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Provided by A. Kargaran under supervision of Dr. Movahed
Answer to Midterm Exam Critical Phenomena

1-(part a)

Hamiltonian for Ising model in in-homogeneous magnetic field is:
Ho{S}=—-J ) S8 - > HiSi
(i) i
Suppose for the moment that the spins are independent: J = 0. Then

N N
Zo{0,H} = n [e_ﬂH" + eﬂH"] =N l—[cosh (H;/kgT)

i=1 i=1

Free energy is:
N
F = —kgT log [Zo{0, H}] = —ksT Z log [cosh (H;/kgT)]
i=1

We know that in mean field approximation we can write:

So it changes Hamiltonian and free energy:
N
F = —ksT log [Za{J, H}] = ~ksT ) log[cosh (2dM/kT + H;/ksT)]
i=1

We should consider Gibbs free energy here because of average magnetization and mag-
netic field, so we have:

N N
G = —ksT > log [cosh (2dM kT + H;/kgT)] — M Z H
i=1 i=1

part (b)

In here we consider homogeneous magnetic field so we can write:

F = —kgT log|[Za{J,H}] = —kgTN log [COSh (QdM—-'_H)

kgT




and Magnetization:

1 0F 2dM + H
M=-—2" = kT tanh | 22712
NogH el tan [ ksT

If we use self-consistent method (like Ising model) we can find Ising like results. If we
put H = 0 and expand above equation right hand side for small M we have:
2d
M= M
kgT,

2dJ
T, =2~
= .

If T > T, the only intersection is M = 0 and if T < T, we have three intersections, two of
them are stable solution and one of them is unstable. The stable solutions are parallel
or anti-parallel with mean magnetization of all spins M. Solution M = 0 is stable when
T > T, and unstable when T < T,.

9] q'iokl:ft {ultﬁ-i—i'ﬂn
M Wheginkie golufren

We can find:

tanh H/kgT + tanh Mt

M = tanh (H/kgT + Mr1) =
anh (H/kpT + M7) = T H kaT tanh Mr

Finally:
M — tanh Mt

1+ Mtanh Mt
We expand above for small H and M, we have:

tanh H/kgT =

H 3
— ~M(1- M lr—22+—+...]+... 1
s (1-7)+ (r Tt )+ (1)

For H=0 and T — T, we have:

(Tc - T)
T

M? ~ 3

+ ...

where the dots indicate corrections to this leading order formula. We can read off the
critical exponent B : f = 1/2. The critical isotherm is the curve in the H — M plane
corresponding to T = Tc. Its shape near the critical point is described by the critical
exponent J:

H~M°



Setting 7 = 1 in the equation of state m , we find:

H A3

kgT
Showing that the mean field value of § is 3. The isothermal magnetic susceptibility yr
also diverges near T:

_ oM
= 9H

Differentiating the equation of state m, gives:

Lz)(T(l—T)+3M2)(T T—T2+1T3 (2)

kgT 3
For T > Te, M =0 and 7 — 1 we have:

11 N
=TT,

Comparing with the definition of the critical exponent y:
xr ~ 1T = T.|

we conclude that y = 1. For T < T,, we have:

1/2
T.—-T
Mz\/g( T ) +

Substituting into E gives:

1 T-T, T.-T
T RXT +3xr

ksT T, T
T.-T
-2 (5]
1
T S T.—T

which shows that the divergence of the susceptibility below the transition temperature
is governed by the critical exponent y’ =y = 1.

For a we have we put H = 0 and we have:

2 2
_pO°F _NQdJM)? (2d ]M)

C, = =
O0T? kgT? kgT

Now we expand above for small M:

_ 4d2J2M2N 16M4 (d4J4N)

Cy = +0 (M°
=N o ()
We Now from above that magnetization behave:

0 T >T,

M = 1/2
\/E(T—T‘T) ... T<T,

3



Heat capacity behave like:

0 T>T,
Cy = 2 4
At+Bt“+Ct*+... T<T,

A, B and C are constants.
part (c)

In Landau theory we can find that heat capacity behave like:

0 T>T,
Cy, =
a?/(bT?) T <T,

This function has a discontinuity in critical temperature so we can NOT fit this function
with a power law except power zero so we have o = 0.



(2)

In Landau theory for Ising model we write Landau free energy as follows:
Ho{S} = - Z SiH;
i

Where:
H = H+Zhﬁﬂzm, - (S

Here, the first term is the external ﬁeld, the second is the mean field, and the final term
is the fluctuation, which we ignore in mean field approximation. We put last term of
above in Hamiltonian and we have:

(B 30ts -5 = (E 55,5659
- ZJU (SiS;) = (S)(S)))
- Zjl Jij(ri = r))G(ri — 1))
z%Lﬂmm

~ /Q d*rG(r)

J is average of Jij(r; — rj) over interaction region. Now we want to find energy of mean

field which is:
OICHITENEPIPACHL)
i J ij
= D Ji(ri = r)(Si(S)
i
~ ] ) (SIS
i

= JZ<SI->2

_J

ad

ddrtﬁ(r)2
We can find how this approximation is valid by Gmsburg criterion which is:

|fV dr G(r)|
Jy d%r ¢(r)?

