Provided by A. Kargaran under supervision of Dr. Movahed

Answer to Exercise Set #4 of Critical Phenomena

1- (Goldenfeld book exercise 3-1):

part(a)
We want to nationalize this matrix:

T =

eK+h e—K ]

e—K eK—h

We should find S (rotation matrix) to which diagonals above with S7ITS, we know
rotation matrix is of a form:

| cosg sing| [c -s

~|-sing cosd| |s ¢

We can find easily inverse above and finally:
c -s
s ¢

, c s eK+h e—K
el g 5
T’ should be diagonal and off diagonal terms should be zero, finally we find:

-S C e

1
e K cos2¢ = 3 sin 2¢ eX 2sinh h
cot 2¢ = e*X sinh h

part(b)
We know that:

1
(S = = .. Z e_ﬁHQSi

Z S1 SN
1
— z e Z [T5152T5253. .. TSi—15i Si TSi+15i .. ]
S1 SN

Sum in i is a matrix A like:
Aab = Z TaSi TS,b Si
S;

We can write above expression as following;:

10
A_T[O _1]1"

Finally we have:
1
(Si) = Z Tr (o, TV)
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We can write above in diagonal space of matrix T, we have:

Tr [S7! o, S (T™N)] T [s7! oo S (TN)]
T ()N Tr (TN

(Si) =
In last equation we know that Tr (T)V is equal to Tr (T")N.

Now we should calculate (S;) with part a assumptions we have:

slgs=|€¢ L 0le =s|_ 2 -5 —2cs _ cos2¢ —sin2¢
‘ -s ¢||0 =1f|s ¢ —2cs  —c? +s? —sin2¢ —cos2¢

We have:
() = cos2¢ —sin2¢ /111\] 0
Y T (T')N —sin2¢ —cos2¢|| 0 AY
)lev cos 2¢ —/1]2\7 sin 2¢
T Tr (T’)N /111\] sin 2¢ —AQ’ cos 2¢
= cos 2¢ 12\] = cos 2¢ )Lll\] — /1]2\]
)LN AN A+ A+ A

When we take the limit N — oo and we know A; > Ay we have (S;) — cos 2¢.

We now that correlation function is:
G(i, 1) = (SiSj) — (S{S))
So we should calculate (S;S;) we have:

Tr [(T/)i—ls—l o, S (T/)i+j—i S—l 0, S (TI)N—j—i+1]

(SiSj) =

Tr (T")N
Tr[S7' o, S(T'Y S o, S (T")N]
B Tr (T")N
We have:
(5.5 = 1 T cos2¢ —sin2¢ /1{ 0] cos2¢ —sin2¢ 0
T T (TN " |- sin 20 —cos2¢| |0 Aj —sin2¢ —cos2¢|| 0 AIZ\H
1 Nocos2¢  —Asin2¢] [ AY cos 2¢ —/1]2\]_].' sin 2¢
T (TN /1] sin 2(/5 —/V cos 2¢ Tsin2¢ —A) 7 cos2¢
1
= <% (AN cos? 2¢ + ( YAN sin? 2¢) + ( )’/IN sin? 2¢ + A% cos? 2¢)
AL+ A5
v M
2 o2 2
= 2¢ + 20 + (== — 2¢ + 2
WA ([cos o) ( )’sm o) ( (/12)’sm ¢ + cos g{)])

When we take the limit N — oo and we know A1 > A9 we have:
Ao .
(SiSj) — cos® 2¢ + (/1_2)1 sin® 24
1
(S,)(Sj) —> COS2 2¢
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Finally:
G(i. 1) = /12 i .2
(i,)) = (/1_1)] sin” 2¢

part(c)
We have magnetization and we want to derive an expression for susceptibility, we have:

oM sinh h )

e paf s
OH ‘T Oh \ \sinh2 h + w2

cosh h(sinh? h + w?)1/2 — sinh h cosh h(sinh? h + w?)~1/2

=F sinh? h + w2

3 cosh h sinh? A cosh h

=p | (sinh?h + w2)1/2 - (sinh2h + w2)3/2]

_, |coshh sinh? h + w2 cosh h — sinh? h cosh h
=5 i (sinh? h + w2)3/2 ]
3 w? cosh h

=F | (sinh® A + w2)3/2]

Now we want to calculate susceptibility with summation (equation 3.159) of correlation
function we have:

Xr = kBT Z G(i,i+j)= — k T Z(—)Jsm 2¢

]——OO
sin?2¢ <~ Ao, sin?2¢ Ao
= —Y=—7|1+2 —
_ sin?2¢ RZEN sin 2¢ [ A1 + A
 kgT M= ksT |-
3 sin? 2¢ cosh h ]
ksT Vsinh? h + 4K
We know that:
1 1 1

)
sin® 2¢ = = =
¢ 1+cot?2¢  1+eKsinh®h  edK (sinh? h + e~1K)

Finally we have:

1 1 cosh h
XT = ) _
kgT e*K (sinh” h + e=*K) | \ginhZ b + 4K
1 e 4K cosh h

- kT (sinh2 h+ e‘4K)3/2

We take w? = e 4K 50 we have:

1 w2 cosh h
ksT (sinh2 h+ w2)3/2

XT =
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Above is equal to equation m results.
part(d)

We know that partition function with free boundary condition is:

Z = Z .. Z Hs1++8N) K (1824 +SN-15N)

S1 Sn

Above summation is NOT simply something in power of N we should use a technique
to do this. We can write partition function as below:

Zn(h,K) = Z . Z (st +5N) JK(S1S2++-+SN-15N)

