In the name of God

COMPUTATIONAL PHYSICS AND NUMERICAL ANALYSIS

First midterm exam

(Time allowed: 3 hours)

Theoretical part:

1. Widely-used commands in terminal:

A: What is the command to connect a cluster? (assume that the valid IP is 192.168.220.100) (2 points) B: What is the command to copy a file from cluster to our local computer? (assume that the valid IP is 192.168.220.100) (2 points)

C: What is the command to make a script as an executable file? (1 points)

2. Binomial PDF:

A: Prove that the variance of a binomial probability is

$$\sigma^2 = Np(1-p)$$

(5 points)

B Considering the result proved in Part A, now prove that for small P(x), the error of the probability density function becomes

$$\sigma_m = \frac{1}{Nh}$$

where, h is the bin width. (5 points)

3. The concept of Probability Density Function (PDF): Suppose that

$$\bar{\rho}(x) \equiv \left\langle \frac{1}{h} K\left(\frac{x-y}{h}\right) \right\rangle_y = \int_{-\infty}^{\infty} \frac{1}{h} K\left(\frac{x-y}{h}\right) \rho(y) dy$$

Where K is a kernel such that K(A) = 1 for $|A| \le \frac{1}{2}$, and K(A) = 0 otherwise. Also we define

$$\operatorname{Bias}[\bar{\rho}(x)] \equiv \rho(x) - \bar{\rho}(x)$$

A: What is the result of the following limit:

$$\lim_{h \to 0} \operatorname{Bias}[\bar{\rho}(x)] = ?$$

explain your result. (5 points)

B: Using the changing of variable as $s = \frac{y-x}{h}$ and by Tylor expansion of $\rho(x+sh)$ up to $\mathcal{O}(h^3)$, compute $\bar{\rho}(x)$. Finally, determine $\lim_{h\to 0} \text{Bias}(\bar{\rho}(x))$. (5 points)

C: Let's define L as

$$L \equiv Var(\bar{\rho}(x)) + (\text{Bias}[\bar{\rho}(x)])^2$$

Where $Var(\bar{\rho}(x))$ and $\text{Bias}[\bar{\rho}(x)]$ which have been obtained in part B of question 2 and and part B, respectively. Find the best value of h by minimizing the L. (5 points)

4. The concept of Correlation:

A: Explain different categories of correlation. (5 points)

B: We have recorded two sets of data, $\{x\}$ and $\{y\}$ in an experimental set up. We imagine that the

statistical relation of two mentioned series is given by $y \triangleq ax + b$. Now we define an estimator for error as $\epsilon \equiv \langle (y - (ax + b))^2 \rangle$. By minimizing the ϵ , try to find the statistical meaning of $CoV \equiv \langle (x - \langle x \rangle)(y - \langle y \rangle)$. (5 points)

5. Moments and Cumulants: For a Gaussian distribution of random variable, x, with variance equates to σ^2 , we use the mapping $x \to y = x - \langle x \rangle$. Show that \mathcal{K}_1 and \mathcal{K}_3 for y are zero. What is the second cumulant? (5 points)

Computational part:

6. Fitting algorithm. According to the data set provided for you, there are 10 pairs, each pair (\bar{x}_i, \bar{y}_i) is subject to asymmetric errors (see Figure 1). The error-bars for each point as represented by $\bar{x}_i \frac{\sigma_x^+}{\sigma_x^-}$ and $\bar{y}_i \frac{\sigma_y^+}{\sigma_y^-}$, are $\sigma_x^- = 0.5, \sigma_x^+ = 5, \sigma_y^- = 2, \sigma_y^+ = 5.$

A: To map our fitting problem with the asymmetric error-bars to a simple case such that the abundance of data points for x around corresponding mean value, namely \bar{x}_i and similarly for \bar{y}_i are constant on different boundary, do following tasks:

1) For each pair, (\bar{x}_i, \bar{y}_i) , generate some data points randomly for the range of $x_j^{(i)} \in [\bar{x}_i - \sigma_x^-, \bar{x}_i + \sigma_x^+]$ for j = 1, ..., 20 with constant PDF. (10 points)

2) Do the same task as the part 1 just for \bar{y}_i . (10 points)

3) Now, for each *i*, collect the pairs as $(x_j^{(i)}, y_j^{(i)})$. where i = 1, ..., 10 and j = 1, ..., 20. Finally you have new data set with (x_k, y_k) , where $k = 1, ..., 10 \times 20$ and write them in a text file. (5 points)

B: Now by this new data set in your hand, and considering a linear line as theoretical prediction, $Y_{theo.} = ax + b$ with two free parameters, compute the a_{best} and b_{best} . (15 points)

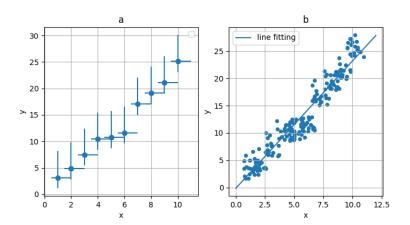


Figure 1: The asymmetric data sets around each filled circle symbols.

