥ 0
and u′(t) ≥ 1 for all t ∈ [a, b].

Exercise 9.14. Let H,K be Hilbert spaces, and let A,B ∈ L(H;K). Show
that

(A+B)∗ = A∗ +B∗ and (αA)∗ = αA∗

where α ∈ K. If K = H, show that (AB)∗ = B∗A∗.

Exercise 9.15. Let J be the integration operator on H = L2(a, b). Deter-
mine J∗. Show that

(J + J∗)f = (Jf)(b)1 = 〈f,1〉 · 1

for f ∈ L2(a, b). (See also Exercise 9.28.)

Exercise 9.16. For the following operators A on `2 determine the adjoint
A∗ and decide whether A is compact or not. (Justify your answer.)

1) A : (x1, x2, . . . ) 7−→ (x2, x1 + x3, x2 + x4, . . . ).

2) A : (x1, x2, . . . ) 7−→ (x1,
x1+x2

2 , x2+x3
3 , . . . ).

3) A : (x1, x2, . . . ) 7−→ (x1, x3, x5, . . . ).
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Exercise 9.17. Let H,K be Hilbert spaces and let A : H −→ K be of finite
rank. Show that there are vectors g1, . . . , gn ∈ H and an ONS e1, . . . , en ∈ K
such that

Af =
∑n

j=1
〈f, gj〉 ej

for all f ∈ H. Show that A∗ : K −→ H is of finite rank, too.

Exercise 9.18. Let A be a compact operator such that I−A is invertible.
Show that I−(I−A)−1 is compact, too. Is this true if we replace “compact”
by “of finite rank” here?

Exercise 9.19. Show that in the proof of Theorem 9.24, the sequence
(xn

n)n≥k is a subsequence of (xk
n)n≥k, for each k ∈ N.

Exercise 9.20. Show that if H is an infinite-dimensional and A ∈ L(H) is
invertible, then A cannob be a compact operator. Show that the closed unit
ball of an infinite-dimensional Hilbert space is not sequentially compact.

Further Exercises

Exercise 9.21. Determine a Green’s function for the problem

u′′ = −f, u ∈ H2(0, 1), u(0) = u(1),
∫ 1

0
u(s) ds = 0.

Exercise 9.22. Determine a Green’s function for the problem

u′′ = −f, u ∈ H2(0, 1), u(0) = u′(0), u(1) = u′(1).

Exercise 9.23. Determine a Green’s function for the problem

u′′ = −f, u ∈ H2(0, 1), u(0) = u′(1), u(1) = u′(0).

Exercise 9.24. Let P : L2(0, 1) −→ {1}⊥ be the orthogonal projection.
Determine the integral kernel of the Hilbert–Schmidt operator

A := PJ2P.

Exercise 9.25. Show that JJ∗ is a Hilbert–Schmidt integral operator on
L2(a, b), and determine its kernel function.

Exercise 9.26. Show that 〈
J2f, g

〉
=
〈
f, J2g

〉
for all f, g ∈ L2(a, b) such that f, g ∈ {1}⊥.

Exercise 9.27. Determine the integral kernel of the Hilbert–Schmidt oper-
ator

A :=
1
2
(J2 + J∗2).

on L2(0, 1).
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Exercise 9.28. Let J be the integration operator, considered as an operator
J : L2(a, b) −→ H1(a, b). Determine a formula for J∗ : H1(a, b) −→ L2(a, b).
(Attention: this J∗ is different from the J∗ computed in Exercise 9.15! Do
you understand, why?)

Exercise 9.29. Let F := {u ∈ H1(0, 1) | u(0) = 0}. Determine F⊥, the
orthogonal complement of F in the Hilbert space H1(0, 1). (Hint: F =
ranJ .)

Exercise 9.30. Consider on `1 the multiplication operator Aλ induced by
the sequence λ = (1− 1/n)n∈N. What is its norm? Is it attained?

Exercise 9.31. Let g ∈ C[a, b]. Consider on C[a, b] the multiplication op-
erator

A : C[a, b] −→ C[a, b] Af = gf.

Prove that ‖A‖ = ‖g‖∞.

Exercise 9.32. Let g ∈ C[a, b]. Prove that

f ∈ L2(a, b) → gf ∈ L2(a, b) and ‖gf‖2 ≤ ‖g‖∞ ‖f‖2 .

Then consider on L2(a, b) the multiplication operator

A : L2(a, b) −→ L2(a, b) Af = gf.

Prove that ‖A‖L = ‖g‖∞. (Hint: fix δ < ‖g‖∞ and consider the set B :=
{t ∈ [a, b] | |g(t)| ≥ δ}; show that ‖A1B‖2 ≥ δ ‖1B‖2.)

Exercise 9.33. Let k : [a, b]2 −→ K be continuous.

a) Show that if tn → t0 in [a, b] then k(tn, s) → k(t0, s) uniformly in
s ∈ [a, b]. (Hint: k is uniformly continuous (why?).)

b) Use a) to show that if f ∈ L1(a, b) then with

(V f)(t) =
∫ t

a
k(t, s)f(s) ds (t ∈ [a, b])

the function V f is continuous.

c) Use a) to show that if f ∈ L1(a, b) then with

(Af)(t) =
∫ b

a
k(t, s)f(s) ds (t ∈ [a, b])

the function Af is continuous.

Exercise 9.34 (Volterra Operators on L2). Let k : [a, b]2 −→ R be con-
tinuous and let V = Vk be defined as

(V f)(t) :=
∫ t

a
k(t, s)f(s) ds (t ∈ [a, b]).
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a) Use Exercise 9.33 to show that V : L2(a, b) −→ C[a, b] is a bounded
operator with

‖V ‖L2→C ≤ ‖k‖∞
√
b− a.

b) Use Lemma 9.14 to show that

‖V n‖L2→C ≤
√
b− a

‖k‖∞ (b− a)n−1

(n− 1)!

for all n ≥ 1. (This is just a rough estimate.)

c) Show that the Volterra integral equation

u(t)−
∫ t

a
k(t, s)u(s) ds = f

has a unique solution u ∈ L2[a, b], for each f ∈ L2[a, b].

Exercise 9.35 (Continuity of multiplications). LetX,Y, Z be normed spaces.
Suppose one has defined a “multiplication” X × Y −→ Z, i.e., a mapping
(x, y) 7−→ x ·y = xy satisfying (x+x′)y = xy+x′y and x(y+y′) = xy+xy′.
Suppose further that there is a constant c > 0 such that

‖xy‖Z ≤ c ‖x‖X ‖y‖Y (x ∈ X, y ∈ Y ).

Show that if xn → x in X and yn → y in Y , then xnyn → xy in Z.
Show that this applies in the following cases:

a) scalar multiplication K× E −→ E, (λ, f) 7−→ λf ;

b) inner product 〈·, ·〉 : H ×H −→ K, (f, g) 7−→ 〈f, g〉;
c) operator evaluation L(E;F )× E −→ F, (T, f) 7−→ Tf ;

d) operator composition
L(F ;G)× L(E;F ) −→ L(E;G), (S, T ) 7−→ ST := S ◦ T ;

e) multiplying functions

L∞(X)× L2(X) −→ L2(X), (f, g) 7−→ f · g

f) “tensoring” functions

L2(X)× L2(Y ) −→ L2(X × Y ), (f, g) 7−→ f ⊗ g.

(Hint: copy the proof of the cases a) and b) from Theorem 4.10.)

Exercise 9.36. Let E be a Banach space and let A ∈ L(E). Show that

exp(A) :=
∑∞

n=0

1
n!
An

exists in L(E). Show that if AB = BA then exp(A+B) = exp(A) exp(B).
Then show that exp(A) is invertible for each A ∈ L(E).
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Exercise 9.37. Let E be a Banach space and let T ∈ L(E) be an invertible
operator. Show that if S ∈ L(E) is such that ‖T − S‖ < ‖T−1‖−1, then S
is invertible, too. (Hint: show first that S = (I− (T − S)T−1)T ).

Exercise 9.38 (Hilbert–Schmidt operators I). Let H,K be two Hilbert
spaces, let (ej)j∈N and (fm)m∈N be orthonormal bases in H and K, re-
spectively. Show that for a bounded operator A : H −→ K the following
assertions are equivalent:

(i)
∑∞

j=1 ‖Aej‖
2
K <∞;

(ii)
∑

j,m |〈Aej , fm〉|2 <∞;

(iii)
∑∞

m=1 ‖A∗fm‖2
H <∞.

An operator satisfying conditions (i)–(iii) is called an (abstract) Hilbert–
Schmidt operator. Show that if A is such, then it can be written as

Af =
∑∞

n=1
〈f, ej〉Aej (f ∈ H)

with the series being absolutely convergent in K. Show also that for the
finite-dimensional truncation

Anf :=
∑n

j=1
〈f, ej〉Aej (f ∈ H),

one has ‖A−An‖L → 0. Conclude that A is compact.

Exercise 9.39 (Hilbert–Schmidt operators II). Let X,Y ⊆ R be intervals
and let

H := L2(Y ), K := L2(X) and E := L2(X × Y ).

Furthermore, let (ej)j∈N be an orthonormal basis of L2(Y ) and let (fm)m∈N
be an orthonormal basis of L2(X).

a) Show that (fm ⊗ ej)j,m is an ONS in E.

b) Let k ∈ L2(X × Y ) and let A = Ak be the associated HS-integral
operator. Show that

〈Aej , fm〉K = 〈k, fm ⊗ ej〉E
for all m, j.

c) Show that
∑∞

j=1 ‖Aej‖
2
K < ∞. Conclude (with the help of Exercise

9.38) that A is a compact operator.

Exercise 9.40 (Hilbert–Schmidt operators III). Let X,Y ⊆ R be inter-
vals and let

H := L2(Y ), K := L2(X) and E := L2(X × Y ).
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Furthermore, let (ej)j∈N be an orthonormal basis of H and let A : H −→ K
be a bounded operator satisfying

∞∑
j=1

‖Aej‖2
K <∞.

(I.e., A is a Hilbert–Schmidt operator as defined in Exercise 9.38).

a) Show that

k :=
∑∞

j=1
Aej ⊗ ej

converges in E.

b) Let kn :=
∑n

j=1Aej ⊗ ej for n ∈ N, and let Ak, Akn are the Hilbert–
Schmidt operators associated with the kernel functions k and kn. Show
that Akn → Ak in operator norm as n→∞.

c) Show (e.g., by using d)) that A = Ak. (Hint: prove first that Aknf =
A
(∑n

j=1 〈f, ej〉 ej
)

for all f ∈ H.)

Exercise 9.41 (Hilbert–Schmidt operators IV). Let

A : L2(c, d) −→ C[a, b]

be a bounded operator, and let (ej)j∈N be any orthonormal basis of H :=
L2(c, d).

a) Let x ∈ [a, b]. Show that there is a unique gx ∈ L2(c, d) such that

〈f, gx〉 = (Af)(x)

for all f ∈ L2(c, d).

b) Show that ‖gx‖ ≤ ‖A‖L2→C.

c) Use a) and b) to show that for every x ∈ [a, b]∑∞

j=1
|(Aej)(x)|2 ≤ ‖A‖2

L2→C .

d) Show that
∑∞

j=1 ‖Aej‖
2
L2 <∞.

e) Show that for f ∈ H,

(Af)(x) =
∞∑

j=1

〈f, ej〉 (Aej)(x) (x ∈ [a, b])

the series being uniformly convergent on [a, b], and absolutely conver-
gent for each x ∈ [a, b].

(By d), A, considered as an operator from L2(c, d) to L2(a, b), is an (abstract)
Hilbert–Schmidt operator. By Exercise 9.40, A is induced by the kernel
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k =
∑∞

j=1Aej ⊗ ej . One has k(x, ·) = gx almost everywhere, for almost all
x ∈ [a, b].)

Exercise 9.42 (Discrete Hilbert–Schmidt Operators I). Here is the se-
quence space analogue of the HS-integral operators: Let a = (aij)i,j∈N be
an infinite matrix such that

‖a‖2 :=
(∑

i,j∈N
|aij |2

)1/2
<∞

Show that a induces a linear operator A on `2 by

(Af)(n) :=
∑∞

j=1
anjf(j) (n ∈ N),

and ‖A‖`2→`2 ≤ ‖a‖2.

Exercise 9.43 (Discrete Hilbert–Schmidt Operators II). Let a = (aij)i,j

be an infinite matrix such that
∑

i,j |aij |2 < ∞. Let A : `2 −→ `2 be the
discrete Hilbert–Schmidt operator associated with the matrix a, i.e., A is
given by

(Af)(n) =
∞∑

j=1

anjf(j) (f ∈ `2, n ∈ N).

Show that A is compact.

Exercise 9.44. Consider X = Y = R+ and the kernel function

k(x, y) =
1

x+ y
(x, y > 0).

The associated integral operator H is called the Hilbert–Hankel operator.
Formally, it is given by

(Hf(x) =
∫ ∞

0

f(y)
x+ y

dy (x > 0).

Show that H is a bounded operator on L2(R+). (Hint: use the same trick
as in Example 9.7.) Then show that H = L2.

Exercise 9.45. (a little tricky) Let E be a normed space, A ∈ L(E).
Suppose that A is “approximately right invertible”, i.e. there is B ∈ Lin(E)
such that ‖I−AB‖ < 1. Show that for each f ∈ E the equation

Au = f

has a solution u ∈ E.

Exercise 9.46. Let A : H −→ H be a bounded linear operator, and F ⊆ H
a closed subspace. Suppose that

〈Af, g〉 = 〈f,Ag〉 (f, g ∈ F ).

Find an operator B ∈ L(H) such that B∗ = B and A−B maps F into F⊥.
(There are several possibilities.)
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Exercise 9.47. Let a < t < b and define fn := 2n1t−1/n,t+1/n for n ∈ N
large enough. The let

An(f) :=
∫ b

a
fn(s)f(s) ds (f ∈ C[a, b])

a) Show that each An is a bounded linear functional on C[a, b] (with re-
spect to the sup-norm, of course) and

An(f) → δt(f) = f(t)

for each f ∈ C[a, b].

b) (more involved) Show that (An)n∈N does not converge in the operator
norm of L(C[a, b]; C).

Exercise 9.48. Let m ∈ C[a, b], and consider the functional Tm given by

Tmf :=
∫ b

a
m(s)f(s) ds.

We can consider this functional on different spaces.

a) Show that ‖Tm‖L2(a,b)→C = ‖m‖2.

b) Show that ‖Tm‖C[a,b]→C = ‖m‖1.
(Hint: consider Tm(gε) with gε = m

|m|2+ε
for ε > 0.)

c) Show that ‖Tm‖L1(a,b)→C = ‖m‖∞.
(Hint: find t ∈ (a, b) such that |m(t)| is very close to ‖m‖∞, then
consider fn = 2n1(t−1/n,t+1/n) for n ∈ N large and apply Exercise
9.47.a).)





Chapter 10

Spectral Theory of
Compact Self-adjoint
Operators

One of the most important results of finite-dimensional linear algebra says
that a symmetric real square matrix A is orthogononally diagonalizable.
Equivalently, each such matrix has an orthonormal basis consisting of eigen-
vectors of A. In this chapter we shall derive an infinite-dimensional version
of this result.

10.1. Eigenvalues

Recall that if A : E −→ F is a linear operator between vector spaces E,F ,
then an eigenvalue of A is each scalar λ ∈ K such that the eigenspace

ker(λI−A) 6= {0},

and every 0 6= f such that Af = λf is called an associated eigenvector.
In finite dimensions the eigenvalues tell a great deal about the operator.

Indeed, the theory of the so-called “Jordan canonical form” says that in the
case K = C a square matrix is determined up to similarity (change of basis)
by the dimensions of the generalized eigenspaces

ker(λI−A)k

where λ runs through the eigenvalues and k the natural numbers.

139
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There is no analogue of such a result for operators on infinite-dimensional
spaces. In fact, there are relatively simple operators having no eigenvalues
at all.

Example 10.1. Let H := L2(0, 1) and A : H −→ H is the multiplication
operator (Af)(t) := t · f(t), t ∈ (0, 1). Then A has no eigenvalues.Ex.10.1

So let us generalize the notion of eigenvalue a little.

Definition 10.2. Let E be a normed spaces and A : E −→ E a bounded
operator. A scalar λ ∈ K is called approximate eigenvalue of A if there is
a sequence (fn)n∈N in E such that ‖fn‖ = 1 for all n ∈ N and ‖Afn − λfn‖ →
0.

Note that an eigenvalue is also an approximate eigenvalue. The next
example shows that the converse does not hold.

Example 10.3. In the Example 10.1, every λ ∈ [0, 1] is an approximate
eigenvalue. Indeed, for n ∈ N we can find fn such that

‖fn‖2 = 1 and fn(t) = 0 (|t− λ0| ≥ 1/n).

