In the name of God

Department of Physics Shahid Beheshti University

NUMERICAL ANALYSIS COURSE

Exercise Set 7

(Due Date: 1403/09/12)

- **1. Random walk:** For random walk in 1D, compute $\langle x(N) \rangle$ and σ_N^2 for following cases:
 - A: Suppose each steps coming form random variable with flat PDF.
 - **B**: Suppose the probability of step value is a gaussian and to be random, namely: $P(s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{s^2}{2\sigma^2}\right)$. Suppose $\sigma = 0.1, 1, 10$.
 - C: Using the violin plot, plot the $\langle x(t) \rangle$ for $t=10,\,t=100$ and t=1000. Explain your results.
 - **D**: Using the violin plot, plot the $\sigma(t)$ for t = 10, t = 100 and t = 1000. Explain your results.
- 2. Langevin particle: Simulate a particle based on Langevin equation and then compute:

 $\mathbf{A}:\langle v(t)\rangle.$

 $\mathbf{B}:\langle v(t)^2\rangle.$

 $\mathbf{C}:\langle v(t_1)v(t_2)\rangle.$

 $\mathbf{D}: \langle x(t) \rangle.$

 $\mathbf{E}:\langle x(t)^2\rangle.$

 $\mathbf{F}:\langle x(t_1)x(t_2)\rangle.$

 $\mathbf{G}: p(v).$

H: Compare all of above parts with theoretical predictions.

I: $p(v(t); v(t+\tau))$. What happens if $\tau \to \infty$.

Good luck, Movahed		