In the name of God

Department of Physics Shahid Beheshti University

STOCHASTIC PROCESSES

Mid-Term exam

(Time allowed: 2 hours)

NOTE: All question must be answered. Legibility, good hand-writing and penmanship have 5 additional marks. Please write the answer of each question in separate sheet.

1. Transformation of variables: suppose that we have stochastic variables in N-Dimension such as $\{x\}$: $x_{1}, x_{2}, \ldots, x_{N}$ and its multivariate probability distribution function is given by $p(\{x\})$, assume that there is a mapping as: $g(\{x\}):\{x\} \rightarrow\{y\}$, Now calculate $p(\{y\})$. (5 points)
2. Weighted and Un-weighted correlation functions:
(a) We have an isotropic stochastic field represented by: $\mathbf{x}:\left\{x\left(\mathbf{r}_{1}\right), x\left(\mathbf{r}_{2}\right), \ldots, x\left(\mathbf{r}_{m}\right)\right\}$. The weighted n-point correlation function of mentioned random field is written by:

$$
C_{\mathbf{x}}^{(n)}\left(r_{1,2}, \ldots\right) \equiv\left\langle x\left(\mathbf{r}_{1}\right) x\left(\mathbf{r}_{2}\right) x\left(\mathbf{r}_{3}\right) \ldots x\left(\mathbf{r}_{n}\right)\right\rangle
$$

Now write this correlation function by using characteristic function, $Z_{\mathbf{x}}(\lambda) \equiv\left\langle\mathrm{e}^{\mathbf{i} \lambda \cdot \mathbf{x}}\right\rangle$. What about connected moment? (10 points)
(b) Kernel contribution: Imagine that we apply a kernel on data in a stochastic process according to $X(t)=\int d t^{\prime} K\left(t-t^{\prime}\right) x\left(t^{\prime}\right)$. What is the mathematical form of the weighted TPCF of modified process? (Hint: the weighted TPCF can be expressed by power spectrum as $C_{x}(\tau)=\frac{1}{2 \pi} \int d \omega e^{i \omega \tau} S(\omega)$ and $S(\omega)=|\tilde{x}(\omega)|^{2}$, Use the convolution theorem and try to write your answer in terms of power spectrum). (3 points)
(c) Explain the meaning of bias factor using un-weighted and weighted TPCF. Write a proper mathematical explanation. (5 points)
3. Un-weighted TPCF:
(a) Explain the concept of un-weighted TPCF as an excess probability. (5 points)
(b) A definition for un-weighted TPCF of a typical feature such as local maxima is $\langle\mathcal{N}(r)\rangle_{r, r+d r}^{\text {peak }}=\overline{\mathcal{N}}_{\text {peak }}[1+$ $\left.\Psi_{\text {peak }}(r)\right]$. Now compute the $\mathcal{N}_{\text {peak }}$ corresponding to the number density of peak-pair separated by r and $r+d r$ for 1,2 and 3-Dimnesion. To this end suppose that we have M local maxima in underlying field. (12 points)
4. Stochastic process with colored-noise: suppose that the evolution of velocity is given by:

$$
\frac{d v(t)}{d t}=\mathrm{i}\left[\omega_{0}+\eta(t)\right] v(t)
$$

where $\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=\gamma e^{-\gamma\left|t-t^{\prime}\right|},\langle\eta(t)\rangle=0$ with normal distribution and ω_{0} is a constant.
(a) Calculate $\langle v(t)\rangle$. (5 points)
(b) Calculate $\left\langle v\left(t_{1}\right) v\left(t_{2}\right)\right\rangle$. (5 points)
(c) Explain your results when $\gamma \rightarrow \infty$ and in opposite case, namely $\gamma \rightarrow 0$. (5 points)

Answarkey midterm 97/01/19
(1) Transformation of variables.

$$
\{x\} \xrightarrow{g(\{x y)}\{y\}
$$

conservation of Probability shows that $p(\{x\}) d^{N} x=p(\{y\}\} d^{N} y$ and we have $p(\{y\})=\int d^{N} x \delta_{D}(\{y\}-g(\{x\})) P(\{x\})$

$$
\begin{gathered}
p(\{y\})=p(\{x\})\left|\frac{d^{N} x}{d^{N} y}\right|^{-1} \\
J=\left|\frac{d^{N} x}{d^{N} y}\right|=\left|\frac{d g(\{x\})}{d^{N} x}\right|^{-1}=\left|\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \cdots & \frac{\partial x_{1}}{\partial y_{N}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \cdots & & \\
\vdots & & & \frac{\partial x_{N}}{\partial y_{N}}
\end{array}\right|
\end{gathered}
$$

Therefore $P(\{y\})=P\left(g^{-1}\{y\}\right) J^{-1}$ or $\quad p\left(\{y y)=\left.\sum_{n} p\left(g_{n}^{-1}(y)\right) \delta^{-1}\right|_{\{x\}}=\left\{2_{n}\right\}=\left\{g_{n}^{-1}(y y)\right\}\right.$
(2)(0) $C_{x}^{(n)}\left(r_{12}, r_{13}, \ldots.\right)=\left\langle x\left(\bar{r}_{1}\right) x\left(\bar{r}_{2}\right) \ldots x\left(\vec{r}_{n}\right)\right\rangle$