(Choose fn := cn1[λ0−1/n,λ0+1/n] with a suitable constant cn.) Then

‖Afn − λ0fn‖2
2 =

∫ b

a
|t− λ0|2 |fn(t)|2 dt ≤ 4

n2

∫ b

a
|fn(t)|2 dt =

4
n2

→ 0.

Ex.10.2

Ex.10.3

Ex.10.4

Advice/Comment:
For a matrix A, the collection of its eigenvalues is called the spectrum of
A. Example 10.1 shows that this notion of spectrum is not very reasonable
beyond finite dimensions.

For a general operatorA on a Banach space E, its spectrum is defined
as

σ(A) := {λ ∈ K | λI−A is not invertible}.
For matrices, this coincides with the collection of eigenvalues, but in gen-
eral, the spectrum can be much more complicated. In particular, it turns
out that even the notion of approximate eigenvalue is still too restricted
to account for a full “spectral theory” of bounded linear operators. How-
ever, it suffices for our purposes, and we refer to the standard books on
functional analysis for further information.

Lemma 10.4. Let A be a bounded operator on the Banach space E. If λI−A
is invertible, then λ cannot be an approximate eigenvalue. If |λ| > ‖A‖ then
λI−A is invertible.
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Proof. If ‖Afn − λfn‖ → 0 and λI−A is invertible, then

fn = (λI−A)−1(λfn −Afn) → 0

which contradicts the requirement that ‖fn‖ = 1 for all n ∈ N. Take |λ| >
‖A‖. Then ‖λ−1A‖ < 1 and hence

λI−A = λ(I− λ−1A)

is invertible with

(λI−A)−1 = λ−1
∑∞

n=0
(λ−1A)n =

∑∞

n=1
λ−(n+1)An

(Theorem 9.13). Ex.10.5

Example 10.5. In Example 10.1 (the multiplication operator (Af)(t) =
t · f(t) on L2(0, 1)), for every λ ∈ C \ [0, 1] the operator λI− A is invertible
and the inverse is given by[

(λI−A)−1f
]
(t) =

1
λ− t

f(t) (t ∈ (0, 1)).

Ex.10.6

The following result gives a hint why we can expect good results for
compact operators.

Theorem 10.6. Let A be a compact operator on a Hilbert space and let
λ 6= 0 be an approximate eigenvalue of A. Then λ is an eigenvalue and
ker(A− λI) is finite-dimensional.

Proof. By definition, there is a sequence (fn)n∈N ⊆ H such that ‖fn‖ = 1
for all n and ‖Afn − λfn‖ → 0. As A is compact, by passing to a subse-
quence we may suppose that g := limnAfn exists. Consequently

‖λfn − g‖ ≤ ‖λfn −Afn‖+ ‖Afn − g‖ → 0.

Thus ‖g‖ = limn ‖λgn‖ = limn |λ| ‖gn‖ = |λ| 6= 0. Moreover,

Ag = A(lim
n
λfn) = λ lim

n
Afn = λg

which shows that λ is an eigenvalue with eigenvector g. Suppose that F :=
ker(A − λI) is infinite dimensional. Then there is an infinite ONS (en)n∈N
in F . For n 6= m,

‖Aen −Aem‖ = ‖λen − λem‖ = |λ| ‖en − em‖ = |λ|
√

2.

Since λ 6= 0, the sequence (Aen)n∈N does not have a convergent subsequence,
which is in contradiction to the compactness of A, by Theorem 9.24.
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10.2. Self-adjoint Operators

A bounded operator A on a Hilbert space H is called self-adjoint or Her-
mitian, if A∗ = A. By definition of the adjoint, A is self-adjoint if and only
if

〈Af, g〉 = 〈f,Ag〉
for all f, g ∈ H.

Examples 10.7. a) Each orthogonal projection is self-adjoint, see Exer-
cise 7.4.

b) Let λ ∈ `∞ then the multiplication operator Aλ on `2 (Example 9.8.6)
is self-adjoint if and only if λ is a real sequence.

c) A Hilbert–Schmidt kernel A = Ak on L2(a, b) is self-adjoint if k(x, y)) =
k(y, x) for almost all x, y ∈ (a, b). This is true for instance for the
Green’s function for the Poisson problem (see Example 9.4).

We shall need the following (technical) result.

Theorem 10.8. Let A be a bounded self-adjoint operator on a Hilbert space
A. Then 〈Af, f〉 ∈ R for all f ∈ H and

‖A‖ = ‖|A‖| := sup{|〈Af, f〉| | f ∈ H, ‖f‖ = 1}.

The quantity ‖|A‖| is called the numerical radius of A.

Proof. One has 〈Af, f〉 = 〈f,Af〉 = 〈Af, f〉 so 〈Af, f〉 is real. By Cauchy–
Schwarz

|〈Af, f〉| ≤ ‖Af‖ ‖f‖ ≤ ‖A‖ ‖f‖2 = ‖A‖
if ‖f‖ = 1. This proves that ‖|A‖| ≤ ‖A‖.

For the converse, we write T ≥ 0 if T = T ∗ and 〈Tg, g〉 ≥ 0 for all g ∈ H.
Fix α > ‖|A‖| and define B := αI − A and C = 2αI − B = αI + A. Then
B,C ≥ 0. Let β := 2α. Then by simple algebraEx.10.7

β2B − βB2 = B(βI−B)B + (βI−B)B(βI−B)(10.1)

= BCB + CBC.

Hence 〈
(β2B − βB2)f, f

〉
= 〈BCBf, f〉+ 〈CBCf, f〉
= 〈CBf,Bf〉+ 〈BCf,Cf〉 ≥ 0.

Dividing by β (which is > 0!) yields

0 ≤ βB −B2 = 2α(αI−A)− (αI−A)2

= 2α2I− 2αA− α2I + 2αA−A2 = α2I−A2.
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If we write this out, it means that

‖Af‖2 = 〈Af,Af〉 =
〈
A2f, f

〉
≤
〈
α2f, f

〉
= α2 ‖f‖2

for all f ∈ H. Taking square roots and the supremum over ‖f‖ ≤ 1 yields
‖A‖ ≤ α. Letting α↘ ‖|A‖| we arrive at ‖A‖ ≤ ‖|A‖| .

Finally, we collect the spectral-theoretic facts of self-adjoint operators.
Recall that a subspace F is called A-invariant if A(F ) ⊆ F .

Lemma 10.9. Let A be a self-adjoint operator on a Hilbert space. Then the
following assertions hold.

a) Every eigenvalue of A is real.

b) Eigenvectors with respect to different eigenvalues are orthogonal to each
other.

c) If F is an A-invariant subspace of H, then also F⊥ is A-invariant.

Proof. a) If Af = λf and ‖f‖ = 1 then

λ = λ ‖f‖2 = 〈λf, f〉 = 〈Af, f〉 ∈ R

by Theorem 10.8. Ex.10.8

b) Suppose that λ, µ ∈ R and f, g ∈ H such that Af = λf and Ag = µg.
Then

(λ− µ) 〈f, g〉 = 〈λf, g〉 − 〈f, µg〉 = 〈Ax, y〉 − 〈x,Ay〉 = 0

since A = A∗. Hence λ 6= µ implies that f ⊥ g.
c) Finally, let f ∈ F, g ∈ F⊥. Then Af ∈ F and hence 〈f,Ag〉 =

〈Af, g〉 = 0. As f ∈ G was arbitrary, Af ∈ G⊥.

Example 10.1 shows that even self-adjoint operators need not have eigen-
values. If A is compact, however, this is different.

Lemma 10.10. Let A be a compact self-adjoint operator on a Hilbert space.
Then A has an eigenvalue λ such that |λ| = ‖A‖.

Proof. By definition, we can find a sequence (fn)n in H such that ‖fn‖ = 1
and |〈Afn, fn〉| → ‖|A‖| . By passing to a subsequence we may suppose that
〈Afn, fn〉 → λ, and passing from A to −A if necessary, we may suppose
that λ = ‖|A‖| = ‖A‖. By Theorem 10.6 it suffices to show that λ is an
approximate eigenvalue.

We use the terminology of the proof of Theorem 10.8, i.e., we fix α > ‖|A‖|
and let B := αI−A. We have seen in the mentioned proof that 2αB−B2 ≥ 0.
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This means

‖(α−A)fn‖2 =
〈
B2fn, fn

〉
≤ 2α 〈Bfn, fn〉 = 2α 〈αfn −Afn, fn〉

for all n ∈ N. Letting α↘ ‖|A‖| = λ yields

‖(λ−A)fn‖2 ≤ 2λ
(
λ− 〈Afn, fn〉

)
→ 0

which concludes the proof.

10.3. The Spectral Theorem

We are now in the position to state and prove the main result.

Theorem 10.11 (The Spectral Theorem). Let A be a compact self-
adjoint operator on a Hilbert spacs H. Then A is of the form

(10.2) Af =
∑

j
λj 〈f, ej〉 ej (f ∈ H)

for some finite or countably infinite ONS (ej)j and real numbers λj 6= 0
satisfying limj→∞ λj = 0. Moreover, Aej = λej for each j.

More precisely, the ONS is either (ej)N
j=1 for some N ∈ N or (ej)j∈N. Of

course, the condition limj→∞ λj = 0 is only meaningful in the second case.

Proof. We shall find the ej , λj step by step. If A = 0 then there is nothing
to show. So let us assume that ‖A‖ > 0.

Write H1 = H. By Lemma 10.10, A has an eigenvalue λ1 such that
|λ1| = ‖A‖. Let e1 ∈ H be such that ‖e1‖ = 1 and Ae1 = λ1e1.

Now F1 := span{e1} is clearly an A-invariant linear subspace of H1. By
Lemma 10.9.c, H2 := F⊥1 is also A-invariant. Hence we can consider the
restriction A|H2 of A on H2 and iterate. If A|H2 = 0, the process stops. If
not, since A|H2 is a compact self-adjoint operator of H2, we can find a unitEx.10.9

vector e2 and a scalar λ2 such that Ae2 = λ2e2 and

|λ2| = ‖A|H2‖L(H2) ≤ ‖A|H1‖L(H1) .

After n steps we have constructed an ONS e1, . . . , en and a sequence
λ1, . . . , λn such that

Aej = λjej , |λj | = ‖A|Hj‖L(Hj)
where Hj = {e1, . . . , ej−1}⊥

for all j = 1, . . . , n. In the next step define Hn+1 := {e1, . . . , en}⊥, note that
it is A-invariant and consider the restriction A|Hn+1 thereon. This is again
a compact self-adjoint operator. If A|Hn+1 = 0, the process stops, otherwise
one can find a unit eigenvector associated with an eigenvalue λn+1 such that
|λn+1| = ‖A|Hn+1‖L(Hn+1).
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Suppose that process stops after the n-th step. Then A|Hn+1 = 0. If
f ∈ H then

f −
∑n

j=1
〈f, ej〉 ej ∈ {e1, . . . , en}⊥ = Hn+1

and so A maps it to 0; this means that

Af = A
∑n

j=1
〈f, ej〉 ej =

∑n

j=1
〈f, ej〉Aej =

∑n

j=1
λj 〈f, ej〉 ej ,

i.e., (10.2). Now suppose that the process does not stop, and so we have
|λn| = ‖A|Hn‖ > 0 for all n ∈ N. We claim that |λn| → 0, and suppose
towards a contradiction that this is not the case. Then there is ε > 0 such
that |λn| ≥ ε for all n ∈ N. But then

‖Aej −Aek‖2 = ‖λjej − λkek‖2 = |λj |2 + |λk|2 ≥ 2ε2

for all j 6= k. So (Aej)j∈N cannot have a convergent subsequence, contra-
dicting the compactness of A.

Now let f ∈ H and define

yn := f −
∑n−1

j=1
〈f, ej〉 ej ∈ {e1, . . . , en−1}⊥ = Hn.

Note that yn is the orthogonal projection of f onto Hn, and so ‖yn‖ ≤ ‖f‖.
Hence

‖Ayn‖ ≤ ‖A|Hn‖L(Hn) ‖yn‖ ≤ |λn| ‖f‖ → 0;

This implies

Af −
∑n−1

j=1
λj 〈f, ej〉 ej = Ayn → 0,

which proves (10.2).

The Spectral Theorem 10.11 contains additional information. Let us
denote the index set for the ONS in the Spectral Theorem by J . So J =
{1, . . . , N} or J = N. Moreover, let

P0 : H −→ kerA

be the orthogonal projection onto the kernel of A and Pr := I − P0 its
complementary projection. Then we can write

Af = 0 · P0f +
∑

j∈J
λj 〈f, ej〉 ej

for all f ∈ H. This formula is called the spectral decomposition of A

Corollary 10.12. Let A be as in the Spectral Theorem 10.11. Then the
following assertions hold.

a) ran(A) = span{ej | j ∈ J} and ker(A) = {ej | j ∈ J}⊥.

b) Prf =
∑

j∈J
〈f, ej〉 ej for all f ∈ H.
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c) Every nonzero eigenvalue of A occurs in the sequence (λj)j∈J , and its
geometric multiplicity is

dim ker(λI−A) = card{j ∈ J | λ = λj} <∞.

Proof. a) By the formula (10.2) it is obvious that ran(A) ⊆ span{ej | j ∈
J}. For the converse, simply note that since each λj 6= 0, each ej =
A(λ−1

j ej) ∈ ran(A).
Since A = A∗, Lemma 9.17 yields the orthogonal decomposition H =

ker(A)⊕ran(A). Hence Pr = I−P0 is the orthogonal projection onto ran(A),
and so the formula in b) follows from the abstract theory in Chapter 7.
Moreover, by a)

ker(A) = ran(A)⊥ = {ej | j ∈ J}⊥,

and this is the second identity in a).
c) Suppose that Af = λf . If λ 6= λj for every j, then by Lemma 10.9.b)

f ⊥ ej for every j and so Af = 0, by a). This proves the first assertion of
c). The remaining statement is left as an exercise.Ex.10.10

Finally, we discuss the abstract eigenvalue equation

(10.3) Au− λu = f

where f ∈ H and λ ∈ K are given, and A is a compact self-adjoint operator
on H. By virtue of the Spectral Theorem we shall have complete overview
about existence and uniqueness of solutions u. Take (ej)j∈J and (λj)j∈J as
in the Spectral Theorem.

Theorem 10.13. In the situation above, precisely one of the following cases
holds

1) If 0 6= λ is different from every λj, then (λI−A) is invertible and

u := (A− λI)−1f = − 1
λ
P0f +

∑
j∈J

1
λj − λ

〈f, ej〉 ej

is the unique solution to (10.3).

2) If 0 6= λ is an eigenvalue of A then (10.3) has a solution if and only if
f ⊥ ker(λI−A). In this case a particular solution is

u := − 1
λ
P0f +

∑
j∈Jλ

1
λj − λ

〈f, ej〉 ej ,

where Jλ := {j ∈ J | λj 6= λ}.
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3) If λ = 0 then (10.3) is solvable if and only if f ∈ ran(A); in this case
one particular solution is

u :=
∑

j∈J

1
λj
〈f, ej〉 ej ,

this series being indeed convergent.

Proof. We first show uniqueness in 1). Suppose that u1, u2 satisfy (10.3).
Then u := u1−u2 satisfies Au = λu, and since every eigenvalue of A appears
in the sequence (λj)j we have u = 0.

Now we show that in 2) the condition f ⊥ ker(A − λI) is necessary for
f ∈ ran(A− λI). Indeed, if f = Au− λu and Ag = λg, then

〈f, g〉 = 〈Au− λu, g〉 = 〈u,Ag − λg〉 = 0

since λ is an eigenvalue of A = A∗, hence a real number.
To prove existence in 1) and 2) simultaneously, take 0 6= λ and define

Jλ := {j ∈ J | λ 6= λj}. (In the situation 1), Jλ = J .) Take f ∈ H such
that f ⊥ ker(A − λI). (In the situation 1), this is always satisfied.) Then
we can write

f = P0f + Prf = P0f +
∑

j∈J
〈f, ej〉 ej = P0f +

∑
j∈Jλ

〈f, ej〉 ej

because for j /∈ Jλ we have f ⊥ ej . Now note that

c := sup
j∈Jλ

∣∣∣∣ 1
λj − λ

∣∣∣∣ <∞,

because λj → 0 6= λ. Hence∑
j∈Jλ

∣∣∣∣ 〈f, ej〉λj − λ

∣∣∣∣2 ≤ c2
∑

j∈J
|〈f, ej〉|2 ≤ c2 ‖f‖2 <∞,

by Bessel’s inequality. So by Theorem 5.18 and since we are in a Hilbert
space, the series

v :=
∑

j∈Jλ

1
λj − λ

〈f, ej〉 ej

converges. Define u := (−1/λ)P0f + v. Then

Au− λu = Av − λv + P0f

= P0f +
∑

j∈Jλ

λj

λj − λ
〈f, ej〉 ej −

∑
j∈Jλ

λ

λj − λ
〈f, ej〉 ej

= P0f +
∑

j∈Jλ

〈f, ej〉 ej = f

as was to prove.
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In 3), f ∈ ran(A) is certainly necessary for the solvability of Au = f .
Now suppose that f = Av for some v ∈ H. Then by (10.2)

〈f, ej〉 = λj 〈v, ej〉

for all j ∈ J . In particular,
∑

j∈J

∣∣∣λ−1
j 〈f, ej〉

∣∣∣2 < ∞; since H is a Hilbert
space, the series

u :=
∑

j∈J

〈f, ej〉
λj

ej

is convergent. Note that actually u = Prv. Hence

Au = APrv = AP0v +APrv = A(P0vPrv) = Av = f.

