In the name of God

Advanced Statistical Mechanics I, Third Midterm exam, (Time allowed: 2 hours)

1. Matrix representation of angular momentum operators for a particle with the value of $L=1$ is given as follows:

$$
L_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \tag{1}\\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) ; \quad L_{y}=\frac{\hbar}{\sqrt{2} i}\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) ; \quad L_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Now, suppose we turn on the magnetic field in the z direction and therefore the Hamiltonian is given by:

$$
\begin{equation*}
\mathcal{H}=-\alpha \vec{B} \cdot \vec{L} \tag{2}
\end{equation*}
$$

Find the expectation values of $\left\langle L_{x}\right\rangle,\left\langle L_{y}\right\rangle,\left\langle L_{z}\right\rangle$ in the canonical ensemble. (15 points)
2. For two ideal particles system:
a: Show that the $\Psi^{(A . S .)}\left(r_{1}, r_{2}\right)$ is normalized. (5 points)
b: Derive the density matrix in the coordinate representation, $\rho^{(A . S .)}=\left\langle r_{1}^{\prime}, r_{2}^{\prime}\right| \frac{e^{-\beta \hat{\mathcal{H}}}}{Z}\left|r_{1}, r_{2}\right\rangle$ and explain the corresponding physical meaning. (Hint: $f\left(r^{\prime}-r\right)=\left\langle r^{\prime}\right| e^{-\beta \hat{\mathcal{H}}}|r\rangle=\frac{1}{\lambda^{3}} e^{\left.-\frac{\pi}{\lambda^{2}}\left(r^{\prime}-r\right)^{2}\right)}$) (10 points)
3. Suppose we just have three noninteracting particles (each particle has mass denoted by m which is equal together) in the one-dimensional box with size a. The total energy of this system is:

$$
\begin{equation*}
E=E_{A}+E_{B}+E_{C}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{A}^{2}+n_{B}^{2}+n_{C}^{2}\right) \tag{3}
\end{equation*}
$$

where n_{A}, n_{B} and n_{C} are positive integer values.
a) Find all combinations of $\left(n_{A}, n_{B}, n_{C}\right)$ for which, we achieve the fixed energy as $E /\left(\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\right)=363$ and if we consider the $n \in\{1,5,7,11,13,17,19\}$. (Hint: The total number of micro-states are $\mathcal{N}=13$ irrespective the type of particles.) (10 points)
b) Find the probability of finding the particle in each of the possible energy levels determined in the previous part for classical, bosons and fermions, separately. (10 points)
c) Use the following relations and show that the statements you obtained in part (a) and (b) are correct. (10 points)

$$
\begin{equation*}
W_{M . B .}\left\{n_{i}\right\}=\prod_{i} \frac{\left(g_{i}\right)^{n_{i}}}{n_{i}!} ; \quad W_{B . E .}\left\{n_{i}\right\}=\prod_{i} \frac{\left(n_{i}+g_{i}-1\right)!}{n_{i}!\left(g_{i}-1\right)!} ; \quad W_{F . D .}\left\{n_{i}\right\}=\prod_{i} \frac{g_{i}!}{\left(g_{i}-n_{i}\right)!} \tag{4}
\end{equation*}
$$

4. Using the entropy as $S(N, V, E)=k_{B} \ln W(\{n\})$, where $W(\{n\})$ is the probability of having a configuration denoted by $\{n\}$, compute the most probable value of number of particle in i th energy level if associated level has the degeneracy equates to g_{i} for M.B., B.E. and F.D. statistics. (Hints: You should derive $W(\{n\})$ which is given by Eq. (4)). (10 ponts)