Good luck, Movahed

ب ... ارض ار Answer Key for First miltern numerical Analysis 1403. and Advanced Computational Phylic (5 points) 1 Commands (A) ssh User@ 192.168.220.100 B Scp User @ 192.168.220.100:/address/. It means here Otx g+x C chmod U+x filename.sh Binomial PDf $\underline{P}(n) = \begin{pmatrix} N \\ n \end{pmatrix} \stackrel{n \\ \not\models (1-\not\models)}{\overset{N}{\not\models}}$ (A) $\langle n \rangle = \sum_{n=1}^{N} n \binom{N}{n} p^{n} \binom{N-n}{(1-p)}$ _ NÞ $\mathcal{O}^{2} = \left\langle \left(n - \left\langle n \right\rangle\right)^{2} \right\rangle = \sum_{n=1}^{N} \left(n - \left\langle n \right\rangle\right)^{2} \binom{N}{n} \stackrel{N}{\models} \binom{N-n}{(1-\beta)}$ $\mathcal{D} = \frac{2}{p_N(N-1) + Np - p^2 N^2}$

 $= \dot{P}_{N^2}^2 - \dot{P}_{N^2}^2 + N P - \dot{P}_{N^2}^2$ 5 points $= NP - NP^{2} = NP(1-p)$ $\frac{P(x) = \lim_{N \to \infty} \frac{N(x)}{N}$ **(B)** $\frac{dP(x)}{dx} = p(x) : PDF \text{ or } \frac{BP(x)}{bx} = p(x)$ $\frac{O^{2}}{P(x)} = \left(\frac{O_{\Delta P(x)}}{Bx}\right)^{2} = \frac{NP(1-P)}{N(Bx)^{2}}$ $O_m^2 = \frac{O_{P(n)}^2}{\langle n(n) \rangle} = \frac{NP(n)(1-P(n))}{N^2 \Delta x^2 NP(n)} = \frac{(1-P(n))}{N^2 \Delta x^2}$ 5-Points $\overline{O_m} = \frac{1}{Nbx}$ or $\overline{O_m} = \frac{1}{Nh}$ $\widehat{\mathcal{F}} \qquad \overline{\mathcal{F}}(x) = \left\langle \frac{1}{h} K\left(\frac{x-y}{h}\right) \right\rangle_{y} = \left\{ dy \quad \frac{K\left(\frac{x-y}{h}\right)}{h} \mathcal{F}(y) \right\}$ Bias F(M) = S(N)_ S(N) $\lim_{h \to 0} \operatorname{Bias} = \operatorname{Sens} - \lim_{h \to 0} \int y \left(\frac{K(\frac{x-y}{h})}{h} \right) S$

 $\lim_{h \to \infty} \frac{k(x,y)}{h} = \frac{\delta(x,y)}{Dirac} \log ta function$ $\lim_{h \to \infty} \mathbb{B}_{ras}(\overline{S}(n)) = \mathbb{G}(n) - \int dy \ \mathcal{S}_{D}(x,y) \ \mathcal{G}(y)$ $= \mathbb{G}(n) - \mathbb{G}(n) = 0$ In this case the Kernel include only those values equates to x and therefore our Bias Corresponds to S(2) itself. 5 paints $S = \frac{x - y}{h} \rightarrow Sh = x - y \rightarrow y = x - Sh$ $\frac{y}{h} \rightarrow Sh = \frac{x - y}{h} \rightarrow y = x - Sh$ $\frac{y}{h} = \frac{y}{h} - \frac{y}{h} + \frac{y}{h} = \frac{y}{h}$ $\frac{y}{h} = \frac{y}{h} + \frac{y}{h}$ B $\overline{S}(x) = \left\langle \frac{1}{h} K\left(\frac{x-y}{h}\right) \right\rangle_{y} = \int dy \frac{K\left(\frac{x-y}{h}\right)}{h} \times \left[S(x) \right]$ Therefore $-\frac{sh ds}{dx} + \frac{(sh)^2}{2!} \frac{d^2s}{dx^2} + Q(h^3)$

 $\int (-hds) \frac{K(s)}{h} g(x) + \int (-hds) \frac{K(s)}{h} (-sh) g'(x)$ g(n) = + $\int (-h ds) \frac{K(s)}{h} \frac{(-sh)^2}{2!} g'' + Q(h^3)$ $= - \Im(\kappa) + h \Im ds \, s \, K(s) - \frac{h^2 \Im}{2!} ds \, s^2 \, K(s) + \mathcal{Q}(h)$ $= - \Im(\kappa) + h \Im ds \, s \, K(s) - \frac{h^2 \Im}{2!} ds \, s^2 \, K(s) + \mathcal{Q}(h)$ $= - \Im ds \, s^2 - \frac{3^3}{3!} |_{1/2}^{+1/2}$ $= even \qquad - \frac{1}{2} ds \, s^2 - \frac{3^3}{3!} |_{1/2}^{+1/2}$ $S(x) = - S(x) + \frac{h^2 s'}{21} \frac{1}{12}$ 5-Points $\dim B_{ias} = S(n) - (-S(n)) = 2S(n)$ L= Vor(\$(m) + (Bras [\$(m])) (C) $= O_m^2 + (Bias [\bar{g}(n])^2$ $L = \frac{1}{Nh^{2}} + \left(g(n) - \left(-g(n) - \frac{h^{2}g''}{2u}\right)\right)^{2}$ $o = \frac{dL}{dh} = 1$ 5- points

