Date: 1403/09/29

Name:

In the name of God
Department of Physics, Shahid Beheshti University

STATISTICAL FIELD THEORY AND CRITICAL PHENOMENA

Second midterm exam

(Time allowed: 3:00 hours)
NOTE: All question must be answered. Write the answer of each question in separate sheet.

1. Ising model: According to the RG approach in coordinate space and without extraction the exact form of
recursive relation, show that for the 1-D Ising model, we have no non-trivial fixed point. On the contrary,
show that for the 2-D Ising model, we expect to have T, # 0 as an repulsive fixed point. What about the
3-D Ising model? (Hint: suppose that h = 0 and consider the regular substrate for the Ising model.) (10
points)

2. Recursive relation and S-function:

(a) Derive the relation between S-function and Ry. (5 points)
(b) What is the meaning of hyper-critical surface and its relation with Universality class? (5 points)

(¢) Classify the relevant and irrelevant coupling coefficients by means of linearized R, and S-function? (5
points)

3. Dynamical critical exponent: According to dissipation theorem and time-dependent Landau-Ginzburg
theory, one can write w = —F% + ¢(r,t), where ¢ is time, [K]’s are coupling and ((r,t) is noise

term with Gaussian PDF and (¢(r,t)¢(r',t")) = Ddpirac(r — r")ds, T is a rate of interaction and

C(KL ) = [ |50 0 + a0+ g0 ()

Also the Linear response function is defined by x(r,t) = limp_ w.

(a) Now according to the Linear response function defined by x(r,t) = limp_ 6<"§;’t)>, determine the

evolution equation for response function. (5 points)

(b) Determine the static and stationary response function. Explain the physical meaning of your results.
(5 points)

(¢) Bonus question: Show that the evolution equation of probability for order parameter according to:

T / g [F P(n(rl))% —~ (COpirac(n — )¢
would be 5P o dd , ) r oL P D 6P7]
WP (), >—/ S { i) ”+26n<r'>]

r
What is the meaning of your result when I' = 0?7 (10 points)

4. Widom Hypothesis: Considering ty = ¢**t and hy = ¢** h, derive the following scaling exponents of scaling
relations in terms of z; and zj: M ~t%, M ~ Y9 y ~t7, C ~ 1=, € ~t~¥. (10 points)

Good luck, Movahed
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226 Scaling

8.5 SUMMARY

The scaling hypothesis is a valuable way to correlate data for sys-
tems near the critical point, and for some non-equilibrium systems as
they approach equilibrium. These are empirical statements. In the follow-
ing chapter, we will discuss how the renormalisation group accounts for
the success of scaling ideas, for systems in equilibrium. Certain driven
non-equilibrium systems, such as models of atomic deposition, exhibit a
formal analogy to critical dynamics, and this has proven to be useful in
analysing these systems. Finally, there are tantalising suggestions that
some systems approaching equilibrium may also be usefully described by
renormalisation group ideas. Further discussion of this topic is to be found
in chapter 10.

APPENDIX 8 - THE FOKKER-PLANCK EQUATION

In this appendix, we sketch the derivation of the Fokker-Planck equa-

tion, starting from the Langevin equation (8.41).
We begin with the definition of the probability distribution for the
order parameter 7(r), and differentiate with respect to time:

OP,({n(e)}, 1) = (868 In(e) (e, 1, {CHDe
= [a (Grampry ) =T (D).

/"d'afr')@: b~ ”]>
ety ),
= [t s PP — (=] (A8

The evaluation of {((é6(n — 7)), is accomplished by noting the general result

(F{Q)0) = [ D¢ P P

—D/D(

D<6C> (482
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where we integrated by parts and used the expression (8.42) for the proba-
bility distribution. These operations can be verified, if desired, by writing
the functional integral as a multiple integral. In the present case,

(C(r',t)ﬁ(n—'ﬁ))¢=D<m6,—’56(n—7i)>g
Y R
=D [ <64(f,t) F ")>¢

- _ ' 6 ‘5‘7-7-(1'”115) =
=~ [ o s (B =) (8

The quantity being averaged in the above expression is essentially a re-
sponse function, and can be evaluated from the formal solution to the
Langevin equation (8.41):

t t
7i(r,t) = H(r,0) — /0 dt’ri—g (7(r, ) + _/0 dt' {(r,t"). (A8.4)

Differentiating with respect to {(x’,t”) and noting that causality implies
that 7(r,?) only depends on {(r,¢') when t > t/, we find that

om(r,t ¢ § 6L _
6C7Z£", t’a) = & =) [_ /t dt { ST, gy O tl))} - t”)] '
(A8.5)

In eqn. (A8.3), we require the above quantity evaluated at ¢ = ¢”. The
value of the Heaviside function #(t) at zero is in this case §(0) = 1/2, as can
be seen by repeating the above derivation with the two-point correlation
function of { being proportional not to §(t — t’), but to a sharply-peaked
even function of (t — ¢'). Thus

7)1
§C(r,t) 2

§(r—r'). (A8.6)

Substituting into eqn. (A8.3), and collecting results back through eqn.
(A8.1), we finally obtain

0 Py({n(r)},t) = /ddr' 617?1") [P6:(I;J)P,, + —?#Iz)] , (A8.7)

which is our desired result.
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