This concludes the proof.

Exercises

Exercise 10.1. Let H := L2(0, 1) and A : H −→ H is the multiplication
operator (Af)(t) := t · f(t), t ∈ (0, 1). Show that A has no eigenvalues.

Exercise 10.2. Show that 0 is not an eigenvalue but an approximate eigen-
value of the integration operator J on C[a, b].

Exercise 10.3. Consider the left shift L on `2. Show that λ ∈ K is an
eigenvalue of L if and only if |λ| < 1.

Exercise 10.4. Let (en)n∈N be the standard unit vectors on `2 and let
λ ∈ K with |λ| = 1. Define xn := (1/

√
n)(λe1 + λ2e2 + · · ·+ λnen). Use the

sequence (xn)n∈N to show that λ is an approximate eigenvalue of the left
shift L on `2.

Exercise 10.5. Consider the integration operator J on L2(a, b). Show that
for every λ 6= 0, λI−J is invertible and compute a (Hilbert–Schmidt) integral
kernel for (λI− J)−1.

Exercise 10.6. Let A be the multiplication operator (Af)(t) = t · f(t) on
L2(0, 1). Show that for every λ ∈ C \ [0, 1] the operator λI− A is invertible
and the inverse is given by[

(λI−A)−1f
]
(t) =

1
λ− t

f(t) (t ∈ (0, 1)).

Exercise 10.7 (Positive operators). LetH be a Hilbert space. A bounded
self-adjoint operator A on H is called positive if 〈Af, f〉 ≥ 0 for all f ∈ H.
We write A ≥ 0 if A is positive.
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a) Show that if A,B ∈ L(H) are self-adjoint and α, β ∈ R then αA+ βB
is self-sadjoint. Then show that if A,B ≥ 0 and α, β ≥ 0 then also
αA+ βB ≥ 0.

b) Let A be self-adjoint such that A ≥ 0, and let C ∈ L(H) be arbitrary.
Show that C∗AC is selfadjoint and C∗AC ≥ 0.

c) Show that A is self-adjoint and α ≥ ‖|A‖| then αI±A ≥ 0.

d) Let A be a positive self-adjoint bounded operator on H. Show that

(10.4) ‖Af‖2 ≤ ‖A‖ 〈Af, f〉

for all f ∈ H. (Hint: Use (10.1) with B = A and β = ‖A‖.)

Exercise 10.8. Let A be a bounded self-adjoint operator and let λ be an
approximate eigenvalue of A. Show that λ ∈ R.

Exercise 10.9. Let H be a Hilbert space, let A : H −→ H be a bounded
linear operator, and let F ⊆ H be an A-invariant closed subspace of H. Let
B := A

∣∣
F

be the restriction of A to F . Show that the following assertions
hold.

a) ‖B‖L(F ) ≤ ‖A‖L(H).

b) If A is self-adjoint, then B is self-adjoint.

c) If A is compact, then B is compact.

Exercise 10.10. In the situation of the Spectral Theorem, show that

ker(λI−A) = span{ej | λj = λ}

for each λ 6= 0.

Further Exercises

Exercise 10.11. Let E be a Banach space, A ∈ L(E), λ, µ ∈ K. such that
λI−A and µI−A are invertible. Show that

(λI−A)−1 − (µI−A)−1 = (µ− λ)(λI−A)−1 (µI−A)−1.

(This identity is called the resolvent identity.)

Exercise 10.12. Let H be a Hilbert space, A ∈ L(H) and λ ∈ K. Show
that if λI−A is invertible then λ−A∗ is invertible and and

(λI−A∗)−1 = (λI−A)∗.
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Exercise 10.13. Let E be a Banach space, and let A ∈ L(E) be an invert-
ible operator. Let λ ∈ K \ {0} such that λI − A is invertible. Show that
λ−1I−A−1 is invertible with(

λ−1I−A−1
)−1 = λI− λ2(λI−A)−1.

Exercise 10.14. Let E be a Banach space and let A ∈ L(E). Let (λn)n∈N
be a sequence of scalars such that each λnI−A is invertible and

λn → λ and ‖(λnI−A)−1‖ → ∞.

Show that λ is an approximate eigenvalue of A. (Hint: By definition of
the operator norm, find zn ∈ E such that ‖zn‖ ≤ 1 and ‖R(λn, A)zn‖ →
∞. Define xn := R(λn, A)zn/ ‖R(λn, A)zn‖ and show that ‖xn‖ = 1 and
(λI−A)xn → 0.)

Exercise 10.15. Let E be a Banach space and let A ∈ L(E). Show that 0
is not an approximate eigenvalue if and only if there is δ > 0 such that

‖Ax‖ ≥ δ ‖x‖ (x ∈ H).

Show that in this case ker(A) = {0} and ran(A) is a closed subspace of E.



Chapter 11

Some Applications

11.1. The Dirichlet-Laplace Operator

The operator

∆0 : H2(0, 1) ∩H1
0(0, 1) −→ L2(0, 1), ∆u = u′′.

is called the one-dimensional Dirichlet-Laplacian. It is a version of the
Laplace operator (= second derivative) with Dirichlet boundary conditions
u(0) = u(1) = 0. We abbreviate

D(∆0) := H2(0, 1) ∩H1
0(0, 1)

and call it the domain of the Dirichlet-Laplacian.
In Example 9.4 we have shown that ∆0 is bijective, and its inverse is

given by the Hilbert–Schmidt operator

∆−1
0 f = −G0f = −

∫ 1

0
g0(·, s)f(s) ds

where

g0(t, s) :=

{
s(1− t) 0 ≤ s ≤ t ≤ 1
t(1− s) 0 ≤ t ≤ s ≤ 1.

Since the operator G0 is Hilbert–Schmidt, it is compact. Moreover, since g0
is symmetric and real-valued, G0 is self-adjoint. Moreover, ker(G0) = {0},
by construction.

To apply the Spectral Theorem, we need to find the non-zero eigenvalues
and eigenvectors of G0.

Lemma 11.1. The real number λ 6= 0 is an eigenvalue of G0 if and only
if −1/λ is an eigenvalue of ∆0, and the eigenspaces coincide. Moreover,
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every non-zero eigenvalue of G0 is strictly positive and every corresponding
eigenfunction is in C∞[0, 1]

Proof. If G0u = λu then u = λ−1G0u ∈ D(∆0) and u′′ = −λ−1u. Con-
versely, if this holds for some u ∈ D(∆0), then also u = −G0u

′′ = λ−1G0u
and thus G0u = λu. This proves the first assertion.

For the second, suppose that λ 6= 0 and u ∈ H2(0, 1) such that u′′ =
(−1/λ)u. Then in particular u′′ ∈ H2(0, 1) ⊆ C[0, 1], and hence u ∈ C2[0, 1].
By u′′ = (−1/λ)u again, we now get u ∈ C4[0, 1] and iterating this we obtain
u ∈ C∞[0, 1]. Finally, we write

‖u‖2 = 〈u, u〉 = −λ
〈
u′′, u

〉
= λ

〈
u′, u′

〉
since u ∈ C1

0[0, 1]. But 〈u′, u′〉 ≥ 0 always, and thus either λ > 0 or u = 0.

Employing the classical theory of differential equations we can now con-
clude that G0u = λu with λ > 0 if and only if

u(t) = α cos
(

t√
λ

)
+ β sin

(
t√
λ

)
(0 ≤ t ≤ 1)

for some constants α, β. The boundary condition u(0) = 0 forces α = 0 and
so ker(λI − G0) is at most one-dimensional. On the other hand u(1) = 0
and β 6= 0 forces

sin(1/
√
λ) = 0.

This yields the sequence of eigenvalues

λn =
1

n2π2
(n ≥ 1)

with associated (normalized) eigenfunctions

en(t) =
sin(nπt)√

2
(n ≥ 1, t ∈ [0, 1])

Since G0 is injective, ran(G0) = H and according to the spectral theorem
the system (en)∞n=1 must be a maximal ONS for L2(0, 1). Moreover, the
operator G0 can be written as

(G0f)(t) =
∫ 1

0
g0(t, s)f(s) ds =

∞∑
n=1

(
1

2n2π2

∫ 1

0
f(s) sin(nπs) ds

)
sin(nπt).

with t ∈ (0, 1) and f ∈ L2(0, 1). The general theory yields only convergence
of the series in the L2-norm, and not pointwise. However, in this particular
case, we see that the series converges even uniformly in t ∈ [0, 1].Ex.11.1

It is even true that

g0(t, s) =
∞∑

n=1

sin(nπ · t) sin(nπs)
2n2π2
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as a convergent series in L2((0, 1)× (0, 1)). Ex.11.2

11.2. One-dimensional Schrödinger Operators

We now perturb the Dirichlet-Laplacian by a multiplication operator. More
precisely, we let p ∈ C[0, 1] be a fixed positive continuous function, and
consider

S : H2(0, 1) ∩H1
0(a, b) −→ L2(a, b) Su = −u′′ + pu.

It is called a one-dimensional Schrödinger operator with potential func-
tion p. We write D(S) := H2(0, 1) ∩H1

0(0, 1) and call it the domain of S.

Advice/Comment:
This operator is a special case of a so-called Sturm–Liouville operator. We
shall not treat general Sturm–Liouville operators here.

Let us first look at eigenvalues of S.

Lemma 11.2. If 0 6= u ∈ D(S) and Su = λu, then λ > 0 and u ∈ C2[0, 1].
In particular, S is injective.

Proof. If Su = λu then u′′ = pu − λu ∈ C[0, 1]. Hence u ∈ C2[0, 1]. Then
integration by parts yields

λ ‖u‖2
2 = 〈λu, u〉 =

〈
pu− u′′, u

〉
= 〈pu, u〉 −

〈
u′′, u

〉
=
∫ 1

0
p(s) |u(s)|2 ds+

∥∥u′∥∥2

2
≥
∥∥u′∥∥2

2
≥ 0,

since p ≥ 0 by assumption. If u 6= 0 then also u′ 6= 0 since u(0) = 0. Hence
λ > 0.

We shall now show that for every f ∈ L2(0, 1) the Sturm–Liouville
problem

u′′ − pu = f u ∈ H2(a, b) ∩H1
0(a, b)

has a unique solution. In other words, the operator S is bijective. In fact,
we shall construct a Green’s function for its inverse operator S−1. The
method of doing this is classical. One chooses functions u, v ∈ C2[0, 1] with
the following properties:

u′′ = pu, u(0) = 0, u′(0) = 1

v′′ = pv, u(1) = 0, u′(1) = 1

We have seen how to find u in Section 9.4 (take g = 0 there), and v can be
found by similar methods.
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Lemma 11.3. With this choice of u and v, the Wronskian w := u′v− uv′
is a constant non-zero function.

Proof. One easily computes (u′v−uv′)′ = u′′v−uv′′ = puv−upv = 0, so w
is indeed a constant. If w = 0, then u(1) = (uv′)(1) = (u′v)(1) = 0, and this
means that u ∈ D(S). Since u′′ = pu, we would have Su = 0, contradicting
the injectivity of S (Lemma 11.2).

Using these two functions we define c := [J(uf)(1)] and

Bf := vJ(uf)− uJ(vf) + c u (f ∈ L2(0, 1)).

Then Bf ∈ H1
0(0, 1). If we differentiate the function vJ(uf) we obtain

[vJ(uf)]′ = v′J(uf) + vuf

(we use the product rule for H1-functions here, see Exercise 8.11). Doing
the same for vJ(uf) we obtain

(Bf)′ = v′J(uf)− u′J(vf) + cu′

and this is in H1(0, 1) again. So Bf ∈ H2(0, 1) and we differentiate again,
obtaining

(Bf)′′ = v′′J(uf)− u′′(J(vf) + cu′′ + (uv′ − u′v)f = p(Bf)− wf.

Since w is a non-zero constant, we can divide by w and define A := w−1B.
Then SAf = f and, whence S is also surjective and S−1 = B is the inverse
operator.

Lemma 11.4. The operator A = S−1 is a Hilbert–Schmidt operator with
kernel function

k(t, s) =
1
w

{
v(s)u(t) if 0 ≤ s ≤ t ≤ 1
v(t)u(s) if 0 ≤ t ≤ s ≤ 1.

Proof. We have

w(Af)(t) = v(t)
∫ t

0
u(s)f(s)ds− u(t)

∫ t

0
v(s)f(s) ds+ u(t)

∫ 1

0
v(s)f(s) ds

=
∫ t

0
v(t)u(s)f(s) ds+

∫ 1

t
u(t)v(s)f(s) ds

=
∫ 1

0

(
1{s≤t}(t, s) v(t)u(s) + 1{t≤s}(t, s)u(t)v(s)

)
f(s) ds.

This proves the claim.
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The function is k is real-valued and symmetric, hence the operator
A = S−1 is self-adjoint and compact. Moreover, similar to the Dirichlet-
Laplacian one shows that λ is an eigenvalue for A if and only 1/λ is an
eigenvalue for S, with same eigenspaces. In particular, all eigenvalues are Ex.11.3

strictly positive. The Spectral Theorem yields the existence of an orthonor-
mal basis (ej)j∈N of L2(0, 1) and a sequence of strictly positive scalars (λj)j

such that

(11.1) Af =
∞∑

j=1
λj 〈f, ej〉 ej

with λ1 ≥ λ2 ≥ . . . and λj ↘ 0. Since the integral kernel k is continuous
on [0, 1]× [0, 1], one can say more: each ej ∈ C[0, 1],

∑
j |λj |2 <∞ and the

series (11.1) converges in the sup-norm. Ex.11.4

Ex.11.5

11.3. The Heat Equation

In this section we look at the following partial differential equation (initial-
boundary value problem) on [0,∞)× [0, 1]:

(11.2)


∂tu(t, x) = ∂xxu(t, x)− p(x)u(t, x) (t, x) ∈ (0,∞)× (0, 1)
u(t, 0) = u(t, 1) = 0 (t > 0)
u(0, x) = f(x) (x ∈ (0, 1))

where 0 ≤ p ∈ C[0, 1] is the potential and f : (0, 1) −→ K is a given ini-
tial data. This is the one-dimensional heat equation for the Schrödinger
operator with Dirichlet boundary conditions. If f is continuous it is rea-
sonable to speak of a so-called “classical” solution, i.e., a function u ∈
C([0,∞) × [0, 1]) ∩ C1,2((0,∞) × (0, 1)) that solves the PDE in the ordi-
nary sense. However, the most successful strategy is to allow for a very
weak notion of solution (in order to make it easy to find one) and then
in a second step investigate under which conditions on f this solution is a
classical one.

To find a reasonable candidate for a solution, one shifts the problem
from PDEs to functional analysis. We want our solution u to be a function
u : [0,∞) −→ L2(0, 1) satisfying

u(0) = f ∈ L2(0, 1) and u(t) ∈ D(S), ut(t) = −Su(t) (t > 0).

Here, the time derivative ut is to be understood in a “weak sense”, i.e., it is
a function ut : [0,∞) −→ L2(0, 1) such that

d

dt
〈u(t), v〉 = 〈ut(t), v〉 (t > 0)

for all v ∈ L2(0, 1).
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Equivalently, −Aut = u for all t > 0; writing the operator A in its
associated Fourier expansion gives

u(t) = −A(ut(t)) =
∑∞

j=1
−λj 〈ut(t), ej〉 ej .

Since (ej)j≥1 is a maximal ONS in L2(0, 1), we can replace u(t) on the left
by its Fourier expansion to obtain∑∞

j=1
〈u(t), en〉 en =

∑∞

j=1
−λj 〈ut(t), ej〉 ej

and comparing Fourier coefficients we arrive at

〈u(t), ej〉 = −λj 〈ut(t), ej〉 (j ∈ N, t > 0).

