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NOTE: All question must be answered. Write the answer of each question in separate sheet.

1. Ising model: According to the RG approach in coordinate space and without extraction the exact form of
recursive relation, show that for the 1-D Ising model, we have no non-trivial fixed point. On the contrary,
show that for the 2-D Ising model, we expect to have Tc 6= 0 as an repulsive fixed point. What about the
3-D Ising model? (Hint: suppose that h = 0 and consider the regular substrate for the Ising model.) (10
points)

2. Recursive relation and β-function:

(a) Derive the relation between β-function and R`. (5 points)

(b) What is the meaning of hyper-critical surface and its relation with Universality class? (5 points)

(c) Classify the relevant and irrelevant coupling coefficients by means of linearized R` and β-function? (5
points)

3. Dynamical critical exponent: According to dissipation theorem and time-dependent Landau-Ginzburg

theory, one can write ∂η(r,t)
∂t = −Γ δL([K],η)

δη(r,t) + ζ(r, t), where t is time, [K]’s are coupling and ζ(r, t) is noise

term with Gaussian PDF and 〈ζ(r, t)ζ(r′, t′)〉 = DδDirac(r − r′)δtt′ , Γ is a rate of interaction and

L([K], η) =

∫
ddr

[
1

2
γ(∇η(r, t))2 + aη2(r, t) +

1

2
bη4(r, t)− hη(r, t)

]
Also the Linear response function is defined by χ(r, t) ≡ limh→0

δ〈η(r,t)〉
δh .

(a) Now according to the Linear response function defined by χ(r, t) ≡ limh→0
δ〈η(r,t)〉

δh , determine the
evolution equation for response function. (5 points)

(b) Determine the static and stationary response function. Explain the physical meaning of your results.
(5 points)

(c) Bonus question: Show that the evolution equation of probability for order parameter according to:

∂tP (η(r), t) = 〈∂tδDirac(η − ¯η({ζ}))〉ζ =

∫
ddr′

δ

δη(r′)

[
ΓP (η(r′))

δL
δη(r′)

− 〈ζδDirac(η − η̄)〉ζ
]

would be

∂tP (η(r), t) =

∫
ddr′

δ

δη(r′)

[
Γ

δL
δη(r′)

Pη +
D

2

δPη
δη(r′)

]
What is the meaning of your result when Γ = 0? (10 points)

4. Widom Hypothesis: Considering t` = `xtt and h` = `xhh, derive the following scaling exponents of scaling
relations in terms of xt and xh: M ∼ tβ , M ∼ h1/δ, χ ∼ tγ , C ∼ t−α, ξ ∼ t−ν . (10 points)

Good luck, Movahed



























226 � Scaling 

8.5 SUMMARY 

The scaling hypothesis is a valuable way to correlate data for sys-
tems near the critical point, and for some non-equilibrium systems as 
they approach equilibrium. These are empirical statements. In the follow-
ing chapter, we will discuss how the renormalisation group accounts for 
the success of scaling ideas, for systems in equilibrium. Certain driven 
non-equilibrium systems, such as models of atomic deposition, exhibit a 
formal analogy to critical dynamics, and this has proven to be useful in 
analysing these systems. Finally, there are tantalising suggestions that 
some systems approaching equilibrium may also be usefully described by 
renormalisation group ideas. Further discussion of this topic is to be found 
in chapter 10. 

APPENDIX 8 - THE FOKKER-PLANCK EQUATION 

In this appendix, we sketch the derivation of the Fokker-Planck equa-
tion, starting from the Langevin equation (8.41). 

We begin with the definition of the probability distribution for the 
order parameter n(r), and differentiate with respect to time: 

C 
_b 

 —f dde 1., ( 11.  fiEn —TO C 

= — i eV -6-71-1--1  ( [—I1 6* + ((e, tdo[n —TO 
c 

= f dd  xi .577.67,[rP„  3  a ,- 3  - (( b0-17))ci �(A8.1) 

The evaluation of MO — Ti))c  is accomplished by noting the general result 

(F{C}()c  = ID( (CF) Pc 

=D I OF D( V Pc  

= D (. bF) c � (A8.2) 

OtPn({n(r)},t) = ( Otb [n(r) — TO , t, {MN 
dd — J r, ( Thlet eigr'ö , 0 5 [77(r) —11(r,t, MO 
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where we integrated by parts and used the expression (8.42) for the proba-
bility distribution. These operations can be verified, if desired, by writing 
the functional integral as a multiple integral. In the present case, 

(C(r, t)(5(77 — Ti))c  = D (15c(r,, �0.5(n — ii))c  

„ �  = D �dr �bc(r,,  t ) ef(ril, t) 
on  _17)\ 

C 
, �o �I eige,t) �1.7)\ ( A8.3)  = —D f dr' on, � t) bc(e,t) �/C 

The quantity being averaged in the above expression is essentially a re- 
sponse function, and can be evaluated from the formal solution to the 
Langevin equation (8.41): 

6L t) = Ti(r, 0) — der-, (71(r, ti)) -I- �de C(r, e). �(A8.4) 
o �or/ 

Differentiating with respect to C(r', t") and noting that causality implies 
that n(r, t) only depends on C(r, t') when t > t', we find that 

(r'  t) � t �15 �a 

t5((e, t")
r  on (ri(r,e))} + 9(t — t")]. — �r') [— de � 

t" 
(A8.5) 

In eqn. (A8.3), we require the above quantity evaluated at t = t". The 
value of the Heaviside function 9(t) at zero is in this case 8(0) = 1/2, as can 
be seen by repeating the above derivation with the two-point correlation 
function of C being proportional not to 6(t — t'), but to a sharply-peaked 
even function of (t — t'). Thus 

brgr", t) 
— 16(r r'). 

45((r , t) �2 
(A8.6) 

Substituting into eqn. (A8.3), and collecting results back through eqn. 
(A8.1), we finally obtain 

D of) 151 �-=-1-1 ot P,7 ({70)},t) = dd �[r �p r �n 2  .5709  , 

which is our desired result. 

(A8.7) 
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