We know that

$$
\mathcal{Z}_{\{x\}}(\lambda)=\left\langle e^{i \cdot \vec{\lambda} \cdot \vec{x}}\right\rangle=\left\langle e^{i \cdot \lambda_{1} x\left(r_{1}\right)+\bar{i} \lambda_{2} x\left(r_{2}\right) \cdots}\right\rangle
$$

Therefore $\quad C_{2}^{(2)}\left(r_{12}\right)=\left\langle x_{(}\left(r_{1}\right) x\left(r_{2}\right)\right\rangle$

$$
\begin{aligned}
& \quad=\left.(-i)^{2} \frac{d^{2}}{d \lambda_{1} d \lambda_{2}} \underset{\{x\}}{Z}(\lambda)\right|_{\lambda=0} \\
& =(-i)^{2}(i)(i)\left\langlex \left(r_{1}\left|x\left(r_{2}\right)\right\rangle\right.\right.
\end{aligned}
$$

So

$$
C_{\{x\}}^{(n)}=\left.(-i)^{n} \frac{d^{n}}{d \lambda_{1} d \lambda_{2} \ldots d \lambda_{n}} \mathcal{Z}_{\{x\}}(\lambda)\right|_{\lambda=0}
$$

for Connected moments or Cumulants we have

$$
\begin{aligned}
\left.\left\langle x\left(r_{1}\right) x\left(r_{2}\right) \ldots x\left(r_{n}\right)\right\rangle_{c}\right|_{r_{1}=r_{2}=r_{3} \ldots=r_{n}}= & \left.(-i)^{n} \frac{d^{n}}{d \lambda_{1} \ldots d \lambda_{n}} \ln Z_{\{x\}}(\lambda)\right|_{d+\infty} \\
& \times \delta_{r_{1} r_{2} \ldots r_{n}}
\end{aligned}
$$

due to have cumulant rather than Correlation
(2) - (b)

$$
x(t)=\int d t^{\prime} K\left(t-t^{\prime}\right) x\left(t^{\prime}\right)
$$

using Fourier Transformation we have

$$
\begin{aligned}
X(t) & =\int d t^{\prime}\left[\int d \omega_{1} e^{i \omega_{1}\left(t-t^{\prime}\right)} \tilde{K}(\omega)\right]\left[\int d \omega_{2} e^{i \omega_{2} t^{\prime}} \tilde{x}\left(\omega_{2}\right]\right. \\
& =\underbrace{d t^{\prime} e^{i t^{\prime}\left(\omega_{2}-\omega_{1}\right)} \int d \omega_{1} e^{i \omega_{1} t} \tilde{K}\left(\omega_{1}\right) \int d \omega_{2} \tilde{x}\left(\omega_{2}\right)}_{\delta_{0}\left(\omega_{2}-\omega_{1}\right)} \\
X(t) & =\int d \omega e^{i \omega t} \tilde{K}(\omega) \tilde{x}(\omega)
\end{aligned}
$$

Now according to definition of Weighted TPCF for
$X(t)$, we have

$$
\begin{aligned}
& C_{K}(\tau)=\langle K(t) X(t+\tau)\rangle_{t} \\
= & {\left[\int d \omega_{1} e^{i \omega_{1} t} \tilde{K}\left(\omega_{1}\right) \tilde{x}\left(\omega_{1}\right)\right]\left[\int d \omega_{2} e^{i \omega_{2}^{(t+\tau)} \tilde{K}\left(\omega_{2}\right)} \tilde{x}\left(\omega_{2}\right)\right.} \\
= & \int d t \int d \omega_{1} d \omega_{2} e^{i t\left(\omega_{1}+\omega_{2}\right)} e^{i \omega_{2} \tau} \tilde{K}\left(\omega_{1}\right) \tilde{x}\left(\omega_{1}\right) \tilde{K}\left(\omega_{2}\right) \tilde{x}\left(\omega_{2}\right) \\
= & \frac{\delta_{p}\left(\omega_{1}+\omega_{2}\right)}{2-\pi} \int d \omega_{2} e^{i \omega_{2} \tau} \tilde{K}\left(-\omega_{2}\right) \tilde{K}\left(\omega_{2}\right) \tilde{x}\left(-\omega_{2}\right) \tilde{x}\left(\omega_{2}\right) \\
= & \frac{1}{2 \pi} \int d \omega e^{i \omega^{2} \tau}|\tilde{K}(\omega)|^{2}|\tilde{x}(\omega)|^{2}
\end{aligned}
$$

Where $|\tilde{x}(\omega)|^{2}=S(\omega)$ is sacalled $\begin{gathered}\text { Power } \\ \text { Spectrum }\end{gathered}$
(2) -(c)

$$
\begin{aligned}
& \psi(r)=b^{2} C(r) \quad \text { or } \\
& \psi(r)=\frac{P_{12}}{P_{1} P_{2}}-1 \quad \text { and for }
\end{aligned}
$$