Employing our definition of the time-derivative above leads to the following
infinite system of linear ODEs:

d

dt
〈u(t), ej〉 =

−1
λj

〈u(t), ej〉 , 〈u(0), ej〉 = 〈f, ej〉 (j ∈ N).

This is clearly satisfiable by letting

u(t) := T (t)f :=
∑∞

j=1
e−t/λj 〈f, ej〉 ej (t ≥ 0).

It is now a quite tedious but manageable exercise in analysis to prove that
the series actually defines a smooth function on (0,∞)× [0, 1] which satisfies
the heat equation. Moreover, the initial condition is met in the sense that
limt↘0 u(t) = f in L2(0, 1), but one can say more depending on whether f
is continuous or has even higher regularity.

For each t ≥ 0 the operator T (t), which maps the initial datum f to the
solution u(t) at time t, is bounded. A little calculation shows that

T (0) = I and T (t+ s) = T (t)T (s), (t, s ≥ 0)

and that for fixed f ∈ L2(0, 1) the mapping

(0,∞) −→ L2(0, 1), t 7−→ T (t)f

is continuous. It is an instance of a so-called (strongly continuous) operator
semigroup. Because of the strong similarity with the scalar exponential
function one sometimes writes

T (t) = e−tS (t ≥ 0).

Advice/Comment:
The method sketched here is a step into the field of Evolution Equations.
There one transforms finite-dimensional PDEs into ODE’s in diverse Ba-
nach spaces and applies functional analytic methods in order to solve them
or to study the asymptotic behaviour or other properties of their solutions.



11.4. The Norm of the Integration Operator 157

11.4. The Norm of the Integration Operator

Several times we have encountered the operator J given by integration:

(Jf)(t) :=
∫ t

a
f(s) ds (t ∈ [a, b]).

This operator is often called also the Volterra operator. It is quite easy to
compute its norm when considered as acting on C[a, b] with the supremum
norm, see Exercise 9.9. But what is the norm of J when considered as an
operator on L2(a, b)? Of course, J is an integral operator with kernel

k(t, s) = 1{s≤t}(t, s)

and so one can estimate

‖J‖2 ≤ ‖k‖2
HS =

∫ b

a

∫ b

a
|k(t, s)|2 dsdt

=
∫ b

a

∫ t

a
dsdt =

∫ b

a
(t− a) dt =

(b− a)2

2

which gives ‖J‖L2→L2 ≤ (b − a)/
√

2. But we shall see that we do not have
equality here.

The idea is to use the spectral theorem. However, J is not a self-adjoint
operator and so one has to use a little trick, based on the following lemma.

Lemma 11.5. Let A be an arbitrary bounded operator on a Hilbert space.
Then A∗A and AA∗ are (positive) self-adjoint operators with norm

‖A∗A‖ = ‖AA∗‖ = ‖A‖2 .

Proof. One has (A∗A)∗ = A∗A∗∗ = A∗A, so A∗A is self-adjoint. It is also
positive since 〈A∗Ax, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 ≥ 0 for each x ∈ H. Clearly

‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2

by Lemma 9.17. But on the other hand

‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 ≤ ‖A∗Ax‖ ‖x‖ ≤ ‖A∗A‖ ‖x‖2

for all x ∈ H, by Cauchy–Schwarz. Hence ‖A‖2 ≤ ‖A∗A‖, by definition
of the norm. For the statements about AA∗ just replace A by A∗ in these
results.

To apply the lemma we recall from Exercise 9.15 that

J∗f = 〈f,1〉1− Jf (f ∈ L2(a, b)).
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By the above lemma, the operator A := JJ∗ is given by

Af(t) = JJ∗f(t) = 〈f,1〉 (t− a)− J2f(t)

=
∫ b

a
(t− a)f(s) ds−

∫ t

a
(t− s) f(s) ds

=
∫ b

a
min(t− a, s− a)f(s) ds

for f ∈ L2(a, b), hence is induced by the kernel k(t, s) := min(t − a, s − a).
Since A is a compact self-adjoint operator, by Lemma 10.10 its norm is
equal to the largest modulus of an eigenvalue of A. The following lemma
shows that our operator A is associated with the Laplacian with mixed
boundary conditions.

Lemma 11.6. Fix λ 6= 0 and 0 6= u ∈ L2(a, b). Then Au = λu if and only
if u ∈ H2(a, b) satisfying

u′′ = −λ−1 u, u(a) = 0 = u′(b).

Moreover, this is the case if and only if

λ =
(

2(b− a)
(2n− 1)π

)2

and u(t) = cos
(

(2n− 1)π(t− a)
2(b− a)

)
for some n ∈ N.

Proof. Suppose that Au = λu with λ 6= 0. Since A integrates twice and
adds a linear polynomial, as in Lemma 11.1 one concludes that u ∈ C∞[a, b]
and u′′ = −λ−1u. Furthermore, λu(a) = (Au)(a) = 0 and

λu′(b) = (Au)′(b) = 〈u,1〉 − Ju(b) = 0.

To prove the converse, suppose that u ∈ H2(a, b) satisfies λu′′ = −u and
u(a) = 0 = u′(b). Then integrating twice yields

λu = −J2u+ c(t− a) + d

for some constants c, d. The boundary condition u(a) = 0 implies d = 0,
and taking one derivative yields

0 = λu′(b) = −Ju(b) + c

which gives c = Ju(b) = 〈u,1〉. Together we have indeed λu = Au. Next
note that integration by parts together with the boundary conditions impy
that

‖u‖2 = 〈u, u〉 = −λ
〈
u′′, u

〉
= λ

〈
u′, u′

〉
.

Then u 6= 0 forces λ > 0. By classical theory we find that

u(t) = α cos
(
t− a√
λ

)
+ β sin

(
t− a√
λ

)
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for some constants α, β. The boundary condition u(a) = 0 forces α = 0 and

0 = u′(b) =
1√
λ

cos
(
b− a√
λ

)
.

This is the case if and only if

b− a√
λ

=
(2n− 1)π

2

for some n ∈ N.

Now, back to our original question: we look for the biggest eigenvalue
of A and find

‖J‖2 = ‖JJ∗‖ = ‖A‖ =
(

2(b− a)
π

)2

and that gives

‖J‖ =
2(b− a)

π
.

This is slightly smaller than (b− a)/
√

2 = ‖J‖HS . Ex.11.6

11.5. The Best Constant in Poincaré’s Inequality

In Chapter 8, Lemma 8.10 we encountered Poincaré’s inequality

(11.3) ‖u‖2 ≤ c
∥∥u′∥∥

2
(u ∈ H1

0(a, b)),

and have seen there that one can choose c = ‖J‖. We know now that
‖J‖ = 2(b− a)/π, but it is still not clear what the best constant

c0 := inf
{
c ≥ 0 | ‖u‖2 ≤ c

∥∥u′∥∥
2

for all u ∈ H1
0(a, b)

}
actually is. The aim of this section is to determine c0 as

c0 =
b− a

π
.

As a first step we note the following.

Lemma 11.7. The space H2(a, b) ∩H1
0(a, b) is dense in H1

0(a, b).

Proof. We sketch the proof and leave details as an exercise. Note that
H1

0(a, b) = {Jf | f ∈ L2(a, b), f ⊥ 1}. Take f ∈ L2(a, b) with f ⊥ 1, find
fn ∈ C1[a, b] such that fn → f in ‖·‖2. Then Jfn → Jf in ‖·‖H1 . Let
gn(t) := (Jfn)(t) − 〈fn,1〉 · t. Then g ∈ C2[a, b] ∩ H1

0(a, b) and gn → Jf in
‖·‖H1 . Ex.11.7
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The lemma shows that Poincaré’s inequality (11.3) is equivalent to

‖u‖2 ≤ c
∥∥u′∥∥

2
(u ∈ H2(a, b) ∩H1

0(a, b)

By the product rule for H1 (Exercise 8.11), it is also equivalent to

‖u‖2
2 ≤ c2

〈
u,−u′′

〉
(u ∈ H2(a, b) ∩H1

0(a, b).

(Note that the continuous(!) function uu′ vanishes at the boundary.) But
now recall that we have

H2(a, b) ∩H1
0(a, b) = D(L0) = {G0f | f ∈ L2(a, b)}

is the domain of the Dirichlet–Laplacian. (Actually, we did it on (0, 1),
but the arguments on the general interval (a, b) are analogous, with obvious
changes.) So if we write −f = u′′ and u = G0f in the inequality above, it is
equivalent to

(11.4) ‖G0f‖2 ≤ c2 〈G0f, f〉 (f ∈ L2(a, b)).

By Cauchy–Schwarz,

〈G0f, f〉 ≤ ‖G0f‖ ‖f‖ ≤ ‖G0‖ ‖f‖2

and so (11.4) implies that ‖G0‖2 ≤ c2 ‖G0‖, whence c2 ≥ ‖G0‖. So the
optimal c satisfies

c0 ≥
√
‖G0‖.

On the other hand, G0 is a positive self-adjoint operator in the sense of
Exercise 10.7. By part d) of that exercise we have

‖G0f‖2 ≤ ‖G0‖ 〈G0f, f〉 (f ∈ L2(a, b)).

Hence Poincaré’s inequality (11.3) is true with c2 = ‖G0‖. To sum up, we
have shown that

c20 =
√
‖G0‖.

Now, the Spectral Theorem tells us that ‖G0‖ equals the largest absolute
value of an eigenvalue of G0, which is (b−a)2/π2, with corresponding eigen-
function

e1(t) =

√
b− a

2
sin
(
π(t− a)
b− a

)
(t ∈ [a, b]).

(Adapt the considerations about the operator on (0, 1) from above.) Hence
indeed c0 = (b− a)/π, with the function e1 as extremal case.



Exercises 161

Exercises

Exercise 11.1. Show that for every f ∈ L2(0, 1) the series
∞∑

n=1

(
1

2n2π2

∫ 1

0
f(s) sin(nπs) ds

)
sin(nπt).

converges uniformly in t ∈ [0, 1].

Exercise 11.2. Suppose that (kn)n is a Cauchy sequence in L2(X × Y ),
suppose that k ∈ L2(X × Y ) is such that Aknf → Akf in L2(X) for every
f ∈ L2(Y ). Show that kn → k in L2(X × Y ).

Apply this to prove that

g0(t, s) =
∞∑

n=1

sin(nπ · t) sin(nπs)
2n2π2

as a convergent series in L2((0, 1) × (0, 1)). (Hint: show that the series
converges even uniformly on the square 0 ≤, s, t ≤ 1.)

Exercise 11.3. Let S be the Schrödinger operator considered in Section
11.2, and let λ 6= 0. Show that λ is an eigenvalue for A = S−1 with
eigenfunction u 6= 0, then 1/λ is an eigenvalue S with same eigenfunction u.

Exercise 11.4. Let (ej)j∈N be an ONS in L2(a, b), let λ ∈ `∞ such that
λj 6= 0 for all j ∈ N. and let A : L2(a, b) −→ L2(a, b) be given by

Af :=
∑∞

j=1
λj 〈f, ej〉 ej

for f ∈ L2(a, b). Suppose further that ran(A) ⊆ C[a, b] and A : L2(a, b) −→
C[a, b] is bounded. Show that

a) Each ej ∈ C[a, b].

b) The series defining A converges uniformly, i.e., in the sup-norm.

c) Show that ∑∞

j=1
|λj |2 <∞

(Hint: Use Exercise 9.41.)

Exercise 11.5. In the construction of the Green’s function k for the Schrödinger
operator S on [0, 1] with positive potential p ≥ 0, show that that u, u′, v′ ≥ 0
and v ≤ 0 on [0, 1]. Conclude that the Green’s function k is also positive.

Exercise 11.6. Discuss the spectral composition of the operator A = JJ∗

on L2(a, b). In which sense do the appearing series converge?

Exercise 11.7. Fill in the details in the proof of Lemma 11.7.
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Exercise 11.8. Let Bu = u′′ defined on D(B) := {u ∈ H2(a, b) | u′(a) =
0, u(b) = 0}. Show that

B : D(B) −→ L2(a, b)

is bijective. Compute its inverse operator A := B−1, show that it is a self-
adjoint Hilbert–Schmidt operator mapping L2(a, b) boundedly into C[a, b].
Compute the eigenvalues and the corresponding eigenfunctions and discuss
the spectral representation.

Exercise 11.9. Let P : L2(0, 1) −→ {1}⊥ be the orthogonal projection.
Show that the operator A := PJ2P is a self-adjoint Hilbert–Schmidt oper-
ator and compute its integral kernel. (See also Exercise 9.26.) Determine
the eigenvalues of A and find an orthonormal basis of L2(0, 1) consisting of
eigenfunctions of A.

Exercise 11.10. (more involved) Consider the operator A = (1/2)(J2 +
J∗2) on L2(a, b). Determine its integral kernel. Show that ran(A) ⊆ H2(a, b)
and (Af)′′ = f . Find the right boundary conditions to characterize ran(A).
Then determine the spectral decomposition of A.



Appendix A

Background

A.1. Sequences and Subsequences

Let X be an arbitrary non-empty set. Then each mapping

x : N −→ X

is called a sequence in X. If x is such a sequence in X then one often
writes

xn instead of x(n)

for the n-th member and x = (xn)n∈N ⊆ X to denote the whole sequence.

Advice/Comment:
Note the difference between xn ∈ X and (xn)n∈N ⊆ X. The first denotes
the n-th member of the sequence and is an element of X, the second
denotes the sequence as a whole, and is an element of the set of functions
from N to X.

Note also the difference between

(xn)n∈N and {xn | n ∈ N}.
The first denotes the sequence, the second denotes the range of the se-
quence. For example, the range of the sequence xn := (−1)n, n ∈ N,
is

{(−1)n | n ∈ N} = {1,−1}.

If x = (xn)n∈N ⊆ X is a sequence in X, then a subsequence of x is a
sequence of the form

yn := xπ(n) (n ∈ N)

163
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where π : N → N is a strictly increasing map. Intuitively, π selects certain
members of the original sequence with increasing indices. One sometimes
writes kn instead of π(n).

A.2. Equivalence Relations

An equivalence relation is the mathematical model of a fundamental oper-
ation of the human mind: forgetting differences between objects and iden-
tifying them when they share certain properties. For example, with respect
to gender, all men are equal to each other, and all women are. This “being
equal” is not at all hypothetical, since in certain circumstances people are
actually treated as such. Indeed, a public toilet for instance treats all men
the same (they may enter the left door, say) but differently from all women
(who are only allowed to enter the right door). For a public toilet only
gender counts, and nothing else.

Mathematically, an equivalence relation on a setX is a binary relation
∼ on X such that the following three axioms

1) x ∼ x (reflexivity)

2) x ∼ y → y ∼ x (symmetry)

3) x ∼ y, y ∼ z → x ∼ z (transitivity)

are satisfied for all x, y, z ∈ X. If ∼ is an equivalence relation on a set X,
then to each x ∈ X one can define its equivalence class

[x] := [x]∼ := {y ∈ X | x ∼ y},

the set of all elements of X that are equivalent to x. Two such classes are
either equal or disjoint: [x] = [a] iff x ∼ a. One collects all equivalence
classes in a new set and defines

X/∼ := {[x] | x ∈ X}.

Suppose one has a binary operation ∗ on X such that if x ∼ a and y ∼ b
then x ∗ y ∼ a ∗ b. (One says that the operation ∗ is compatible with the
equivalence relation ∼.) Then one can induce this operation on X/∼ by
defining

[x] ∗ [y] := [x ∗ y].
By hypothesis, this definition does not depend on the choice of representa-
tives, hence is a good definition. One says that the operation ∗ on X/∼ is
well-defined.

This mechanism works with functions of more variables and with rela-
tions in general. In this way structural elements (relations, operations) are
transported (“induced”) on the new set X/∼.
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The standard examples are from algebra. For instance, if U is a subgroup
of an abelian group G then one defines

x ∼F y : ⇐⇒ x− y ∈ U

for x, y ∈ G. This is an equivalence relation on G (check it!). Let us denote
the equivalence class containing x ∈ G by [x], as above. Then [x] = [y] iff
x− y ∈ G and [x] = x+ U as sets. The set of equivalence classes

G
/
U := {[x] | x ∈ G}

is called the factor group or quotient group. It is itself an abelian group
with respect to the operation

[x] + [y] := [x+ y] (x, y ∈ G).

(Of course one has to check that these are well defined, i.e., that the sum is
compatible with the equivalence relation.) The mapping

s : G −→ G
/
U, sx := [x] (x ∈ G)

is then a group homomorphism is called the canonical surjection.
A typical example occurs when G = Z and U = nZ for some natural

number n ∈ N. Other examples are quotient spaces of vector space (see
below).

System of Representatives. Let ∼ be an equivalence relation on a non-
empty set X. Each member of an equivalence class is called a representa-
tive for it. So each y ∈ [x] is a representative for [x].

