Date: 1403/08/24

In the name of God

COMPUTATIONAL PHYSICS AND NUMERICAL ANALYSIS
First midterm exam

(Time allowed: 3 hours)
Theoretical part:

. Widely-used commands in terminal:

A: What is the command to connect a cluster? (assume that the valid IP is 192.168.220.100) (2 points)

B: What is the command to copy a file from cluster to our local computer? (assume that the valid IP is
192.168.220.100) (2 points)

C: What is the command to make a script as an executable file? (1 points)

. Binomial PDF:
A: Prove that the variance of a binomial probability is

o = Np(1—p)

(5 points)
B Considering the result proved in Part A, now prove that for small P(x), the error of the probability density

function becomes 1

Om = ;

Nh
where, h is the bin width. (5 points)

. The concept of Probability Density Function (PDF):

Suppose that
o= (i (55)), = L (557 o

Where K is a kernel such that K(A) =1 for |A| < 1, and K(A) = 0 otherwise. Also we define

Bias[p(x)] = p(z) — p(x)

A: What is the result of the following limit:

lim Bias|p =7

lim Bias[p(2)]

explain your result. (5 points)

B: Using the changing of variable as s = 5% and by Tylor expansion of p(x + sh) up to O(h?), compute
p(x). Finally, determine limy_,o Bias(p(z)). (5 points)

C: Let’s define L as

L =Var(p(z)) + (Bias[p(x)])*
Where Var(p(x)) and Bias[p(z)] which have been obtained in part B of question 2 and and part B, respec-
tively. Find the best value of A by minimizing the L. (5 points)

. The concept of Correlation:
A: Explain different categories of correlation. (5 points)
B: We have recorded two sets of data, {z} and {y} in an experimental set up. We imagine that the
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statistical relation of two mentioned series is given by y £ ax + b. Now we define an estimator for error as
€ = ((y — (ax +b))?). By minimizing the e, try to find the statistical meaning of CoV = ((x — (z))(y — (v)).
(5 points)

. Moments and Cumulants: For a Gaussian distribution of random variable, x, with variance equates to o2,
we use the mapping © — y = x — (x). Show that K; and K3 for y are zero. What is the second cumulant?
(5 points)

Computational part:

. Fitting algorithm. According to the data set provided for you, there are 10 pairs, each pair (Z;, §;) is subject
+

x

'+

. . . _ o _0

to asymmetric errors (see Figure 1). The error-bars for each point as represented by z; = and y; “, are
ag O'y

oy =050 =50, =2,0} =

x Yy x 9 y I Yy
A: To map our fitting problem with the asymmetric error-bars to a simple case such that the abundance of
data points for x around corresponding mean value, namely Z; and similarly for g; are constant on different

boundary, do following tasks:

1) For each pair, (Z;,¥;), generate some data points randomly for the range of xg.i) €z, — oy, + o] for
j=1,...,20 with constant PDF. (10 points)

2) Do the same task as the part 1 just for g;. (10 points)

3) Now, for each i, collect the pairs as (I;i)7 y](l)) where ¢ = 1,...,10 and j = 1, ...,20. Finally you have new

data set with (xg,yi), where k = 1,...,10 x 20 and write them in a text file. (5 points)

B: Now by this new data set in your hand, and considering a linear line as theoretical prediction, Yipeo. =
ax + b with two free parameters, compute the apest and bpest. (15 points)

30 A —— line fitting
25
25
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Figure 1: The asymmetric data sets around each filled circle symbols.

Good luck, Movahed
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