In the name of God

Department of Physics Shahid Beheshti University

STOCHASTIC PROCESSES

Exercise Set 3

(Date Due: 1396/12/20)

1. Markov process:

A : In a Markov process for having on and off lamp, the conditional probability density for different situations are $p(\text{on}; t_n | \text{off}; t_{n-1}) = A$ and $p(\text{off}; t_n | \text{on}; t_{n-1}) = B$. If the lamp to be turn on at t_1 compute the probability having light lamp at t_n . **B** : Compute the Markov scale of attached data.

2. Multivariate Gaussian PDF: Suppose to have a N-dimensional stochastic variable with multivariate Gaussian PDF: $p(X) = \sqrt{\frac{Det(A)}{(2\pi)^N}} \exp\left(-\frac{X^{\dagger}.A.X}{2}\right)$. Show that p(x) is normalize. i.e. $\int d^n X p(X) = 1$

Good luck, Movahed