A mapping r : X
/
∼ −→ X assigning to each equivalence class a repre-

sentative for it, i.e., such that [r(t)] = t for all t ∈ X
/
∼, is called a system

of representatives. For example if one fixes a natural number n ∈ N then
one can consider the quotient group Z

/
nZ and {0, . . . , n − 1} would be a

system of representatives for it.
An important theoretical tool in mathematics is the following set-theoretic

axiom.

Axiom of Choice. For each equivalence relation on a non-empty set X
there exists a system of representatives.

A.3. Ordered Sets

A partial ordering of a set X is a binary relation ≤ on X such that the
following three axioms

1) x ≤ x (reflexivity)

2) x ≤ y and y ≤ x → x = y (antisymmetry)
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3) x ≤ y, y ≤ z → x ≤ z (transitivity)

are satisfied for all x, y, z ∈ X. A (partially) ordered set (poset) is a
pair (X,≤) where X is a set and ≤ is a partial ordering of X. If one has in
addition that

4) x ≤ y or y ≤ x

for all x, y ∈ X, then (X,≤) is called a totally ordered set.
The applicability of the order concept is immense. Although ≤ is the

generic symbol for an ordering, in concrete situation other symbols may be
used.

Examples A.1. a) If Ω is a set, then X := P(Ω) (the power set of Ω) is
partially ordered either by set inclusion ⊆ or by set containment ⊇.

b) X := N is partially ordered by n|m (meaning that m is divisible by n).

c) R is totally ordered by the usual ≤.

d) Rd is partially ordered by x ≤ y being defined as xj ≤ yj for all j =
1, . . . , d.

e) If (X,≤) is a poset then x ≤r y defined by y ≤ x and usually written x ≥
y, defines a new partial ordering on X, called the reverse ordering.

f) If (X,≤) is a poset and A ⊆ X, then A is itself a poset with respect to
the ordering induced by the ordering of X. For example, N is ordered
by the ordering coming from R.

Let (X,≤) be an ordered set and let A ⊆ X. Then x ∈ X is called an
upper bound for A if a ≤ x for all a ∈ A (sometimes written as A ≤ x);
and x ∈ X is called a lower bound for A if x ≤ a for all a ∈ A. A
greatest element of A is an upper bound for A that moreover belongs to A.
Analogously, a least element of A is a lower bound for A that belongs to A.

Greatest (or least) elements may not exist. However, if they exist, they
are unique: if a, b ∈ A are both greatest elements of A, then a ≤ b and
b ≤ a, so a = b by antisymmetry.

The supremum, or the least upper bound, of A is the least element
of the set of all upper bounds for A, provided such an element exists. In the
case that it exists, it is denoted by supA and it is characterised uniquely by
the properties:

A ≤ supA and ∀x ∈ X : A ≤ x → supA ≤ x.

Analogously, the greatest element of the set of all lower bounds of A, if it
exists, is called an infimum of A.
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An element a ∈ A is called maximal in A if no other element of A is
strictly greater, i.e., if it satisfies

∀x ∈ A : ( a ≤ x =⇒ a = x ).

Analogously, a ∈ A is called minimal in A if no other element of A is
strictly smaller. Maximal (minimal) elements may no exist, and when they
exist they may not necessarily be unique. We give an important criterium
for a poset to have a maximal element.

Theorem A.2 (Zorn’s Lemma). Let (X,≤) be a poset such that every
totally ordered subset A ⊆ X (a so-called “chain”) has an upper bound. Then
X has a maximal element.

Proof. Zorn’s Lemma is equivalent to the Axiom of Choice. See [12, Appen-
dix] for a proof of Hausdorff’s maximality theorem, which directly implies
Zorn’s lemma.

A.4. Countable and Uncountable Sets

A set X is called countable if there is a surjective mapping ϕ : N −→ X,
i.e., X can be exhausted by a sequence: X = {xn | n ∈ N}. Note that in this
case one can even find a bijective mapping between N and X, by discarding
double occurences in the sequence (xn)n∈N.

Clearly, finite sets are countable. Subsets of countable sets are countable.
If X is a set and An ⊆ X is countable for every n ∈ N, then

A :=
⋃
n∈N

An ⊆ X

is countable, too. If X,Y are countable, then so is their Cartesian product

X × Y = {(x, y) | x ∈ X, y ∈ Y }.

In particular, the sets N2,N3, . . . are all countable.
A set that is not countable is called uncountable. Any non-void open

interval of the real numbers is uncountable, by the famous diagonal proof of
Cantor’s.

A.5. The Completeness of the Real Numbers

As you may know, there is no science without presuppositions. One has to
start somewhere, take something for granted. A proof is an argument that
convinces us of a statement, but the very argument has to recur on our pre-
established knowledge, things that we call “facts”. However, these “facts”
are only conditional to more basic “facts”. In mathematics, the most basic
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“facts” are called axioms. Ideally, all other mathematical statements should
rest logically on those axioms, and on nothing else.

You may know such axioms from elementary (synthetic) geometry. In
the beginning of Euclid’s Elements the basic concepts of point, line, plane
are introduced together with some very basic statements about them, and
all other statements are derived from these basic ones by means of logical
arguments. This has been a role model for over 2000 years, until in the 19th
century people became unsatisfied with the old approach. The discussion
centered around the problem, what points and lines “really” are. (Euclid
had given ’definitions’, which were at best cloudy, and anyway never used
as such in all his treatment.) Also, the invention (or discovery?) of non-
euclidean geometries shattered the old dogma that mathematics is about the
“real” (=physical) world. Finally, Hilbert in his 1899 treatise “Grundlagen
der Geometrie” gave the first modern axiomatisation of geometry, cleared
away the defects of Euclid, and moreover paved the way for a more flexible,
non-(meta)physical view of mathematics. According to this new approach,
axioms can be chosen freely depending on what you want to model with
them. The actual meaning of the words is inessential, what matters are the
relations described by the axioms.

Although being fundamental from a logical point of view, axioms have no
conceptual priority. An axiom is not “more true” than any other statement,
but axioms help us to organise our knowlege. In fact, within the modern
approach there is no intrinsic criterium of truth other than the mere logical
consistency. We cannot ask whether an axiom (or better: axiom system) is
true or not, unless we mean by it whether it describes appropriately what
it is supposed to describe.

In the (hi)story of mathematics, real numbers have been a pain in the
neck ever since this concept has appeared. And indeed, what seems so
natural to us was unknown for a long time. The ancient Greeks had a
very different concept of a “number” than we do: they considered only
the positive natural numbers as numbers (a concept associated with the
process of counting) and objects as the rationals or the reals were not known.
However, they had the related concepts of a length of a line segment and of
a ratio of quantities, e.g., of lengths. Pythagoras discovered that the ratio of
the length of the diagonal of a square and its side-length is not “rational”,
a fact that we express nowadays by saying that

√
2 is an irrational number.

The Greek fixation on geometry hindered very much the development of
the number concept; for example, an algebraic equation like x2 + x = 3 was
inconceavable by the Greeks since x would represent a length of a line, and x2

the area of a square. And how the hell could you add such things? So a big
step towards the modern concept of number was by stripping off geometric
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interpretations and focusing on algebraic properties, a step that is already
present in the work of Diophantus of Alexandria around 250 AD, but was
properly established only after the important work of Arab mathematicians
after 800 AD. (The very word “algebra” derives from Arab.) It was then
Descartes in the 17th century who showed how to turn the things upside
down and make numbers the fundamental entities; geometry was designed
to become a subdiscipline of arithmetic.

In the 17th century the invention of the calculus by Newton and Leib-
niz revolutionised the world. They introduced something new, namely the
concept of a limit, although quite intuitively in the beginning. Despite the
obvious success of the new mathematics, many things remained unclear and
were subject to harsh critique (e.g. by Berkeley). The many “infinities”
around led to paradoxes, a fact that a modern student may understand by
contemplating over the value of ∞/∞. In the beginning of the 19th century,
the situation had become unbearable (see Bolzano’s 1851 treatise “Para-
doxien des Unendlichen”), also because since Fourier’s theory of heat, the
notion of a “function” was questioned. It was Georg Cantor, who finally led
the way out by coining the notion of a “set”, the most fundamental notion
of mathematics to-day. Using this concept and some very intuitive proper-
ties, he showed how one may start from natural numbers and successively
“construct” mathematical sets that have all the properties we expect from
integers, rationals and real numbers. (The concept of “function” was given
a precise set-theoretic definition by Dedekind shortly after, and Weierstrass
gave the first proper definition of “limit” at around the same time.) The
“arithmetisation” of analysis had been successful.

Axioms for the real numbers. Instead of constructing the real num-
bers from more elementary objects, one might as well give axioms for real
numbers directly instead of for sets. These axioms usually consist of three
groups which describe that the real numbers form a “complete, totally or-
dered, archimedean field”. The different structural elements are

1) the algebraic structure: R is a field, i.e., one may add, subtract, multiply
and divide according to the usual rules;

2) the order structure: R is totally ordered, and the order is compatible
with the algebraic structure (e.g. if x, y ≥ 0 then also x+ y ≥ 0 . . . );

3) the order is archimedean, i.e., if 0 < x, y then there is a natural number
n such that y < x+ · · ·+ x (n-times);

4) R is complete.
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The completeness axiom (iv) comes in different forms, all equivalent in the
presence of the other axioms. It is a matter of personal taste which one con-
siders more fundamental, but the common spirit is the geometric intuition
of the continuum: the real numbers have no holes.

Theorem A.3. In the presence of the axioms 1)–3) the following statements
are equivalent:

(i) Every bounded sequence of real numbers has a convergent subsequence.

(ii) Every Cauchy sequence of real numbers converges.

(iii) Every monotonic and bounded sequence of real numbers converges.

(iv) Every non-empty set of real numbers, bounded from above (below), has
a supremum (infimum).

Proof. (i)⇒(ii): This follows from the fact that a Cauchy sequence is boun-
ded, and from the fact that a Cauchy sequence having a convergent subse-
quence must converge, see Lemma 5.2.c).

(ii)⇒(iii): If a monotonic sequence is not Cauchy, it has a subsequence
with every two points having distance larger than a certain ε > 0. The
achimedean axiom prevents the sequence from being bounded. This shows
that a monotonic and bounded sequence is Cauchy, and hence converges, by
hypothesis.

(iii)⇒(iv): Suppose that A is a set of real numbers, bounded by b0.
Choose any a0 ∈ A. (This works since A is assumend to be not empty.)
Consider x := (a0 + b0)/2. Either x is also an upper bound for A, then
set a1 := a0, b1 := x; or x is not an upper bounded for A, and then there
must exist x < a1 ∈ A. In this case we set b1 := b0. In either situation, b1
is an upper bound for A, a1 ∈ A, and b1 − a1 ≤ (b0 − a0)/2. Continuing
inductively we construct an increasing sequence an ≤ an+1 of elements in
A and a decreasing sequence bn+1 ≤ bn of upper bounds of A such that
bn − an → 0. By hypothesis, both sequences converge to a and b, say.
Clearly b is an upper bound for A, but since an comes arbitrarily close to b,
there cannot be any strictly smaller upper bound of A. So b = supA.

(iv)⇒(i): Suppose that (xn)n∈N is a Cauchy sequence. Then one finds
a < b such that xn ∈ [a, b] for all n. Consider the set An := {xk | k ≥ n}.
As An ⊆ [a, b] there exists an := supAn ∈ [a, b], by hypothesis. The set
A := {an | n ∈ N} is contained in [a, b] and hence x := infn an exists. Using
this, it is easy to find a subsequence of (xn)n∈N that converges to x. But
since (xn)n∈N is Cauchy, it itself must converge to x, see Lemma 5.2c).
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Property (i) is the usual metric completeness, (iii) is order completeness
or the Dedekind Axiom, and property (ii) is usually stated under the
name Bolzano–Weierstrass.

Corollary A.4. The euclidean space Rd is complete.

Proof. Suppose that (xn)n∈N is a Cauchy sequence in the euclidean metric.
Then, since |xn,j − xm,j | ≤ ‖xn − xm‖2, each coordinate sequence (xnj)n∈N,
j = 1, . . . , d, is a Cauchy sequence in R. By the completeness of R, it must
have a limit x∞,j . Is now easy to see that x∞ := (x∞,1, . . . , x∞,d) is the
limit of (xn)n∈N.

Corollary A.5 (Bolzano–Weierstrass). A subset A ⊆ Rd is (sequen-
tially) compact iff it is closed and bounded.

Proof. Suppose that A is sequentially compact; then A must be bounded,
since a sequence which wanders off to “infinity” cannot have a convergent
subsequence. It also must be closed, since if (xn)n∈N ⊆ A and xn → x ∈ Rd

then by hypothesis there is a subsequence (xnk
)k which converges to some

a ∈ A. But clearly xnk
→ x as well, and since limits are unique, x = a ∈ A.

Hence A is closed, by Definition 4.1.
Conversely, suppose that A is closed and bounded, take any sequence

(xn)n∈N ⊆ A and write xn = (xn1, . . . , xnd). Then every coordinate sequence
(xnj)n∈N ⊆ R is bounded. By the Bolzano-Weierstrass axiom/theorem,
one finds π1 : N → N strictly increasing, such that x∞,1 := limn xπ1(n),1

exists. The same argument yields a subsequence π2 : N −→ N such that
also x∞,2 := limn xπ1(π2(n)),2 converges. Continuing in this manner one finds
πj : N → N strictly increasing such that

x∞,j := lim
n→∞

xπ1...πj(n),j

exists for every j = 1, . . . j. Setting π := π1 ◦ . . .◦πd, we have that xπ(n),j →
x∞,j for all j, and hence

xπ(n) → x∞ := (x∞,1, . . . , x∞,d)

in Rd. Since A is closed, x∞ ∈ A, and we are done.

Note that one may exchange R for C in the previous two statements: also
Cd is complete and a subset of Cd is compact iff it is closed and bounded.
This is true since, metrically, Cd = R2d.
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A.6. Complex Numbers

Complex numbers can be constructed from the real numbers in many dif-
ferent ways. (Recall from the previous section that it is not important what
complex numbers “really are”, but which properties they satisfy; as differ-
ent constructions lead to objects with the same properties, we may consider
them equivalent and choose freely each one of them.) The easiest, probably,
of these constructions goes back to Gauss and is based on the geometric
piucture of complex numbers as points in the euclidean plane.

More precisely, we define the set of complex numbers C as

C := R2 = {(a, b) | a, b ∈ R}

the set of pairs of real numbers. If z = (a, b) is a complex number, then
a := Re z is the real part and b := Im z is the imaginary part of z.
Clearly a complex number is uniquely determined by its real and imaginary
part.

The algebraic operations on C are given by

(x, y) + (a, b) := (x+ a, y + b)

(x, y) · (a, b) := (xa− yb, xb+ ya)

for all (x, y), (a, b) ∈ C. One then checks that all usual rules of computation
(associativity and commutativity of addition and multiplication, distribu-
tivity) are valid. Then one realises that

(x, 0) + (y, 0) = (x+ y, 0) and (x, 0) · (y, 0) = (xy, 0)

for all real numbers x ∈ R. So the complex numbers of the form (x, 0)
behave the “same” as the corresponding real numbers, whence there is no
confusion writing x instead of (x, 0). Defining the imaginary unit i by

i := (0, 1)

and using the writing convention x = (x, 0) for real numbers, we see that
every complex number z = (a, b) can be uniquely written as

z = a+ ib = Re z + Im z · i

Moreover, i2 = −1, and hence 1/i = −i.
Two more operations play an imporant role for complex numbers. The

first is conjugation defined by

z := a− ib if z = a+ ib, a, b ∈ R,

or, equivalently, by Re z := Re z, Im z := − Im z. Then

Re z =
1
2
(z + z) and Im z =

1
2i

(z − z),
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and z = z if and only if z ∈ R. The following computation rules are easy to
check:

z + w = z + w, zw = zw, zz = (Re z)2 + (Im z)2.

The modulus or absolute value of a complex number z = a+ib is defined
by

|z| =
√
a2 + b2 =

√
(Re z)2 + (Im z)2.

If one pictures complex numbers geometrically as points in the plane, |z|
just gives the usual euclidean distance of z from the origin. It is then clear
that we have

|Re z| ≤ |z| , |Im z| ≤ |z| , |z| = |z| and zz = |z|2

for all complex numbers z ∈ C. The last formula gives us a clue how to
compute a multiplicative inverse for a non-zero complex number z. Indeed,
z 6= 0 if and only if |z| 6= 0 and so the last formula becomes

z
(
|z|−2 z

)
= 1

which amounts to
z−1 = |z|−2 z.

