In the name of God

Department of Physics Shahid Beheshti University

NUMERICAL ANALYSIS COURSE

Exercise Set 3

(Due Date: 1403/08/07)

1. Linear fitting function: According to subjects tough in course and based on 'datalinear.txt'" input data including $\{D\}$: $\{(x_i \pm \sigma_{x_i}; y_i \pm \sigma_{y_i})\}$, such that the column data form left to right correspond to x, y, σ_{x_i} and σ_{y_i} , respectively. Do following tasks:

A : Derive analytically the best fit values for m and c in the case that we take into account σ_{x_i} and σ_{y_i} . Compare your results with that computed by ignoring the associated uncertainties.

B: Write a program to compute the best fit values for $\{\Theta\}$: $\{m, c\}$ for linear function as $Y_{theo.} = mx + c$. Compare your results with the analytical results given by previous part.

C: Taking into account the σ_{x_i} and σ_{y_i} , determine the σ_m and σ_c .

 \mathbf{D} : Use a typical software such as Mathematica or Python or whatever you like and compare the results given by mentioned software for linear fitting and your results reported in the previous parts.

 \mathbf{E} : Plot your data including error-bars for x and y and the fitted function to ensure about the reliability of your results.

2. Error analysis and propagation: Using the "data.txt" file, write a proper program to do following tasks: **A** : Read input data file which contains more than 10^6 one-column data. and spilt it to 100 input files.

 \mathbf{B} : Making directories and send each data set to corresponding directory.

C : compute the PDF ($p_i(x)$, i = 1, ..., 100) of each data sets using Top-Hat kernel for $\Delta x = 0.1$, $\Delta x = 0.01$ and $\Delta x = 0.001$.

D: Compute $\sigma_m(p_i(x))$. Plot $p_i(x)$ versus x and show its error-bar for some of data sets.

E :Then based on smoothing approach, consider $\mathcal{B}(X) = e^{-X^2/2\sigma}$ with $\sigma = 2$, $\sigma = 0.2$ in order to smooth PDF. Explain you results.

F : Compute p(x(i), x(j)) and compare it with each one-point probability density function by determining $\Delta(\tau) = \int dx(t)dx(t+\tau)|p(x(t+\tau), x(t)) - p(x(t+\tau))p(x(t))|$. For 5 arbitrary sets plot $\Delta(\tau)$ as a function of τ . Explain your results.

Good luck, Movahed