Good luck, Movahed
$e^{-\beta \hat{H}}=e^{\alpha \beta B_{z} L_{z}}$
" $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
$e^{\alpha \beta B_{z} L_{z}}=\mathbb{1}+\alpha \beta B_{z} \hbar\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)+\frac{\left(\alpha \beta B_{z} \hbar\right)^{2}}{2!}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

$$
+\frac{\left(\alpha \beta B_{z} t\right)^{3}}{3!}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)+\cdots
$$

$$
e^{\alpha \beta B_{z} L_{z}}=\left(\begin{array}{ccc}
1+\alpha \beta B_{z} \hbar+\frac{\left(\alpha \beta B_{z} \hbar\right)^{2}}{2!}+\frac{\left(\alpha \beta B_{z} \hbar\right)^{3}}{3!}+\cdots & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1-\alpha \beta B_{2} \hbar+\frac{\left(\alpha \beta B_{2} \hbar\right)^{2}}{2}-\frac{\left(\alpha \beta B_{2} \hbar\right)^{3}}{3!}
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
e^{\alpha \beta B_{2} \hbar} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\alpha \beta B_{2} \hbar}
\end{array}\right), \quad \hat{\rho}=\frac{\left(\begin{array}{ccc}
e^{\alpha \beta B_{2} \hbar} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -\alpha \beta B_{2} \hbar
\end{array}\right)}{e^{\alpha \beta B_{2} \hbar}+e^{-\alpha \beta B_{2} \hbar}+1}
$$

$$
\begin{aligned}
& \text { =س1 } z \text { Ers, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - lizu! }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle L_{z}\right\rangle=\operatorname{Tr}\left(\hat{\rho} L_{z}\right)=\frac{\operatorname{Tr}\left[\hbar\left(\begin{array}{ccc}
e^{\alpha \beta B_{2} \hbar} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\right]}{e^{\alpha \beta B_{2} \hbar}+e^{-\alpha \beta B_{2} \hbar}+1} \\
& =\frac{\hbar\left(e^{\alpha \beta B_{2} \hbar}-e^{-\alpha \beta B_{2} \hbar}\right)}{e^{\alpha \beta B_{2} \hbar}+e^{-\alpha \beta B_{2} \hbar}+1}=\frac{2 \hbar \sinh \left(\alpha \beta B_{2} \hbar\right)}{2 \cosh \left(\alpha \beta B_{2} \hbar\right)+1} \\
& \left\langle L_{y}\right\rangle=\operatorname{Tr}\left(\hat{\rho} L_{y}\right)=\frac{\operatorname{Tr}\left[\frac{\hbar}{\sqrt{2} i}\left(\begin{array}{ccc}
e^{\alpha \beta B_{2} \hbar} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\alpha \beta B_{2} \hbar}
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)\right]}{e^{\alpha \beta B_{2} \hbar}+e^{-\alpha \beta B_{2} \hbar}+1} \\
& =\frac{\frac{\hbar}{\sqrt{2} i} \operatorname{Tr}\left(\begin{array}{ccc}
0 & e^{\alpha \beta B_{2} \hbar} & 0 \\
-1 & 0 & 0 \\
0 & -e^{-\alpha \beta B_{2} \hbar} & 0
\end{array}\right)}{e^{\alpha \beta B_{2} \hbar}+e^{-\alpha \beta B_{2} \hbar}+1}=0 \\
& \left\langle L_{x}\right\rangle=\operatorname{Tr}\left(\hat{\rho} L_{x}\right)=\frac{\operatorname{Tr}\left[\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
e^{\alpha \beta B_{2} \hbar} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\alpha \beta B_{2} \hbar}
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\right]}{e^{\alpha \beta B_{2} \hbar}+e^{-\alpha \beta B_{2} \hbar}+1} \\
& =\frac{\frac{\hbar}{\sqrt{2}} \operatorname{Tr}\left(\begin{array}{ccc}
0 & e^{\alpha \beta B_{2} \hbar} & 0 \\
1 & 0 & 1 \\
0 & e^{-\alpha \beta B_{2} \hbar} & 0
\end{array}\right)}{e^{\alpha \beta B_{2} \hbar}+e^{-\alpha \beta B_{2} \hbar}+1}=0
\end{aligned}
$$