A.7. Linear Algebra

A vector space over the field K ∈ {R,C} is a set E together with an
operation

E × E −→ E, (x, y) 7−→ x+ y

called addition, an operation

K× E −→ E, (λ, x) 7−→ λx

called scalar multiplication, and a distinguished element 0 ∈ E called the
zero vector, such that for x, y, z ∈ E, λ, µ ∈ K the following statements
hold:

1) x+ (y + z) = (x+ y) + z;

2) x+ y = y + x;

3) x+ 0 = x;

4) x+ (−1)x = 0;

5) (λ+ µ)x = λx+ µx;

6) λ(x+ y) = λx+ λy;

7) (λµ)x = λ(µx);

8) 1 · x = x.
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(These are called the vector space axioms). Vector spaces over K ∈ {R,C}
are also called linear spaces. We use both expressions synomymously.

If E is a vector space, {v1, . . . , vn} ⊆ E is a collection of vectors and
λ1, . . . , λn ∈ K are scalars, the expression

n∑
j=1

λjvj = λ1v1 + · · ·+ λnvn

is called a (finite) linear combination of the vectors vj .
If E is a vector space and F ⊆ E is a subset, then F is called a (linear)

subspace of E if one has

0 ∈ F, and x, y ∈ F, λ ∈ K ⇒ x+ y ∈ F, λx ∈ F.

It is then clear that F is a vector space in its own right (with respect to the
induced operations and the same zero vector).

If A ⊆ E is any subset there is a “smallest” linear subspace, called
the linear span spanA of A, consisting of all finite linear combinations of
vectors in A, i.e.,

spanA :=
{∑

a∈A

λaa | λa ∈ K, #{a ∈ A | λa 6= 0} <∞
}
.

(Note that we do not assume A to be a finite set here, so we have to set all
coefficient λa = 0 except for finitely many.) If U is a subspace and A ⊆ U
is such that spanA = U , then A is said to generate U .

Let E be any K-vector space. A family (xj)j∈J of vectors in E (J an
arbitrary non-empty index set) is called linearly independent if there is
only the trivial way to write the zero vector 0 as a finite linear combination
of the xj . Formally:

If
∑

j∈J
λjxj = 0 where λj ∈ K, #{j ∈ J | λj 6= 0} <∞

then λj = 0 ∀ j ∈ J.

An (algebraic) basis of E is a linearly independent family (xj)j∈J such
that E = span{xj | j ∈ J}. Equivalently, every element from E can be
written in a unique way as a finite linear combination of the xj .

A vector space E is called finite-dimensional if it has a finite basis,
else infinite-dimensional. A famous theorem of Steinitz says that each
two bases of a finite-dimensional vector space E have the same number of
elements. This number is then called the dimension of E, dimE.
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Theorem A.6. Let E be a vector space over K and let A ⊆ B ⊆ E be
subsets. If A is linearly independent and B generates E then there is a basis
C of E such that A ⊆ C ⊆ B.

Proof. Apply the following procedure: discard from B all vectors v such
that A∪ {v} is linearly dependent, and call this the new B. If then A = B,
we are done. If not, then there is a vector v ∈ B \ A such that A ∪ {v} is
linearly independent. Call this set the new A and repeat the procedure.

If B is finite, this procedure must terminate and one ends up with a
basis. In the case of infinite B one may have to make an infinite (and even
uncountable) number of steps. Such a “transfinite” procedure is unwieldy
and may be replaced by an application on Zorn’s Lemma. To this end, let

X := {C | A ⊆ C ⊆ B, B linearly independent}

and order X by ordinary set inclusion. If C ∈ X is maximal, then each
vector from B is linearly dependent on C (otherwise we could enlarge C).
But since B is generating, C is then generating as well, and so C is the
desired basis.

Hence a maximal element in X would solve the problem. To find it, we
apply Zorn’s Lemma A.2. Let K ⊆ X be any totally ordered subset. We
have to show that K has an upper bound in the poset X. Define

CK :=
⋃

C∈K

C.

Clearly A ⊆ CK ⊆ B. To show that CK is linearly independent, take
x1, . . . , xn ∈ CK . For any 1 ≤ j ≤ n we find a Cj ∈ K such that xj ∈ Cj .
But since K is totally ordered, one of the Cj , say Cj0 , contains all the
others, hence x1, . . . , xn ∈ Cj0 . But Cj0 is linearly independent, and so
must be {x1, . . . , xn}. This shows that CK ∈ X and thus is an upper bound
for K ⊆ X in X.

Linear Mappings. Let E,F be K-vector spaces. A mapping T : E −→ F
is called linear if

T (x+ y) = Tx+ Ty and T (λx) = λTx

for all x, y ∈ E, λ ∈ K. (Note that we often write Tx instead of T (x).) Linear
mappings are also called linear operators, especially when E = F . When
F = K, i.e., when T : E −→ K then T is called a (linear) functional.

If E,F,G are K vector spaces and T : E −→ F , S : F −→ G are linear,
then

ST := S ◦ T : E −→ G

is linear as well. If T : E −→ T is linear we write T 0 := I and Tn = T ◦. . .◦T
n-times, for n ∈ N.
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For a linear mapping T : E −→ F , its kernel

kerT := {x ∈ E | Tx = 0}

is a linear subspace of E and its range

ranT := {Tx | x ∈ E}

is a linear subspace of F . The kernel is sometimes also called the null
space and is denoted by N(T ), the range is sometimes denoted by R(T ).
The linear mapping T : E −→ F is injective if and only if kerT = 0 and
surjective if and only if ranT = F . If T is bijective then also T−1 is a linear
mapping, and T is called an isomorphism.

Coordinatisation. Let E be a finite-dimension K-vector space. Each or-
dered basis B = {b1, . . . , bd} defines an isomorphism Φ : Kd −→ E by

Φ(x) :=
d∑

j=1

xjbj (x = (x1, . . . , xd) ∈ Kd).

The injectivity of T is due to the linear independence of B, the surjectivity
due to the fact that B is generating. If v = Φ(x) then the tuple

Φ−1(v) = x = (x1, . . . , xd)

is called the coordinate vector of v with respect to the (ordered) basis B.

Direct Sums and Projections. Let E be a vector space and U, V linear
subspaces. If

E = U + V := {u+ v | u ∈ U, v ∈ V } and U ∩ V = {0}

then we call E the algebraic direct sum of U and V and write

E = U ⊕ V.

If x ∈ E we can write x = u + v with u ∈ U and v ∈ V . Then condition
U ∩ V = {0} implies that this representation of x is unique. Hence we may
write

PUx := u, PV x := v.

Then PU : E −→ U , PV : E −→ V are linear, PU + PV = I, P 2
U = PU ,

P 2
V = PV . The operators PU , PV are called the canonical projections

associated with the direct sum decomposition E = U ⊕ V .
Conversely, let P : E −→ E satisfy P 2 = P . Then also (I−P )2 = I−P

and ranP = ker(I− P ). Defining U := ranP and V := kerP then

U + V = E, and U ∩ V = {0}

hence E = U ⊕ V and P = PU , I− P = PV .
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Vector Spaces of Functions. Clearly E = K itself is a vector space over
K. If E is any K-vector space and X is any non-empty set then the set of
E-valued functions on X

F(X;E) := {f | f : X −→ E}

is also a K-vector space, with respect to the pointwise operations:

(f + g)(x) := f(x) + g(x)

(λf)(x) := λf(x)

whenever f, g ∈ F(X;E), λ ∈ K. Note that for X = N, an element f ∈
F(N;E) is nothing else than a sequence (f(n))n∈N in E. If X = {1, . . . , d}
then F(X; K) = Kd.

Suppose that E is a K-vector space and X is non-empty set then each
a ∈ X defines a linear mapping

δa : F(X;E) −→ E

by point evaluation δa(f) := f(a) , f ∈ F(X;E).

The Space of all Linear Mappings. Let E,F be vector spaces over K.
We write

Lin(E;F ) := {T : E −→ F | T is linear}
the set of all linear mappings from E to F . This is clearly a subset of
F(E;F ), the vector space of all mappings from E to F .

Lemma A.7. The set Lin(E;F ) is a linear subspace of F(E;F ) and hence
a vector space. If E = F then Lin(E) := Lin(E;E) is an algebra, i.e., the
multiplication (= concatenation) satisfies:

R(ST ) = (RS)T,

R(S + T ) = RS +RT,

(R+ S)T = RT + ST,

λ(ST ) = (λS)T = S(λT ),

with R,S, T ∈ Lin(E;F ), λ ∈ K.

Quotient Spaces. If F is a linear subspace of a vector space E then one
defines

x ∼F y : ⇐⇒ x− y ∈ F
for x, y ∈ E. This is an equivalence relation on E (check it!) Let us denote
the equivalence class containing x ∈ E by [x]. Then [x] = [y] iff x − y ∈ F
and [x] = x+ F as sets. The set of equivalence classes

E
/
F := {[x] | x ∈ E}
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is called the factor space or quotient space. It is itself a vector space
with respect to the operations

[x] + [y] := [x+ y] and λ[x] := [λx]

(x, y ∈ E, λ ∈ K). (Of course one has to check that these are well defined.)
The mapping

s : E −→ E
/
F, sx := [x] (x ∈ E)

is linear (by definition of addition and scalar multiplication on E/F ) and is
called the canonical surjection.

Sesquilinear Forms. Let E be a vector space over K. A mapping a :
E × E −→ K is called a sesquilinear form on E, if

1) a(αf + βg, h) = αa(f, h) + βa(g, h)

2) a(h, αf + βg) = αa(h, f) + βa(h, g)

for all f, g, h ∈ E and α, β ∈ K. By

qa(f) := a(f, f) (f ∈ E)

we denote the associated quadratic form.

Advice/Comment:
1) says that a(·, h) is linear and 2) says that a(h, ·) is “anti-linear” for each
h ∈ E. Since for real numbers α ∈ R one has α = α, in the case that
K = R a sesquilinear form is simply bilinear, i.e., linear in each component.

A sesquilinear form a on E is called hermitian or symmetric if

a(g, f) = a(f, g) (f, g ∈ E).

Symmetric sesquilinear forms have special properties:

Lemma A.8. Let a : E × E −→ K be a symmetric form on the K-vector
space E. Then the following assertions hold:

a) qa(f) ∈ R
b) qa(f + g) = qa(f) + 2 Re a(f, g) + qa(g)

c) qa(f + g)− qa(f − g) = 4 Re a(f, g) (polarisation identity)

d) qa(f + g) + qa(f − g) = 2qa(f) + 2qa(g) (parallelogram law)

for all f, g ∈ E.
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Proof. By symmetry, qa(f) = qa(f); but only a real number is equal to its
own conjugate. The sesquilinearity and symmetry of a yields

qa(f + g) = a(f + g, f + g) = a(f, f) + a(f, g) + a(g, f) + a(g, g)

= qa(f) + a(f, g) + a(f, g) + qa(g) = qa(f) + 2 Re a(f, g) + qa(g)

since z + z = 2Re z for every complex number z ∈ C. This is b). Replacing
g by −g yields

qa(f − g) = qa(f)− 2 Re a(f, g) + qa(g)

and addding this to b) yields d). Subtracting it leads to c).

Suppose that K = R. Then the polarisation identity reads

a(f, g) =
1
4
(qa(f + g)− qa(f − g)) (f, g ∈ E).

This means that the values of the form a are uniquely determined by the
values of its associated quadratic form. The same is true in the case K = C,
since in this case

a(f, g) = Re a(f, g) + i Re a(f, ig)

for all f, g ∈ E.

A.8. Set-theoretic Notions

According to G.Cantor, a set is a “collection of well-distinguished objects of
our mind”. This is not a mathematical definition, but helps to set up the
decisive properties of sets. The basic relation in the universe of sets is the
∈-relation: a ∈ A indicates that some object a (which may be a set itself)
is an element of (= is contained in) the set A.

One writes A ⊆ B and calls A a subset of B if every element of A is
also an element of B:

A ⊆ B :⇐⇒ ∀x : x ∈ A =⇒ x ∈ B.

Two sets are equal if the have the same elements:

A = B :⇐⇒ A ⊆ B and B ⊆ A.

The emtpy set is the set ∅ that has no elements. If a, b, c . . . are objects,
then we denote by

{a, b, c . . . }
the set that contains them. In particular, {a} is the singleton whose only
element is a. If X is a set and P is a property that an element of X may or
may not have, then

{x | x ∈ X, x has P}
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denotes the set whose elements are precisely the elements of X that have
P. The power set of a set X is the unique set P(X) whose elements are
precisely the subsets of X:

P(X) := {A | A ⊆ X}

Note that always ∅, X ∈ P(X). For subsets A,B ⊆ X we define their union,
intersection, difference as

A ∪B := {x ∈ X | x ∈ A or x ∈ B}
A ∩B := {x ∈ X | x ∈ A and x ∈ B}
A \B := {x ∈ X | x ∈ A but x /∈ B}.

The complement in X of a subset A ⊆ X is

Ac := X \A = {x ∈ X | x /∈ A}.

If X,Y are sets we let

X × Y := {(x, y) | x ∈ X, y ∈ Y }

the set of all ordered pairs of elements in X and Y . The set X × Y is also
called the Cartesian product of X and Y . Each subset

R ⊆ X × Y

is called a (binary) relation. Instead of writing (x, y) ∈ R one often has
other notations, e.g., x ≤ y, x ∼ y, . . . , depending on the context.

A mapping f : X −→ Y is an assignment that associates with each
element x ∈ X a value or image f(x) ∈ Y . Set-theoretically, we can identify
a mapping f with its graph

graph f = {(x, y) | x ∈ X, y = f(x)} ⊆ X × Y.

This is a special kind of a binary relation R , satisfying

(1) ∀x ∈ X ∃ y ∈ Y : (x, y) ∈ R;

(2) ∀x ∈ X ∀y, y′ ∈ Y : (x, y), (x, y′) ∈ R =⇒ y = y′.

Properties (1) and (2) say that this relation is functional. Every functional
relation is the graph of a mapping.

If f : X −→ Y is a mapping then we call X = dom(f) the domain of f
and Y the codomain or target set. We write

f(A) := {f(x) | x ∈ A} = {y ∈ Y | ∃x ∈ A : f(x) = y}
f−1(B) := {x ∈ X | f(x) ∈ B}

for subsets A ⊆ X,B ⊆ Y and call it the image of A and the inverse
image of B under f . The mapping f : X −→ Y is called surjective if
f(X) = Y , and injective if f(x) = f(y) implies that f(x) = f(y), for all
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x, y ∈ X. A mapping f which is injective and surjective, is called bijective.
In this case one can form its inverse, denoted by f−1 : Y −→ X.

An indexed family of elements of a setX is simply a mapping J −→ X,
where we call J 6= ∅ the index set. One often writes (xj)j∈J ⊆ X to denote
this mapping, in particular when one does not want to use an own name for
it (like “f” or so).

Given an indexed family (Aj)j∈J ⊆ P(X) of subsets of a set X one
considers their union and their intersection⋃

j∈J

Aj = {x ∈ X | ∃ j ∈ J : x ∈ Aj}⋂
j∈J

Aj = {x ∈ X | ∀ j ∈ J : x ∈ Aj}.

De Morgan’s Laws say that( ⋃
j∈J

Aj

)c

=
⋂
j∈J

Ac
j and

( ⋂
j∈J

Aj

)c

=
⋃
j∈J

Ac
j .

If f : X −→ Y is a mapping and then

f
( ⋃

j∈J

Aj

)
=
⋃
j∈J

f(Aj) and f
( ⋂

j∈J

Aj

)
⊆
⋂
j∈J

f(Aj)

Attention: the inclusion on the right-hand side is proper in general!
If f : X −→ Y is a mapping and (Bj)j∈J ⊆ P(Y ) is an indexed family

of subsets of Y then

f−1
( ⋃

j∈J

Bj

)
=
⋃
j∈J

f−1(Bj) and f−1
( ⋂

j∈J

Bj

)
=
⋂
j∈J

f−1(Bj)





Appendix B

Some Proofs

B.1. The Weierstrass Theorem

Let us restate the result from Chapter 3.

Theorem B.1 (Weierstrass). Let [a, b] be a compact interval in R. Then
the space of polynomials P[a, b] is dense in C[a, b] for the sup-norm.

Proof. Since every f ∈ C([a, b]; C) can be written as f = u + iv, with
u, v ∈ C([a, b]; R), and such a representation is equally true for polynomials,
we see that the theorem for C-valued functions follows easily from the real
version. So we may suppose K = R in the following.

We introduce the special polynomials 1, t, t2 by

1(t) := 1, t(t) = t, t2 := t2 (t ∈ R).

Moreover, we write f ≤ g for functions f, g on an interval [a, b] as an abbre-
viation of f(t) ≤ g(t) for all t ∈ [a, b].

