Advanced Statistical Mechanics I, Second Midterm exam, (Time allowed: 3 hours)

1. We simulated the behavior of a thermodynamic system. Each time we ran the program, we obtained a different energy for the energy of the whole system, which data can be seen in the list below. In the simulation, we assumed the temperature of the system to be $T=27^{\circ} \mathrm{C}$. What is the approximate amount of heat capacity in constant volume for this system? (10 points)

$$
\text { data }=[-5,-4,2,1,3,4,-1,-3,5,-2]
$$

2. The molecule of an ideal gas consists of two atoms, of mass m, rigidly separated by a distance d. The atoms of each molecule carry charges q and $-q$ respectively, therefore have P as electric dipole, and the gas is placed in an electric field $\overrightarrow{\mathcal{E}}=\mathcal{E} \hat{k}$.
A: Find the mean polarization as (10 points)

$$
\left\langle P_{N}\right\rangle=N\langle P\rangle=N \int d \phi d \theta \sin (\theta) \rho_{\text {canonic }}(\theta, \phi) P
$$

B: Compute the specific heat per molecule for kinetic and electric degrees of freedoms, namely $C_{V}=C_{V}^{\text {kinetic }}+C_{V}^{\text {electric }}$, if quantum effects can be neglected. (10 points)
3. Consider a system consisting of $3 N$ ultra-relativistic particles moving in one dimension in the L which is the length of the space available, whose Hamiltonian is given by $\mathcal{H}=\sum_{i=1}^{3 N}\left|p_{i}\right| c$.
A: Show that the partition function in this case is given by: (10 points)

$$
Z_{3 N}(L, \beta)=\frac{1}{(3 N)!}\left[2 L\left(\frac{k_{B} T}{h c}\right)\right]^{3 N}
$$

B: Consider $\beta=\beta^{\prime}+i \beta^{\prime \prime}=1 / k_{B} T+i \beta^{\prime \prime}$, show that the density of states of this system is given by: (5 points)

$$
g(\epsilon)=\frac{1}{2 \pi i} \int_{\beta^{\prime}-i \infty}^{\beta^{\prime}+i \infty} d \beta e^{\beta \epsilon} Z_{3 N}(L, \beta)=\frac{[2 L \epsilon /(h c)]^{3 N}}{\epsilon \Gamma(3 N+1) \Gamma(3 N)}
$$

Hint: $\int_{\beta^{\prime}-i \infty}^{\beta^{\prime}+i \infty} d \beta \frac{e^{\beta \epsilon}}{\beta^{K}}=2 \pi i b_{-1}(\beta=0)=\frac{1}{(K-1)!}\left(\frac{d}{d \beta}\right)_{\beta=0}^{K-1}\left[\beta^{K} e^{\beta \epsilon} / \beta^{K}\right]$
4. For the Grand-Canonical ensemble show that the probability of finding a micro-state is given by: (10 points)

$$
\rho(\vec{q}, \vec{p}) d^{3 N} q d^{3 N} p \sim e^{-\beta(\mathcal{H}-\mu N)} d^{3 N} q d^{3 N} p
$$

5. Equipartition theorem: Suppose that for a system in D-dimension with N particles, the Hamiltonian is given by:

$$
\mathcal{H}=\sum_{i=1}^{D N}\left(\frac{p_{i}^{\xi}}{2 m}+m q_{i}^{\gamma}\right)-\sum_{i=1}^{N}\left(B m_{i}+E P_{i}\right)
$$

here, B is an external magnetic field and m is intrinsic magnetic moment, also E is external electric field and P is intrinsic dipole moment. Using equipartition theorem, show that: (5 points)

$$
\langle\mathcal{H}\rangle=\frac{D N}{\xi} k_{B} T+\frac{D N}{\gamma} k_{B} T-N B\langle m\rangle-N E\langle P\rangle
$$