$$
\begin{aligned}
4^{A \cdot S}\left(r_{1}, r_{2}\right) & =\sum_{p} \frac{(-1)^{p}}{\sqrt{2!}} \phi_{k_{1}}\left(r_{1}\right) \phi_{k_{2}}\left(r_{2}\right) \\
& =\frac{1}{\sqrt{2!}}\left[\phi_{k_{1}}\left(r_{1}\right) \phi_{k_{2}}\left(r_{2}\right)-\phi_{k_{2}}\left(r_{1}\right) \phi_{k_{1}}\left(r_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\left\langle^ { A \cdot s ^ { * } } (r _ { 1 } , r _ { 2 }) \left\langle\psi^{A \cdot s}\left(r_{1}, r_{2}\right)=\right.\right. & \frac{1}{2}\left[\phi_{k_{1}}^{*}\left(r_{1}\right) \phi_{k_{2}}^{*}\left(r_{2}\right) \phi_{k_{1}}\left(r_{1}\right) \phi_{k_{2}}\left(r_{2}\right)-\phi_{k_{1}}^{*}\left(r_{1}\right) \underset{k_{2}}{*}\left(r_{2}\right) \underset{k_{1}}{\phi}\left(r_{2}\right) \underset{k_{2}}{\phi}\left(r_{1}\right)\right. \\
& -\phi_{k_{1}}^{*}\left(r_{2}\right) \phi_{k_{2}}^{*}\left(r_{1}\right) \phi_{k_{1}}\left(r_{1}\right) \phi_{k_{2}}\left(r_{2}\right)+\underset{k_{1}}{*}\left(r_{2}\right) \stackrel{*}{\phi_{k_{2}}}\left(r_{1}\right) \underset{k_{1}}{\left.\phi_{2}\left(r_{2}\right) \phi_{k_{2}}\left(r_{1}\right)\right]}
\end{aligned}
$$

「y, : دعركا

$$
\left|4^{4 \cdot 5}\left(r_{1}, r_{2}\right)\right|^{2}=\frac{1}{2}(2)=1
$$

$$
\begin{aligned}
\left\langle r_{1}^{\prime} \cdot r_{2}^{\prime}\right| e^{-\beta \hat{H}}\left|r_{1}, r_{2}\right\rangle & =f\left(r_{1}^{\prime}-r_{1}\right) f\left(r_{2}^{\prime}-r_{2}\right) \pm f\left(r_{1}^{\prime}-r_{2}\right) f\left(r_{2}^{\prime}-r_{1}\right) \\
& =\frac{1}{\lambda^{6}}\left\{\exp \left(\frac{-\pi}{\lambda^{2}}\left(\left(r_{1}^{\prime}-r_{1}\right)^{2}+\left(r_{2}^{\prime}-r_{2}\right)^{2}\right)\right)\right\} \\
& \pm \exp \left(\frac{-\pi}{\lambda^{2}}\left(\left(r_{1}^{\prime}-r_{2}\right)^{2}+\left(r_{2}^{\prime}-r_{1}\right)^{2}\right)\right)
\end{aligned}
$$

$$
\left\langle r_{1}^{\prime}, r_{2}^{\prime}\right| \rho\left|r_{1}, r_{2}\right\rangle=\frac{1}{Z^{A \cdot 3} \lambda^{6}}\left[1 \pm \exp \left\{\frac{-2 \pi}{\lambda^{2}}\left(r_{1}-r_{2}\right)^{2}\right\}\right]
$$

$$
\begin{gathered}
(11,11,11) \\
(13,13,5)(13,5,13)(5,13,13) \\
(1,1,19)(1,19,1)(19,1,1) \\
(5,7,17)(5,17,7)(7,5,17)(7,17,5)(17,5,7)(17,7,5)
\end{gathered}
$$

(a) 3

$$
: \operatorname{mu}^{\prime} w^{\prime}=1, \gg
$$

$$
\begin{aligned}
& P_{1}=\left(\frac{3}{13}\right) \times\left(\frac{2}{3}\right)=\frac{2}{13}, P_{5}=\left(\frac{3}{13}\right) \times\left(\frac{1}{3}\right)+\left(\frac{6}{13}\right) \times\left(\frac{1}{3}\right)=\frac{3}{13} \\
& P_{7}=\left(\frac{6}{13}\right) \times\left(\frac{1}{3}\right)=\frac{2}{3}, P_{11}=\frac{1}{3}, P_{13}=\left(\frac{3}{13}\right) \times \frac{2}{3}=\frac{2}{13} \\
& P_{17}=\left(\frac{6}{13}\right) \times\left(\frac{1}{3}\right)=\frac{2}{3}, P_{19}=\left(\frac{3}{13}\right) \times\left(\frac{1}{3}\right)=\frac{1}{13}
\end{aligned}
$$