The region must not be larger than & (correlation length), otherwise the fluctuations
will become uncorrelated, and we will not obtain a true estimate of their(numerator
and denominator) strength. In above V is taken to be the correlation volume:V = &(T)¢.
We know that correlation function at critical temperature behave like:

LG =

/ dr G(r) ~ kgT,xr ~ t7"
14
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and:

/ddr ¢(r)2 - é5d|t|2ﬂ N tQﬂ—vd
v

So we have: ,
.
N — py—2f+vd
ELG tQﬂ—Vd t

This criterion diverge when:
+ 2
d>rr2r P
v

=d.

d. is upper critical dimension which for mean field theory is d. = 4.



(3)
Probability of choosing configuration ¢ is e PH{}/Z  where Z is partition function.
Helmholtz free energy with Gibbs entropy is:

F = (H{s}) - TS
= ) P()H{c} + ksT ) P(c) log P(c)
- Z P(c) [H{c} + kT log P(c)]

e—BH{c)
- Z = [H{c} -~ Hic} - ksT log Z]

. kBT log.Z —BH{c} _
—TZe = —kzTlog Z

c

We approximate the Hamiltonian with:

So magnetization become:

1 o0F 2dM + H
N 0H

M = ———=— = kgT tanh
B an kBT

Above result is identical with mean field method.



(4)

The Helmholtz free energy given by:
o / Dy e PHIO)

where the integral [ Dn is a functional integral over all degrees of freedom associated
with 7, instead of an integral over all microstates. Landau’s assumption is that we can
replace the entire partition function by the following:

BT ~ / Dy e L) (3)

For example, if 7 is the mean magnetization, a given value for the magnetization can be
determined by many different microstates. It is assumed that all of this information is
contained in £{n(r)}. This is a non-trivial assumption which can nonetheless be proven
for certain systems. The conversion of the degree of freedom from Sto 7 is known as
coarse-graining, and is at the heart of the relationship between statistical mechanics
and thermodynamics. The next step is to minimize L{n(r)}(to maximize integrated),
performing a saddle point approximation (or steepest descent) to the functional integral
in B, giving:
e PF ~ e BLmin{n(r)}

this is relation between Helmholtz free energy and Landau free energy.



(5)
part (a)
We aim in this section to calculate G(r). We do this in two steps:

1) Find the equation satisfied by ¢ by differentiating the Landau free energy and
demanding stationarity.

2) Differentiate with respect to H to get an equation for yr(r —r’) > i.e. an equa-
tion for G(r — r’).

Step 1

L= p(VP)? + ag? + bd> + c¢* — Ho
% = 0= —2uV>¢ + 2a¢ + 3b¢” + 4c¢® — H = 0

For above relation I use functional integration like:

Y d_.» ’ 2__ 2 ’
5 [ () = <2v )

Step 2
5H‘zr,) [-24V2¢ + 2ad + 3bg* + deg® — H| =0
[—2yV2 + 2a + 6b¢ + 120¢2] xr(r—r’) = 555((:,)) =6(r—r')

Thus the two-point correlation function is actually a Green function. For transla-
tionally invariant systems, ¢ is just given by the equilibrium value from Landau theory.

For a > 0, ¢ = 0 we have:
kgT
[-V2+ &2 Gr - ') = 2=8(r - 7')
2p
Where &2 = a/p.

For a < 0 we have ¢ # 0 we should calculate other roots so we take H = 0 and
we have:

—b + Vb2 — 4ac
2c

ag® + b’ + cp* = ¢ (a +bp + c¢?) =0 = ¢ =
We can find similar equation for correlation function:

[—V2 + §<_2] Gir-r')= ?—55(1’ -r)



Where £22 = (1/2p) 5 5

2a-+ 6 (~22F0s) 12c(——bim)3].

part (b)

Roots for Landau free energy are:

ad? + b + gt = F (atbp+cd?) =0 =0, = 27 ‘21702_4“

We should have:

2
2
(i) ——a>0zb2>8ac
2¢ c

Above put a constrain on sign of free parameters. Near critical temperature a should
change sign (linearly dependent to t) and ¢ should have positive sign (otherwise we
don’t have finite minimum for ¢). We don’t have any physical constrain for sign of b
and it can have either positive and negative signs (b is independent of ¢).

part (c)

First, we define the two-point function:
G(ri —rj) = (5iS)) — (Si){Sp)
Partition function is:
Zo ="Tr e PHa — Ty exp ﬁ]ZSiSJ- + ﬂHZS,-
(i i

We can obtain averages by differentiating from partition function:

1 — _ 1 0Zo
E i) — —T E i ﬁ(]{g - -
i<S> Za r»i Sil e pZa OH
1 » 1 9%°Zq
E oy — E S| pPHo — =
7 Sij) ZQTr T S e p?Zq OH?

Now we want to calculate susceptibility:

_OM _ 9*F 1 §%log Zq
" GH  OH® NB OH?
1 8 [10Za
‘N_ﬁa_H[z_Qa_H]

1|1 8Za (1 0Za)
Y/ Z_QaH2_(z_QaH)

2
B
=5 le(Sl-Sj> - (Z<Si>)
= % ;G(ri—rj) =p ZG(XI‘) = %/Qddr G(r)

10

XT




In last step we take our space to be continuous and summation become integral as

follows: .
H —_—
=l

11
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