Pixel above thneshord we have

$$
\begin{aligned}
& P_{n}=\int_{V}^{+\infty} d \alpha_{1} \int_{V}^{+\infty} d \alpha_{2} P_{12}\left(\alpha_{1}, \alpha_{2}\right) \\
& P_{1}=\int_{V}^{+\infty} d \alpha_{1} P_{1}\left(\alpha_{1}\right),
\end{aligned}
$$

for Gaussian PDF we showed that

$$
b^{2} \sim \nu^{2} \quad \text { for } \quad r \rightarrow \infty, \quad \nu \gg 1
$$

The Physical meaning of bias factor is that e.g. a typical feature such as local maxima don't follow the stochastic field itself. Instead it follows by a bias factor such that $\quad \delta_{p}=b \delta$
(3)

$$
\begin{aligned}
& P_{12}=P_{1} P_{2}[1+\psi(r)] \\
& \langle N\rangle_{\text {Pair }}=\bar{n}_{P_{a n}} \Delta r[1+\psi(r)] \quad \text { for } 10
\end{aligned}
$$

(b)

$$
\begin{aligned}
10 \quad \bar{N}_{\text {Peak }} & =\frac{\binom{M}{2}}{\Delta r}=\frac{M(M-1)}{2 \Delta r} \\
2 b & \\
& =\frac{\binom{M}{2}}{2 \pi r \Delta r} \\
3 b &
\end{aligned}
$$

(4)

$$
\begin{aligned}
& V(t)=V_{0} \exp \left[i^{\prime} \omega_{0} t+i \int_{0}^{t} \eta\left(t^{\prime}\right) d t^{\prime}\right] \\
& \langle v(t)\rangle=v_{0} e^{i \omega_{0} t} \underbrace{\left\langle e^{i \int_{0}^{t} \eta\left(t^{\prime}\right) d t^{\prime}}\right.}_{?}\rangle \\
& e^{i \int_{0}^{t} \eta\left(t^{\prime}\right) d t^{\prime}}=1+i \int_{0}^{t} \eta\left(t^{\prime}\right) d t^{\prime}-\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \eta\left(t_{1}\right) \eta\left(t_{2}\right)+\ldots \\
& \left\langle e^{i \cdot \int^{t} \eta\left(t^{\prime}\right) d t^{\prime}}\right\rangle=1+i \int_{1}^{t}\left\langle\eta\left(t^{\prime}\right)\right\rangle d t^{\prime}-1 / 2 \int_{0}^{t} d t_{1} \int_{1}^{t} d t_{2}\left\langle\eta \left(t_{\nu} \eta\left(t_{\omega}\right\rangle\right.\right. \\
& +\cdots \cdot \\
& =1+0-\frac{1}{2} 2 \int_{0}^{t} d t_{1} \int_{1}^{t_{1}} d t_{2} \gamma e^{-\gamma\left(t_{1}-t_{2}\right)} \\
& +\ldots \\
& =1-t+\frac{1}{\gamma}\left(1-e^{-\gamma t}\right)+\cdots \\
& =e^{-t+\frac{\left(1-e^{-\gamma t}\right)}{\gamma}}
\end{aligned}
$$

and

$$
\langle v(t)\rangle=v_{0} e^{+i \omega_{0} t-\left(t-\frac{\left(1-e^{-\gamma t}\right)}{\gamma}\right)}
$$

for $\gamma \rightarrow \infty \quad\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle \rightarrow \delta_{D}:$ Dirac Delta function for $\gamma \rightarrow 0 \quad\langle v(t)\rangle=v_{0} e^{i \omega, t} \quad$ No Noise and behaves as detormishic
for $\gamma \rightarrow \infty \quad\langle v(t)\rangle=v_{0} e^{+i \omega_{0} t-t}$
Since $\lim _{\gamma \rightarrow \infty} \frac{\left(1-e^{\gamma t}\right)}{\gamma}=0$

$$
\begin{aligned}
& \text { And } \lim _{\gamma \rightarrow \infty}\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle \simeq \delta_{D}\left(t-t^{\prime}\right) \\
& \text { for } \gamma \rightarrow 0 \lim _{\gamma \rightarrow \cdot} \frac{\left(1-e^{-\gamma t}\right)}{\gamma}: t e^{-\gamma t}=t \\
& \lim _{\gamma \rightarrow 0}\left\langle\eta\left(t^{\prime}\right) \eta(t)\right\rangle=0 \rightarrow \text { No Noise } \\
& \lim _{\gamma \rightarrow 0}\langle\omega(t)\rangle=0, e^{i \omega_{0} t} \quad \text { Deterministic Proven }
\end{aligned}
$$

for $\langle v(t) U(t, w)\rangle$ Do the same.
Notice that we have used Gaussian Property in which

$$
\left\langle\eta\left(t_{1}\right) \eta\left(t_{1}\right) \eta\left(t_{1}\right)\right\rangle=0
$$