Without loss of generality we may suppose that [a, b] = [0, 1]; else we
use the change of variables

s =
t− a

b− a
, t ∈ [a, b], t = a+ s(b− a), s ∈ [0, 1]

which yields an isometric isomorphism of C[a, b] onto C[0, 1], mapping P[a, b]
onto P[0, 1].

For an arbitrary function f : [0, 1] −→ R consider its n-th Bernstein
polynomial Bn(f, ·), defined by

Bn(f, t) :=
n∑

k=0

(
n

k

)
tk(1− t)n−kf(k/n) (t ∈ [0, 1]).

183
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The operation

Bn : C[0, 1] −→ P[0, 1], f 7−→ Bn(f, ·)

is obviously linear; it is also monotonic, by which we mean that if f ≤ g,
then also Bnf ≤ Bng. We shall show that if f is continuous, Bnf → f
uniformly on [0, 1].

To this aim, we first compute the Bernstein polynomials of three special
functions.

Bn(1, t) =
n∑

k=0

(
n

k

)
tk(1− t)n−k = (t+ (1− t))n = 1n = 1

and hence Bn1 = 1 for all n ∈ N.

Bn(t, t) =
n∑

k=0

(
n

k

)
tk(1− t)n−k(k/n) =

n∑
k=1

(
n− 1
k − 1

)
tk(1− t)n−k

=
n−1∑
k=0

(
n− 1
k

)
tk+1(1− t)n−1−k = t(t+ (1− t))n−1 = t

and hence Bnt = t for all n ∈ N. Finally,

Bn(t2, t) =
t(1− t)

n
+ t2 (t ∈ [0, 1], n ∈ N)

(We leave the computation as Exercise B.1 below). Now take f ∈ C[0, 1]
and fix ε > 0. Since [0, 1] is compact, f is uniformly continuous. This means
that we find δ > 0 such that

|s− t| ≤ δ =⇒ |f(s)− f(t)| ≤ ε (s, t ∈ [0, 1]).

Define α := 2 ‖f‖∞ /δ2. Then if s, t ∈ [0, 1] are such that |s− t| ≥ δ, then

|f(s)− f(t)| ≤ |f(s)|+ |f(t)| ≤ 2 ‖f‖∞ = αδ2 ≤ α(s− t)2.

Combining both yields

|f(s)− f(t)| ≤ ε+ α(s− t)2 (s, t ∈ [0, 1]).

Fix s ∈ [0, 1] and define hs(t) := (s− t)2. Then we may write

−ε− αhs ≤ f(s)1− f ≤ ε+ αhs.

We now take Bernstein polynomials of all these functions. This yields

Bn(−ε1− αhs) ≤ Bn(f(s)1− f) ≤ Bn(ε1 + αhs).

Since taking Bernstein polynomials is linear and Bn(1, t) = 1, we get

−ε− αBn(hs, t) ≤ f(s)−Bn(f, t) ≤ ε+ αBn(hs, t) (t ∈ [0, 1], n ∈ N).
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Recall that hs = s21−2st+t2 and that we computed Bn(g, ·) for g = 1, t, t2

already above. Using these results we obtain

|f(s)−Bn(f, t)| ≤ ε+ αBn(hs, t) = ε+ α

(
s2 − 2st+

t(1− t)
n

+ t2
)

for all t ∈ [0, 1], n ∈ N. Equating s = t here finally yields

|f(s)−Bn(f, s)| ≤ ε+ α
s(1− s)

n
≤ ε+

α

n

for all s ∈ [0, 1]. Taking suprema yields ‖f −Bnf‖∞ ≤ ε + α/n ≤ 2ε as
n ≥ α/ε.

Exercise B.1. Verify that

Bn(t2, t) =
t(1− t)

n
+ t2 (t ∈ [0, 1], n ∈ N).

Show directly that Bn(t2, ·) → t2 uniformly on [0, 1].

B.2. A Series Criterion for Completeness

In Theorem 5.16 it is shown that in a Banach space each absolutely conver-
gent series converges. Here we shall prove the following converse statement.

Theorem B.2. Let (E, ‖·‖) be a normed vector space such that every abso-
lutely convergent series converges in E. Then E is complete, i.e., a Banach
space.

Proof. Let (fn)n∈N ⊆ E be a Cauchy sequence in E. By Lemma 5.2.c)
it suffices to find a subsequence that converges. Pick successively (fnk

)k∈N
such that ∥∥fnk

− fnk+1

∥∥ ≤ 2−k (k ∈ N).

(This is possible since (fn)n∈N is Cauchy!) For

gk := fnk
− fnk+1

one has therefore
∑∞

k=1 ‖gk‖ <∞. By assumption,

g := lim
N→∞

∑N

k=1
gk = lim

N→∞

∑N

k=1
fnk

− fnk+1
= lim

N→∞
fn1 − fnN+1

exists in E. But this implies that fnN → fn1 − g as N → ∞, and we are
done.
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B.3. Density Principles

We prove the statements from the Intermezzo.

Theorem B.3 (“dense in dense is dense”). Let E be a normed space, let
F,G be linear subspaces. If F is dense in E and F ⊆ G, then G is dense in
E.

Proof. Let f ∈ E and n ∈ N. Then since F dense in E one finds g ∈ F
such that ‖gn − f‖ < 1/n. Since F ⊆ G by hypothesis, gn ∈ G and so there
is hn ∈ G such that ‖gn − hn‖ < 1/n, Hence by the triangle inequality

‖f − hn‖ ≤ ‖f − gn‖+ ‖gn − hn‖ < 2/n→ 0

and so f ∈ G, as was to show.

(A different proof: Since F ⊆ G one has E = F ⊆ G = G, by Lemma
3.17.)

Theorem B.4 (“dense is determining”). Let E,F be normed spaces and
let T, S : E −→ F be bounded linear mappings. If G ⊆ E is dense in E and
Tf = Sf for all f ∈ G, then S = T .

Proof. This was also the subject of Exercise 4.15. Since the operator T −S
is bounded, ker(T − S) is closed. By hypothesis, ker(T − S) contains G,
hence it contains also G = E. So T = S.

Theorem B.5 (“the image of dense is dense in the image”). Let E,F be
normed spaces and let T : E −→ F be a bounded linear mapping. If G ⊆ E
is dense in E, then T (G) is dense in T (E).

Proof. Let f ∈ T (E). Then there is g ∈ E such that Tg = f . Since G is
dense in E, there is a sequence (hn)n∈N ⊆ G such that hn → g in E. Since
T is bounded (=continuous), Thn → Tg = f . But (Thn)n∈N ⊆ T (G), and
so f ∈ T (G).

Theorem B.6 (“dense implies dense in a weaker norm”). Let G be a
linear subspace of a linear space E, and let ‖·‖1 and ‖·‖2 be two norms on
E such that there is a constant with ‖f‖1 ≤ c ‖f‖2 for all f ∈ G. If G is
‖·‖2-norm dense in E, then it is ‖·‖1-norm dense in E, too.

Proof. This is a consequence of the preceding theorem with T = I is the
identity operator, F = E as linear spaces, but with E carrying the norm
‖·‖2 and F = E carrying the norm ‖·‖1.
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Theorem B.7 (“dense convergence implies everywhere convergence”).
Let E,F be normed spaces and let (Tn)n∈N be a sequence of bounded lin-
ear mappings Tn : E −→ F such that there is C ≥ 0 such that

(B.1) ‖Tnf‖ ≤ C ‖f‖ (f ∈ E,n ∈ N)

If T : E −→ F is a bounded linear mapping such that

(B.2) Tf = lim
n→∞

Tnf

for all f ∈ G, and G is dense in E, then (B.2) holds for all f ∈ E.

Proof. Fix C ′ such that ‖Tf‖ ≤ C ′ ‖f‖ for all f ∈ E. (One can take
C ′ = C here; do you see, why?) It suffices to show that the set

M := {f ∈ E | Tnf → Tf}

is closed. Indeed, by hypothesis G ⊆ M , so that E = G ⊆ M ⊆ M . To
show that M is closed, let (fm)m∈N ⊆ M and suppose that fm → f ∈ E.
Then for all n,m ∈ N

‖Tnf − Tf‖ ≤ ‖Tnf − Tnfm‖+ ‖Tnfm − Tfm‖+ ‖Tfm − Tf‖
≤ ‖Tn‖ ‖f − fm‖+ ‖Tnfm − Tfm‖+ C ′ ‖fm − f‖
≤ (C + C ′) ‖fm − f‖+ ‖Tnfm − Tfm‖ .

Fixing m ∈ N and letting n→∞ yields

lim sup
n→∞

‖Tnf − Tf‖ ≤ (C + C ′) ‖fm − f‖ ,

since Tnfm → Tfm. No lettingm→∞ we obtain lim supn→∞ ‖Tnf − Tf‖ =
0, i.e, f ∈M .

Recall that a sequence of linear operators that satisfies the conditions
(B.1) is called uniformly bounded.

Theorem B.8 (“densely defined and bounded extends”). Let E be a
normed spaces, let F be a Banach space and let G ⊆ E be a dense linear
subspace. Furthermore, let T : G −→ F be a bounded linear operator. Then
T extends uniquely to a bounded linear operator T∼ : E −→ F , with the
same bound.

By “the same bound” we mean that if ‖Tf‖ ≤ c ‖f‖ for all f ∈ G, then
also ‖T∼f‖ ≤ c ‖f‖ for all f ∈ E.

Proof. Let c > 0 be such that ‖Tf‖ ≤ c ‖f‖ for all f ∈ G. Uniqueness
follows from Theorem B.4 above. To define the extension, take f ∈ E
arbitrary. Since G is dense in E, there exists a sequence (fn)n∈N ⊆ G such
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that fn → f . In particular, (fn)n∈N is a Cauchy sequence in E. Since T is
bounded as an operator from G to F , we have

‖Tfn − Tfm‖ ≤ c ‖fn − fm‖
and this shows that (Tfn)n∈N is a Cauchy sequence in F . Since F is a
Banach space, the limit limn→∞ Tfn exists in F .

Now we would like to define T∼f := limn→∞ Tfn. To be able to do
this, we must make sure that this definition does only depend on f and not
on the chosen approximation (fn)n∈N. This is easy: if also gn → f then
gn − fn → 0 and so Tfn − Tgn = T (fn − gn) → T0 = 0, by continuity. So
T∼ is well-defined. Since for f ∈ G we can choose fn := f for all n ∈ N, it
is clear that T∼f = Tf if f ∈ G; hence T∼ is indeed an extension of T .

We show that T∼ is linear. If f, g ∈ E and α ∈ K, choose fn, gn ∈ G
with fn → f and gn → g. Then fn +αgn ∈ G and fn +αgn → f +αg, hence
by definition

T∼(f + αg) = lim
n→∞

T (fn + αgn) = lim
n→∞

Tfn + αTgn = T∼f + αT∼g.

To show that T∼ is bounded, take again fn ∈ G fn → f ∈ E. Then
‖fn‖ → ‖f‖ and ‖Tfn‖ → ‖T∼f‖ by the continuity of the norm, and so
from ‖Tfn‖ ≤ c ‖fn‖ for all n it follows that ‖T∼f‖ ≤ c ‖f‖. The proof is
complete.

By the theorem, there is no danger if we write again T in place of T∼.
Note that it is absolutely essential to have the completeness of the space F .

Finally, here is a slight variation of Theorem B.7, but again: here it is
essential that F is a Banach space.

Theorem B.9 (“dense convergence implies everywhere convergence (2)”).
Let E be a normed space, let F be a Banach space and let (Tn)n∈N be a

uniformly bounded sequence of bounded linear mappings Tn : E −→ F . Then
if the limit

(B.3) lim
n→∞

Tnf

exists for each f ∈ G, and G is dense in E, then the limit (B.3) exists
for each f ∈ E, and a bounded linear operator T : E −→ F is defined by
Tf := limn→∞ Tnf , f ∈ E.

Proof. Let c > 0 such that ‖Tnf‖ ≤ c ‖f‖ for all n ∈ N and f ∈ E. Define
the operator T : G −→ F by Tf := limn→∞ Tfn for f ∈ G. Then it is
obvious that T is linear and bounded, similar as in the proof of the Theorem
B.8. By this very theorem, T extends uniquely to a bounded linear operator
T : E −→ F . Now Theorem B.7 can be applied to conclude that Tnf → T f

for all f ∈ E, since G is dense.
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B.4. The Completeness of L1 and L2

In this section we give a proof for the completeness of the spaces L2(X),
where X ⊆ R is an interval. We use only elementary properties of the
Lebesgue integral and the following fundamental result, assumed without
proof.

Again, let X ⊆ R is an arbitrary interval.

Theorem B.10 (Monotone Convergence). Let (fn)n∈N ⊆M+(X) be an
increasing sequence, i.e., fn ≤ fn+1 for n ∈ N. Let f(x) := limn→∞ fn(x)
be the pointwise limit. If

sup
n∈N

∫
X
fn dλ <∞

Then f <∞ almost everywhere, f ∈ L1(X) and

lim
n→∞

∫
X
fn dλ =

∫
X
f dλ.

Using this we can now give a proof of the Dominated Convergence The-
orem.

Theorem B.11 (Dominated Convergence). Let p ∈ {1, 2} and let the
sequence (fn)n∈N ⊆ Lp(X) be such that f(x) := limn→∞ fn(x) exists for
almost all x ∈ X. If there is 0 ≤ g ∈ Lp(X) such that |fn| ≤ g almost
everywhere, for each n ∈ N, then f ∈ Lp(X) and ‖fn − f‖p → 0. If p = 1,
we have also

lim
n→∞

∫
X
fn dλ =

∫
X
f dλ.

Proof. Consider hk := |fk − f |p ≤ 2pgp. For each n is therefore h∗n :=
supk≥n hk ≤ 2pgp, and these relations are to be read pointwise almost ev-
erywhere. Clearly h∗n ↘ 0 pointwise a.e.. But∫

X
h∗n dλ ≤ 2p

∫
X
gp dλ = 2p ‖g‖p

p <∞

by hypothesis. Since h∗1−h∗n ↘ H1, by the Monotone Convergence Theorem
we have

∫
X(h∗1 − h∗n) ↗

∫
X h∗1. This implies that

∫
X h∗n → 0. But

‖fn − f‖p
p =

∫
X
|fn − f |p dλ =

∫
X
hndλ ≤

∫
X
h∗n dλ→ 0.

Hence ‖fn → f‖p → 0 as claimed. In the case p = 1 we have in addition∣∣∣∣∫
X
fn dλ−

∫
X
f dλ

∣∣∣∣ = ∣∣∣∣∫
X
fn − f dλ

∣∣∣∣ ≤ ∫
X
|fn − f | dλ→ 0

as asserted.
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Based on the Dominated Convergence Theorem, we can prove that Lp is
complete, and a little more.

Theorem B.12 (Completeness of Lp). Let p ∈ {1, 2} and let (fn)n∈N ⊆
Lp(X) be a ‖·‖p-Cauchy sequence. Then there are functions f, F ∈ Lp(X)
and a subsequence (fnk

)k such that

|fnk
| ≤ F a.e. and fnk

→ f a.e..

Moreover ‖fn − f‖p → 0. In particular, Lp(X) is a Banach space.

Proof. Note first that if we have found f, F and the subsequence with the
stated properties, then ‖fnk

− f‖p → 0 by Dominated Convergence, and
hence ‖fn − f‖p → 0 since the sequence (fn)n∈N is ‖·‖p-Cauchy.

We find the subsequence in the following way. By using the Cauchy
property we may pick nk < nk+1, k ∈ N, such that

∥∥fnk
− fnk+1

∥∥
p
< 1

2k . To
facilitate notation , let gk := fnk

. Then for every N ∈ N∫
X

(
N∑

k=0

|gk − gk+1|

)p

dλ =

∥∥∥∥∥
N∑

k=0

|gk − gk+1|

∥∥∥∥∥
p

p

≤

(
N∑

k=0

‖gk − gk+1‖p

)p

≤

( ∞∑
k=0

1
2k

)p

= 2p

Define g :=
∑∞

k=0 |gk − gk+1|. Then by the Monotone Convergence Theorem∫
X
gp = lim

N→∞

∫
X

(
N∑

k=0

|gk − gk+1|

)p

dλ ≤ 2p

and hence g ∈ Lp(X). Also by the Monotone Convergence Theorem we have
gp <∞ almost everywhere, implying that

∞∑
k=0

|gk − gk+1| <∞ a.e..

Hence for almost all x ∈ X the series

h(x) :=
∞∑

k=0

gk(x)− gk+1(x) = g0(x)− lim
k
gk(x)

exists. Hence gk → f := g0 − h almost everywhere. And

|gk| ≤ |g0|+
k−1∑
j=0

|gj − gj+1| ≤ |g0|+ g a.e..

Thus if we set F := |g0|+ g, the theorem is completely proved.