4) A: # Value Coefficient
4) A: # Value Function
Type Non-lineor
Relation Auto-correlation
Relation Correst correlation
Statistics Neighted
Statistics Neighted
Kind Un-Weighted
B)
$$C = \langle (y - (an+b))^2 \rangle : \langle y^2 + a^2x^2 + b^2 + abx - 2axy - 2yb \rangle$$

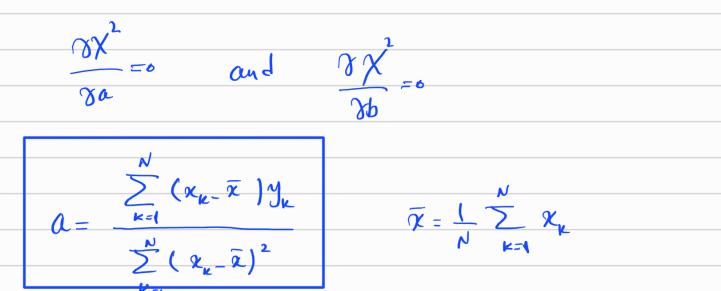
 $\int \frac{\partial C}{\partial a} = 0 \quad \Rightarrow 2a \langle x^2 \rangle + 2b \langle x \rangle - 2\lambda xy \rangle = 0$
 $\int \frac{\partial C}{\partial a} = 0 \quad \Rightarrow 2a \langle x^2 \rangle + 2b \langle x \rangle - 2\lambda xy \rangle = 0$
 $\int \frac{\partial C}{\partial a} = 0 \quad \Rightarrow 2a \langle x^2 \rangle + 2b \langle x \rangle - 2\lambda xy \rangle = 0$
 $\int \frac{\partial C}{\partial a} = 0 \quad \Rightarrow 2b + 2a \langle x \rangle - 2\lambda xy \rangle = 0$
 $\int \frac{\partial C}{\partial a} = 0 \quad \Rightarrow 2b + 2a \langle x \rangle - 2\lambda xy \rangle = 0$
 $\int \frac{\partial C}{\partial a} = 0 \quad \Rightarrow 2b + 2a \langle x \rangle - 2\lambda xy \rangle = 0$
 $\int \frac{\partial C}{\partial a} = 0 \quad \Rightarrow 2b + 2a \langle x \rangle - 2\lambda xy \rangle = 0$
 $\int \frac{\partial C}{\partial a} = 0 \quad \Rightarrow 2b + 2a \langle x \rangle - 2\lambda xy \rangle = 0$
 $\int \frac{\partial C}{\partial a} = 0 \quad \Rightarrow 2b + 2a \langle x \rangle - 2\lambda xy \rangle = 0$

 $\frac{P(x_{1})}{\sqrt{2\pi\sigma^{2}}} = \frac{(x_{-} \langle x \rangle)^{2}}{2\sigma^{2}}$ 5) $y = \chi_{-} \langle \chi \rangle \longrightarrow p(y)_{-} = \frac{y}{\sqrt{2\sigma^2}}$ K,= M,= < y>= < x-<x>>= < x> < x) = 0 $K_{2} = M_{2} - M_{1}^{2} = M_{2} - K_{1}^{2} = M_{2} = \sigma^{2}$ 5-points) Non-linear Langevin Eq. 6) $\frac{dv}{dt} = \Im(t, \vartheta) + \eta(t) \qquad \Rightarrow \text{Stochastic Part}$ Deferministic Port

 $\langle \eta(t) \rangle = 0$ p(211) = N (0, 0) < 7(t) 7(t') = 5 S (t-t') (10-Points) Computational Part A Use Random generator to generate Data for each point with Center R: and J. $x_{i}^{(i)} = a + R(b_{a}) = (\bar{x}_{i} - \sigma_{x}) + R[\sigma_{x}^{\dagger} - \sigma_{x}]$ $y_{i}^{(0)} = (\overline{y}_{i} - \overline{g}) + R \left[\overline{g}_{j}^{+} - \overline{g} \right]$ Rand R' are Random Number with Flat Probability Distribution

$$\begin{array}{c} \textcircled{B} \\ & Y = a 2 + b \\ & \text{thes} \end{array}$$

$$\frac{1}{\chi} = \sum_{k=1}^{200} \left[\vartheta_{k} - (\alpha \chi_{k} + b) \right]^{2}$$



$$b = \frac{1}{N} \sum_{k=1}^{N} y_{k} - \alpha + \sum_{k=1}^{N} x_{k}$$

Q = 2.37