位
亿位

$$
P_{5}=P_{7}=P_{17}=\frac{1}{3}
$$

：juge＝；；
 ．刃iّ

$$
\begin{aligned}
& P_{1}=\left(\frac{1}{4}\right) \times\left(\frac{2}{3}\right)=\frac{1}{6}, P_{5}=\left(\frac{1}{4}\right) \times\left(\frac{1}{3}\right)+\left(\frac{1}{4}\right) \times\left(\frac{1}{3}\right)=\frac{1}{6} \\
& P_{7}=\left(\frac{1}{4}\right) \times\left(\frac{1}{3}\right)=\frac{1}{12}, P_{11}=\left(\frac{1}{4}\right) \times(1)=\frac{1}{4}, P_{13}=\left(\frac{1}{4}\right) \times\left(\frac{2}{3}\right)=\frac{1}{6} \\
& P_{17}=\left(\frac{1}{4}\right) \times\left(\frac{1}{3}\right)=\frac{1}{12}, P_{19}=\left(\frac{1}{4}\right) \times\left(\frac{1}{3}\right)=\frac{1}{12}
\end{aligned}
$$

*

 رリ ол о
 $\cdot \overrightarrow{-r}-j=\omega_{M, B}$
*

 -

$$
\begin{aligned}
& \text { porm }\left(n_{1}=2, n_{19}=1\right):\left\{\begin{array}{l}
w=6 \times \frac{1}{2!} \times \frac{1}{1!}=3 \\
w=\frac{1}{2!(-1)!} \times \frac{1}{1!\cdot!}=0 \\
w=1
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { ن }
\end{aligned}
$$

Scanned by CamScanner

$$
\begin{aligned}
& p, \ldots,\left(n_{5}=n_{7}=n_{17}=1\right):\left\{\begin{array}{l}
w=6 \times \frac{1}{1!} \times \frac{1}{1!} \times \frac{1}{1!}=6 \quad \text { un! } \\
w=\frac{1}{1!0!} \times \frac{1}{1!0!} \times \frac{1}{1!1!}=1 \\
w=1
\end{array} \quad \text { - } \quad\right. \text {, } \\
& \text { بور: } \\
& S(N, V, E) \simeq k \ln w\left\{n_{i}^{*}\right\} \\
& \delta \ln w\left\{n_{i}\right\}-\left[\alpha \sum_{i} \delta n_{i}+\beta \sum_{i} \varepsilon_{i} \delta n_{i}\right]=0 \\
& \begin{array}{l}
\ln W\left\{n_{i}\right\}=\sum_{i} \ln w(i) \simeq \sum_{i}\left[n_{i} \ln \left(\frac{g_{i}}{n_{i}}-a\right)-\frac{g_{i}}{a} \ln \left(1-a \frac{n_{i}}{g_{i}}\right)\right] \\
\quad-1 \quad
\end{array} \\
& a=\left\{\begin{array}{cc}
-1 & B_{0} E \\
0 & M_{1} B \\
1 & F_{1} D
\end{array}\right. \\
& \sum_{i}\left[\ln \left(\frac{g_{i}}{n_{i}}-a\right)-\alpha-\beta \varepsilon_{i}\right]_{n_{i}=n_{i}^{*}} \quad \Sigma n_{i}=0 \\
& \operatorname{Ln}\left(\frac{g_{i}}{n_{i}^{*}}-a\right)-\alpha-\beta \varepsilon_{i}=0 \\
& n_{i}^{*}=\frac{g_{i}}{e^{\alpha+\beta \varepsilon_{i}}+a}
\end{aligned}
$$