$$
\begin{aligned}
& \left\langle(\Delta E)^{2}\right\rangle \equiv\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=k_{B} T^{2} C_{V} \\
& C_{V}=\frac{\left\langle E^{2}\right\rangle-\langle E\rangle^{2}}{k_{B} T^{2}} \quad T=270^{\circ}=300 \mathrm{~K}^{\circ} \\
& \langle E\rangle=\frac{-5-4-3-2-1+1+2+3+4+5}{10}=0 \\
& \left\langle E^{2}\right\rangle=\frac{2(5)^{2}+2(4)^{2}+2(3)^{2}+2(2)^{2}+2(1)^{2}}{10}=11 \\
& C_{V}=\frac{11}{k_{B} \times(300)^{2}}=8.86 \times 10^{18}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle p_{N}\right\rangle=N\langle p\rangle=N\left(\frac{\int q d \cos \theta e^{\beta E_{0} \cos \theta-\beta \frac{p^{2}}{2 m}} d \Omega^{\beta E_{0} \cos \theta-\beta \frac{p^{2}}{2 m}} d \Omega \frac{d^{3} d^{3} q}{h^{3}}}{\int e^{3} d^{3} q} h^{3}\right) \\
& =N\left(\frac{\int e^{-\beta \frac{\beta p^{2}}{2 m}} \frac{d p d^{3} q}{h^{3}} \times \int q d \cos \theta e^{\beta E_{0} \cos \theta} d \Omega}{\int e^{-\frac{\beta p^{2}}{2 m}} \frac{d p d^{3} q}{h^{3}} \times \int e^{\beta E_{0} \cos \theta} d \Omega}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =N\left(\frac{\int_{0}^{2 \pi} \int_{0}^{\pi} q d \cos \theta e^{\beta E_{0} \cos \theta} \sin \theta d \theta d \phi}{\int_{0}^{2 \pi} \int_{0}^{\pi} e^{\beta E_{0} \cos \theta} \sin \theta d \theta d \phi}\right)=N\left(\frac{q d \int_{0}^{\pi} \cos \theta e^{\beta E_{0} \cos \theta} \sin \theta d \theta}{\int_{0}^{\pi} e^{\beta E_{0} \cos \theta} \sin \theta d \theta}\right) \\
& \int_{0}^{\pi} \cos \theta e^{\alpha \cos \theta} \sin \theta d \theta=-\int_{1}^{-1} x e^{\alpha x} d x \quad x=\cos \theta \\
& \left.=-\frac{\partial}{\partial \alpha}\left(\int_{1}^{-1} e^{\alpha x} d x\right)=-\frac{\partial}{\partial \alpha}\left(\frac{1}{\alpha} e^{\alpha x}\right]_{1}^{-1}\right)=\frac{-\partial}{\partial \alpha}\left(\frac{e^{-\alpha}-e^{\alpha}}{\alpha}\right) \\
& =\frac{\partial}{\partial \alpha}\left(2 \frac{\sinh \alpha}{\alpha}\right)=\frac{2 \cosh \alpha \cdot \alpha-2 \sinh \alpha}{\alpha^{2}}=\frac{2 \cosh \alpha}{\alpha}-\frac{2 \sinh \alpha}{\alpha^{2}} \\
& \left.\int_{0}^{\pi} e^{\alpha \cos \theta} \sin \theta d \theta=-\frac{1}{\alpha} e^{\alpha \cos \theta}\right]_{0}^{\pi}=\frac{e^{\alpha}-e^{-\alpha}}{\alpha}=\frac{2 \sinh \alpha}{\alpha} \\
& \frac{2 \cosh \alpha}{\alpha}-\frac{2 \sinh \alpha}{\alpha^{2}} \\
& \underline{2 \sinh \alpha}=\operatorname{coth} \alpha-\frac{1}{\alpha} \\
& \left\langle p_{N}\right\rangle=N q d\left(\operatorname{Coth}(\beta q d \varepsilon)-\frac{1}{\beta q d \varepsilon}\right)
\end{aligned}
$$