Appendix C

General Orthonormal
Systems

C.1. Unconditional Convergence

In general, even countable orthonormal systems do not come with a canon-
ical ordering. For example the trigonometric system

en(t) := e2πin·t (t ∈ [0, 1], n ∈ Z)

in L2(0, 1) is indexed by the integers, and there are of course many ways to
count all integers. Fortunately, the next result shows that the convergence
in Theorem 7.13 is independent of the arrangement of the summands.

Lemma C.1. Let (ej)j∈N be an ONS in a Hilbert space H and let f ∈ H.
Then ∑∞

j=1
〈f, ej〉 ej =

∑∞

j=1

〈
f, eπ(j)

〉
eπ(j)

for every permutation (= bijective map) π : N −→ N.

Proof. Note that of course (eπ(j))j∈N is also an ONS, and so both series
converge, by Theorem 7.13. By the very same theorem,∑∞

j=1
〈f, ej〉 ej = PF f and

∑∞

j=1

〈
f, eπ(j)

〉
eπ(j) = PGf,

where

F = span{ej | j ∈ N} and G = span{eπ(j) | j ∈ N}

Since obviously F = G, the lemma is proved.

191
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From Lemma C.1 we can conclude that if (ei)i∈I is an ONS in a Hilbert
space H, and I is countable, one can use any bijection π : N −→ I to define∑

i∈I
〈f, ei〉 ei :=

∑∞

j=1

〈
f, eπ(j)

〉
eπ(j) (f ∈ H).

Remark C.2. The property shown in Lemma C.1 is called unconditional
summability. Not every convergent series is unconditionally convergent.
For example, the series

∞∑
n=1

(−1)n

n

converges in R, but not unconditionally: one can rearrange the summands to
get a non-convergent series. This follows from a famous theorem of Riemann,
saying that in finite-dimensional spaces unconditional summability is the
same as absolute summability. And indeed, the sum

∞∑
n=1

1
n

= ∞

is not convergent. Riemann’s theorem is only true in finite dimensions,
and here is an example: Let (en)n∈N be an ONS in a Hilbert space H and
λ : N −→ R. The previous results show that the series

∑
n λnen converges

unconditionally if and only if λ ∈ `2. However, by definition it converges
absolutely if ∑

n

|λn| =
∑

n

|λn| ‖en‖ =
∑

n

‖λnen‖ <∞,

hence if and only if λ ∈ `1. Since the sequence (1/n)n∈N is square summable
but not absolutely summable, the series

∞∑
n=1

1
n
en

converges unconditionally but not absolutely in H.

Remark C.3 (The case of the integers). In the case of the integers (as in
the trigonometric system) we can also go a different way. The infinite double
series ∑∞

n=−∞
fn

can be interpreted as a double limit lim
n,m→∞

∑n

k=−m
fk, where (in a general

metric space (Ω, d)) x = limn,m→∞ xnm simply means

∀ ε > 0 ∃N ∈ N ∀n,m ≥ N : d(xnm, x) < ε.



C.2. Uncountable Orthonormal Bases 193

C.2. Uncountable Orthonormal Bases

We now turn to the question how to deal with general, that is, possibly
uncountable ONS. So let H be a Hilbert space and let (ei)i∈I ⊆ H be an
arbitrary ONS therein. For f ∈ H define

If := {i ∈ I | 〈f, ei〉 6= 0}.

Lemma C.4. In the situation above, the set If is at most countable.

Proof. Consider the set In := {i ∈ I | |〈f, ei〉|2 ≥ 1
n}. Then if J ⊆ In is

finite,
cardJ
n

≤
∑
j∈J

|〈f, ej〉|2 ≤ ‖f‖2 ,

by Bessel’s inequality, and hence card In ≤ n ‖f‖2 is finite. Therefore, If =⋃
n∈N In is at most countable.

For f ∈ H we can now define the term∑
i∈I
〈f, ei〉 ei :=

∑
i∈If

〈f, ei〉 ei

and for the sum on the right side we can use any enumeration of the (at
most countably many) members of If . By what we have seen above, this
defines an element of H unambiguously. Then the analogue of Theorem 7.13
holds, replacing everywhere ‘

∑∞
j=1’ by ‘

∑
j∈I ’ and ‘j ∈ N’ by ‘j ∈ I’. In

particular, the analogue of Corollary 7.14 is true:

Theorem C.5. Let H be a Hilbert space, let (ej)j∈I be an ONS in H. Then
the following assertions are equivalent.

(i) {ej | j ∈ I}⊥ = {0};
(ii) span{ej | j ∈ I} is dense in H;

(iii) f =
∑

j∈I
〈f, ej〉 ej for all f ∈ H;

(iv) ‖f‖2 =
∑

j∈I
|〈f, ej〉|2 for all f ∈ H;

(v) 〈f, g〉H =
∑

j∈I
〈f, ej〉 〈g, ej〉 for all f, g ∈ H.

Analogously, we call the (ej)j∈I a maximal ONS (or an orthonormal
basis), if it satisfies the equivalent conditions from the theorem.

Of course, the question arises whether a maximal ONS does always exist.
This is indeed the case, by an application of Zorn’s Lemma. Moreover, some
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other set-theoretic reasoning also reveals that two maximal ONS’s must be
of the same “size” (cardinality).

Exercise C.1. Let H be a separable Hilbert space. Show that every or-
thonormal system in H is at most countable.
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a.e., see also almost everywhere

absolute value, 173

addition

of functions, 177

of operators, 19

of vectors, 173

additive

countably, 69

finitely, 69

adjoint

kernel function, 124

operator, 124

almost everywhere, 73

antisymmetric, 165

axioms for vector spaces, 174

ball

open, Br(x), 26

basis

algebraic, 174

Hamel, 91

orthonormal, countable, 91

orthonormal, general, 193

Bernstein polynomial, 183

Bessel’s inequality, 89

best aproximation, 83

Bolzano–Weierstrass

property, 171

theorem, 171

bound

lower, 166

upper, 166

bounded

essentially (function), 82

function, 17

linear mapping, 19

operator, 19

set in a normed space, 21

uniformly (family of operators), 66

canonical surjection, 178

Cartesian product (of sets), 180

Cauchy–Schwarz inequality, 13

closure A (of a subset in a metric space), 32

codomain, 180

compact

sequentially, 45

subset of a metric space, 45

compatible operation (with an equivalence
relation), 164

complement

set-theoretic, 180

complete

metric, 52

metric space, 52

ONS, see also maximal ONS

complex conjugate z, 172

complex numbers C, 172

continuity

at a point, 41

of a mapping, 41

of the norm, 41

continuous

Hölder of order α, 24

linear mapping, see also bounded linear
mapping

uniformly, 50

convergence

of a sequence, 27

norm, of operators, 125

pointwise, 30

strong, of operators, 125
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uniform, 30

convergent

series, 58

coordinate vector, 176

countable (set), 167

De Morgan’s laws, 181

Dedekind axiom, 171

definite, 16, 26

dense (subset or subspace), 34

diagonal argument, 128

dimension (of a vector space), 174

direct sum

algebraic, 176

decomposition, 176

Dirichlet principle, 106

distance

of a point to a set, 83

of vectors in a normed space, 25

domain

of a mapping, 180

of the Dirichlet-Laplacian, 151

of the Schrödinger operator, 153

Dominated Convergence Theorem, 75

eigenspace, 139

eigenvalue, 139

approximate, 140

eigenvector, 139

equality a.e., ∼λ, 73

equivalence class, 164

equivalence relation, 164

equivalent

metrics, 47

norms, 47

evaluation functional, 21, 177

factor space, 178

family, see also set, indexed family

finite-dimensional (vector) space, 174

Fourier coefficient

abstract, 7

Fourier series

abstract, 7

classical, 10

Fourier transform, 81

Fubini’s theorem, 112

function

(Lebesgue) integrable, 71

(Lebesgue) measurable, 70, 112

adjoint kernel k∗, 124

characteristic, 68

constant to 1, 1, 100

essentially bounded, 82

Hilbert–Schmidt kernel, 114

indicator, see also characteristic function

kernel, 112

potential, 153

test, 97, 106

functional (linear), 18, 175

Fundamental Theorem of Calculus for H1,
102

generator of a subspace, 174

Gram–Schmidt procedure, 9

graph (of a mapping), 180

greates lower bound, 166

greatest (element in a poset), 166

Green’s function

for the Poisson problem, 114

for the Sturm–Liouville problem, 153

Hölder’s inequality, 82

heat equation (for the Schrödinger
operator), 155

hermitian

form, 178

homogeneous, 16

imaginary part Im z, 172

imaginary unit i, 172

index set, 181

induced metric, 26

infimum, 166

infinite-dimensional (vector space), 174

inner product, 3

standard, on C[a, b], 3

standard, on Kd, 3

inner product space, 3

integrable function, 71

invariant (subspace), 143

inverse (of a mapping), 181

isometry, 8, 21

isomorphism, 176

isometric, 21

topological, 61

kernel

Hilbert–Schmidt integral, 114

integral, 112

of a linear mapping, ker(T ), 45, 176

Kronecker delta δij , 29

Laplace transform, 81

least (element in a poset), 166

least upper bound, 166

Legendre polynomials, 11

length

of a vector, 4

limit (of a sequence), 27

linear

mapping, bounded, 19

combination, 174

functional, 175
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mapping, 18, 175

space, 174

span, 174

subspace, 174

lower bound, 166

mapping

bijective, 181

continuous, 41

continuous at a point, 41

continuous linear, see also bounded
linear mapping

general, 180

injective, 180

linear, 175

surjective, 180

uniformly continuous, 50

maximal (element in a poset), 167

measurable

function, 70, 112

product, 112

set (Lebesgue), 70

measure, 70

Lebesgue (outer), one-dimensional, 69

Lebesgue, one-dimensional, 70

Lebesgue, two-dimensional, 112

metric

discrete, 26

induced, 26

induced by a norm, 25

minimal (element in a poset), 167

modulus |z|, 173

Monotone Convergence Theorem, 81

multiplication

abstract, 133

of two operators, 20

operator, 117

scalar, of functions, 177

scalar, of operators, 19

scalar, of vectors, 173

multiplier, 117

negative part f−, 71

Neumann series, 121

norm, 16

1-norm, on C[a, b], 16

1-norm, on L1(X), 74

1-norm, on Kd, 16

1-norm, on `1, 18

1-norm, on L1(X), 71

2-norm on Kd, 5

2-norm, on L2(X) and L2(X), 77

Euclidean on Kd, 5

Hilbert–Schmidt ‖·‖HS , 119

is attained, 116

max-norm, on Kd, 16

of an operator, 19

on H1, 103

on an inner product space, 5

sup-norm, on B(Ω), 18

uniform, see also sup-norm, 30

null set, 72

null space

see kernel, 176

numerical radius, 142

ONS, see also orthonormal system

operator, 18, see also linear mapping

adjoint (Hilbert space), 124

bounded, 19, 116

compact, on Hilbert space, 126

Dirichlet-Laplacian, 151

exponential, 133

finite-dimensional, 125

Hermitian, see also self-adjoint

Hilbert–Schmidt (integral), 114

Hilbert–Schmidt, abstract, 134

Hilbert-Hankel, 136

identity I, 116

integral, 112

invertible, 121

Laplace, 106

Laplace transform, 115

Laplacian, mixed b.c., 158

left and right shift, 118

multiplication (with a function), 117

norm, 19

of finite rank, 125

of integration J , 99, 119

point evaluation, 117

positive self-adjoint, 148

Schödinger, one-dimensional, 153

self-adjoint, 142

semigroup, 156

strict contraction, 122

Sturm-Liouville, see also Schrödinger

Volterra, on C[a, b], 122

Volterra, on L2(a, b), 132

Volterra, the, 157

zero 0, 116

ordered set, 166

ordering

partial, 165

reverse, 166

total, 166

orthogonal, 6

decomposition, 87

projection, 8, 86, 93

orthonormal basis

countable, 91

general, 193

orthonormal system, 7

maximal, countable, 91

maximal, general, 193
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p.d., see also pairwise disjoint

pairwise disjoint (family of sets), 70

parallelogram law, 5

Parseval’s identity, 90

partial ordering, 165

partially ordered set, 166

perpendicular, see also orthogonal

Poincaré inequality, 105

point evaluation, 21, 117, 177

Poisson problem, 104

polarization indentity, 5

poset, see also ordered set

positive part f+, 71

potential function, 153

product measurable, 112

product rule (for H1), 108

projection

associated with a direct sum, 176

orthogonal, 8, 86, 93

Pythagoras’ theorem, 6

quadratic form, 178

quotient space, 178

range ran(T ) (of a linear mapping), 45, 176

real part Re z, 172

rectangle, 112

reflexive, 164, 165

relation

equivalence, 164

functional, 180

set-theoretic, 180

representative (for an equivalence class),
165

resolvent identity, 149

Riesz–Fréchet theorem, 88

scalar product, see also inner product

semigroup, strongly continuous, 156

separable Banach space, 92

sequence, 163

Cauchy, 51

convergent, 27

finite, 32

multiplier, 117

sequentially compact, 45

series

(simply) convergent, 58

absolutely convergent, 58

Neumann, 121

orthogonal, 59

unconditionally convergent, 192

sesquilinear, 3, 178

set

(Lebesgue) null, 72

Cantor’s “middle thirds”, 73

Cartesian product X × Y , 180

complement, Ac, 180

convex, 85

difference, A \B, 180

element of a, a ∈ A, 179

empty, ∅, 179

functional relation, 180

graph, graph(f), 180

image, f(A), 180

index set, 181

indexed family (xj)j∈J , 181

intersection of a family, 181

intersection, A ∩B, 180

inverse image, f−1(B), 180

mapping, f : X −→ Y , 180

power set, P(X), 180

relation, 180

singleton, 179

subset of, A ⊆ B, 179

union of a family, 181

union, A ∪B, 180

shift

left and right, 118

sigma-algebra, 70

singleton set, 179

space

L(E; F ), L(E), 19

C, 172

C(H; K), 126

Cc(R), 81

C[a, b], 1

C1
0(Ω), 106

C1
0[a, b], 44, 97

Cα[a, b], 24

C∞[a, b], 35

Ck[a, b], 35

C0[a, b], 37

Cper[0, 1], 35

L1(X), 74

L1(X × Y ), 112

L2(X), 77

L2(X × Y ), 112

H1(a, b), 98

H1
0(a, b), 104

Kd, 1

M(X), 70

M+(X), 70

P[a, b], 34

St[a, b], 81

B(Ω), 18

c00, 32

R[a, b], 67

`1, 18

`2, 14

`∞, 18

F(X; E), 177

F[a, b], 1
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L1(X), 71

L2(X), 77

L∞(X), 82

abstract vector space, 173

Banach, 55

complete metric, 52

finite-dimensional, 174

Hilbert, 53

infinite-dimensional, 174

inner product, 3

linear, 174

metric, 26

normed, 16

pre-Hilbert, 3

separable, 92

Sobolev (first), 98

Sobolev (higher), 104

span, see also linear span

spectral decomposition, 145

Spectral Theorem, 144

spectrum

of a matrix, 140

of an operator, 140

Steinitz’ theorem, 174

step function, 81

Sturm–Liouville problem, 153

subsequence, 163

subspace

of a metric space, 26

of a vector space, 174

summable

absolutely, 18

square, 14

unconditionally, 192

supremum, 166

symmetric, 26, 164

form, 178

system of representatives, 165

target set or space, 180

theorem

”trigonometric” Weierstrass, 35

Bessel’s inequality, 89

Bolzano–Weierstrass, 46, 171

Cauchy–Schwarz inequality, 13

Dominated Convergence, 75, 189

Fubini, 112

Fundamental Theorem of Calculus for
H1, 102

Gram–Schmidt, 9

Hölder’s inequality (p = q = 2), 77

Hölder’s inequality (general), 82

Monotone Convergence, 81, 189

Neumann series, 121

Parseval’s identity, 59, 90

Poincaré inequality, 105, 159

Pythagoras, 6

Riesz–Fréchet, 88
Spectral Theorem (for cp. self-adj.), 144
Steinitz, 174
Weierstrass, 34, 183
Weierstrass’ M-test, 59
Zorn’s lemma, 167

totally ordered set, 166
transitive, 164, 166
triangle inequality, 14, 16, 26

second, for metrics, 37
second, for norms, 41

trigonometric polynomial, 35
trigonometric system, 9

uncountable (set), 167
unit ball BE (of a normed space E), 21
unit vectors, standard, 28
upper bound, 166

variational method, 104
vector space, 173

weak derivative, 98
weak gradient, 106
Weierstrass’ M-test, 59
Weierstrass’ theorem, 34
well-defined operation, 164
Wronskian, 154

Zorn’s Lemma, 167