 \rightarrow
 نِّ

$$
\begin{aligned}
& U=\frac{3}{2} N k_{B} T-\langle p\rangle \varepsilon=\frac{3}{2} N k_{B} T-N \varepsilon q d\left[\operatorname{Coth}\left(\beta E_{0}\right)-\frac{1}{\beta E_{0}}\right] \\
& C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=\frac{-1}{k_{B} T^{2}}\left(\frac{\partial U}{\partial \beta}\right)_{V}=\underbrace{\frac{3}{2} N k_{B}}_{C_{V}^{\text {kinetic }}}+\underbrace{N k_{B}\left[1-\frac{\left(E_{0} \beta\right)^{2}}{\sinh ^{2}\left(E_{0} B\right)}\right]}_{C_{V}^{\text {electric }}} \\
& Z_{3 N}=\frac{1}{(3 N)!h^{3 N}} \int e^{-\beta C \sum_{i=1}^{3 N}\left|p_{i}\right|} \prod_{i=1}^{3 N} d q_{i} d p_{i} \\
& =\frac{1}{(3 N)!h^{3 N}}\left[\int_{0}^{L} d q \int_{-\infty}^{+\infty} e^{-\beta c|p|} d p\right]^{3 N} \\
& =\frac{L^{3 N}}{(3 N)!h^{3 N}}\left[2 \int_{0}^{\infty} e^{-\beta C p} d p\right]^{3 N}=\frac{L^{3 N}}{(3 N)!h^{3 N}}\left[\frac{-2}{\beta C}\left(e^{-\beta C p}\right)_{0}^{\infty}\right]^{3 N} \\
& =\frac{L^{3 N}}{(3 N)!h^{3 N}}\left[2 \frac{k_{B} T}{C}\right]^{3 N} \\
& Z_{3 N}=\frac{1}{(3 N)!}\left[2 L \frac{k_{B} T}{c h}\right]^{3 N}
\end{aligned}
$$

:

$$
\int_{\beta^{\prime}-i \infty}^{\beta^{\prime}+i \infty} d \beta \frac{e^{\beta \varepsilon}}{\beta^{k}}=2 \pi i b_{-1}(\beta=0)=\frac{2 \pi i}{(k-1)!}\left(\frac{d}{d \beta}\right)_{\beta=0}^{k-1}\left[\frac{\beta^{k} e^{\beta \varepsilon}}{\beta^{k}}\right]
$$

:

$$
\begin{aligned}
& g(\varepsilon)=\frac{1}{2 \pi i} \int_{\beta_{-i \infty}^{\prime}}^{\beta^{\prime}+i \infty} d \beta e^{\beta \varepsilon}\left(\frac{1}{(3 N)!}\left(2 L\left(\frac{k_{B} T}{h c}\right)\right)^{3 N}\right) \\
& =\frac{1}{2 \pi i} \frac{1}{(3 N)!}\left(\frac{2 L}{h c}\right)^{3 N} \int_{\beta^{\prime}-i \infty}^{\beta^{\prime}+i \infty} d \beta \frac{e^{\beta \varepsilon}}{\beta^{3 N}} \\
& =\frac{1}{2 \pi i} \frac{1}{(3 N)!}\left(\frac{2 L}{h c}\right)^{3 N}\left(\frac{2 \pi i}{(3 N-1)!}\left(\frac{d}{d \beta}\right)_{\beta=0}^{3 N-1}\left[\frac{\beta^{k} e^{\beta \varepsilon}}{\beta^{k}}\right]\right) \\
& \left.=\frac{1}{(3 N)!}\left(\frac{2 L}{h c}\right)^{3 N} \frac{1}{(3 N-1)!} \varepsilon^{3 N-1}=\frac{2 L \varepsilon}{h c}\right]^{3 N} \\
& =\Gamma(3 N+1) \Gamma(3 N)
\end{aligned}
$$

$$
\begin{aligned}
& N_{r}+N_{r}^{\prime}=N^{(0)}=\text { Constant } \\
& E_{S}+E_{S}^{\prime}=E^{(0)}=\text { Constant }
\end{aligned}
$$

的 ; $\int_{-}^{p, 1>}$

$$
\frac{N_{r}}{N^{(0)}}=\left(1-\frac{N_{r}^{\prime}}{N^{(0)}}\right) \ll 1 \quad, \frac{E_{s}}{E^{(0)}}=\left(1-\frac{E_{S}^{\prime}}{E^{(0)}}\right) \ll 1
$$

$$
P_{r, s} \propto \Omega^{\prime}\left(N^{(0)}-N_{r}, E^{(0)}-E_{s}\right)
$$

$$
\ln \Omega^{\prime}\left(N^{(0)}-N_{r}, E^{(0)}-E_{S}\right)=\ln \Omega^{\prime}\left(N^{(0)}, E^{(0)}\right)+\left(\frac{\partial \ln \Omega^{\prime}}{\partial N^{\prime}}\right)_{N^{\prime}=N^{(0)}}\left(-N_{r}\right)
$$

$$
+\left(\frac{\partial \ln \Omega^{\prime}}{\partial E^{\prime}}\right)_{E^{\prime}=E^{(0)}}\left(-E_{s}\right)+\cdots \cdot
$$

$$
\simeq \ln \Omega^{\prime}\left(N^{(0)}, E^{(0)}\right)+\frac{\mu^{\prime}}{k T^{\prime}}-\frac{1}{k T^{\prime}}, E_{S}
$$

$$
P_{r, s} \alpha \exp \left(-\beta\left(E_{s}-\mu_{N_{r}}\right)\right)
$$

$$
\rho(\vec{p}, \vec{q}) d^{3 N} p d_{q}^{3 N} N e^{-\beta(\nu-\mu N)} d^{3 N} d^{3 N}
$$

s - مَّ cis,

$$
\sum_{r, s} n_{r, s}=N \quad, \sum_{r, s} n_{r, s} N_{r}=N \bar{N}, \sum_{r, s} n_{r, s} E_{s}=N \bar{E}
$$

:

$$
w\left\{n_{r, s}\right\}=\frac{\mathcal{N}!}{\prod_{r, s}\left(n_{r, s}!\right)}
$$

با باسْفًا : Tِّ

$$
\begin{aligned}
& \frac{n_{r, s}^{*}}{N}=\frac{\exp \left(-\alpha N_{r}-\beta E_{s}\right)}{\sum_{r, s} \exp \left(-\alpha N_{r}-\beta E_{s}\right)} \\
& \langle H\rangle=\left\langle\sum_{i=1}^{D N} \frac{P_{i}^{\xi}}{2 m}+m q_{i}^{\gamma}\right\rangle-\left\langle\sum_{i=1}^{N} B m_{i}+E P_{i}\right\rangle \\
& =\sum_{i=1}^{D N}\left\langle\frac{p_{i}^{\xi}}{2 m}+m q_{i}^{\gamma}\right\rangle-\sum_{i=1}^{N}(B\langle m\rangle+E\langle p\rangle) \\
& =\sum_{i=1}^{D N}\left(\left\langle\frac{1}{\xi} P_{i} \frac{\partial H}{\partial P_{i}}\right\rangle+\left\langle\frac{1}{\gamma} q_{i} \frac{\partial H}{\partial q_{i}}\right\rangle\right)-N B\langle m\rangle-N E\{P\rangle \\
& =\sum_{i=1}^{D_{N}}\left(\frac{1}{\xi}\left\langle p_{i} \frac{\partial H}{\partial p_{i}}\right\rangle+\frac{1}{\gamma}\left\langle q_{i} \frac{\partial H}{\partial q_{i}}\right\rangle\right)-N B\langle m\rangle-N E\langle p\rangle \\
& : \operatorname{rin}_{\beta}, \operatorname{limin}^{\prime} \left\lvert\,\left\langle x_{i} \frac{\partial H}{\partial x_{i}}\right\rangle=k_{B}^{\top}\right. \text { de, } ; 1 \\
& =\frac{D N}{\xi} k_{B} T+\frac{D N}{\gamma} k_{B} T-N B\langle m\rangle-N E\langle P\rangle
\end{aligned}
$$