S1 SN

— Z .. Z e%(sl+52)+KSIS2 o e%(SN—1+5N)+KSN—ISN6%(51+SN)
S1 SN

We put the last exponential to correct our summation. We can write above in this

way:
Kb K IN"Lrh
Zn(h,K)=Tr oK K-h 1 eh
We use part a transformation, we have:
(AN 0 e s|[e" 1][c —s
— 1
In(h K) =Tr ( 0 ANt |-s c} [1 e s ¢
_ Ty >/1]1V_1 0 cZel + 2sc + s2e7" —scel + c? — 5% + sce™"
B | 0 /112\]_1 »—sceh +c% =52+ sce™ —s2el — 2s¢c + c2e 7"
_T >/111V_1 0 | [sin2¢ + e cos® ¢ + e "sin? ¢ cos 2¢ — sin 2¢ sinh h
- 0 A cos 2¢ — sin 2¢ sinh h —sin 2¢ + e cos? ¢ — e sin? ¢
_Ty [AN=1 [sin 24 + e/ cos® ¢ + e sin? @] A1 cos 2¢ — sin 2¢ sinh h]
B i /1]2\[_1 [cos 2¢ — sin 2¢ sinh h] /112\7_1 [— sin 2¢ + e/ cos? ¢ — e~ sin? g{)]

= /111\7_1 [sin 2¢ + el cos? o+ e sin? ng] + )LZQV_

A2

= /111‘]_1 [sin 20 + e cos’ ¢ + e sin? ¢ + (/1
1

! [— sin 2¢ + e" cos? ¢ — e sin? g{)]

N-1
) (— sin 2¢ + e cos® ¢ — e 7" sin? ¢)]

)
)



We can find free energy as follows:
Fn = —kgT log Zn(h, K)
= —kgT(N — 1)log A1 — kgT log [sin 20 + e cos® ¢ + e sin? ¢
B\ hoo2 g h 2
+ | = (—sm2¢+e cos“ ¢ —e "sin (;S)]
M
= —kgT(N — 1)log A1 — kgT log [sin 2¢ + e’ cos? ¢+ e " sin? g{)]
L4 (A_Q)N_l (— sin 2¢ + el cos? ¢ — e sin? gi)) ]

— kgT lo
51708 A sin 2¢ + e" cos? ¢ + e~ sin? ¢

We know that free energy is given by:
TN = N_ﬁ?(h7 K) + fs(ha K) + FfS(Na h7 K)

where f, is the bulk free energy, f; is the surface free energy due to the boundaries,
and Ffg is an intrinsically finite size contribution. With above definition we have:

fp(h,K) = —kpT log A1
fi(hK) = —ksT log [sin 2 + el cos? ¢ + e sin? ¢| + kT log Ay
- (/11 )N_1 (— sin 2¢ + e’ cos? ¢ — e sin? gb) ]

F¢s(N,h,K) = —kpT1
75t ) 5108 Ao sin 2¢ + el cos? ¢ + e~ sin? ¢

From part (a) we know that ¢ = cot™ (2K sinh h)/2, put this in finite size free energy
we can find function C(h, K).

part(e)

We know that surface free energy is:

sin 2¢ + e cos® ¢ + e sin? (ﬁ]

filh, K) = ~ks T log | T

If we take h = 0 we have ¢ = /4, for above we have:

fi(h, K) = —ksT log [coshK]

For next part we should find:
f;(h, K) — Alfi_l,go[f’free _ TperiodiC]
= kT lim [10g (2(2 cosh K)N —1) —log ((2 cosh KN + (2 sinh K)N)]
= kT lim [10g 2 + (N = 1)log(2 cosh K) — N log(2 cosh K) — log ((1 + (2tanh K)N)]

We know that tanh x < 1 so in limit this term approach to zero, so we have:

fs(h,K) = —kgT [log 2 — log(2 cosh K)] = —kgT log [coshK]

Which is the same with equation E result.



2- (Goldenfeld book exercise 3-3):
part(a)
We should calculate this integral:
1

e 1
N Lt A xaxt
(%)N/?/_md Xexp (-5 X"-4-X+ X B)

If D is diagonalized matrix of A with transformation A = Q! DQ, with change of
variable in the form Y = Q X we can obtain:

TN % i T Ny|EX 1ot f
d Xexp(—§X CAX+X -B): d Y‘m exp(—§Y -D-Y+YQ~B)

1
—tlexp ( 2Yl‘2Dii + (YiQij)Bj)

- ]_[/ dYﬂ‘dY ’exp( YQD,,+(YQU)B)

Finally:

N N
1 ® 1 1 11/2
—(27r)N/2 l:[ /_00 dY; exp ( - §Y,2Dii + (YiQij)Bj)B = —(zﬂ)N/Q 1:[ [D_] exp( B; Qi D7 Qi B;)

! |2 ﬁ i]l/z exp(% B-A™.B)
B

= (2”)}\]/2 1 Dii

1 1 -1
= eiB'A ’

VDet A

part(b)
We know that Hamiltonian is:

Ho = —BHq = 22],155 +ZHS

i£j
=3 Z]ijsisj -3 Z]iiSiQ + Z H;S;
T i i

In above identity if we choose X; = S; and A = J/f we have:

Ho = S(BS)CNBS) ~ 5SICHPS) + HiS)
1 Jij
= 565) () (85) = & T + Hps)

L We have Det(1/QT) = Det(1/Q) = Det(Q~') = Det(QT) = +1.

2 This integral is helpful:
/DO e—uy2 evydy — E 602/414
oo V «



We know that Sl.2 = 1 so we can choose g Tr(J) as zero energy, and apply part (a)
identity.

part(c)

We use part (b) Hamiltonian and use part (a) identity to calculate partition function,
we know that identity is:

o N0 ay, 1 1 1500
i — 5Bi(A7)ijB;)
| | —— |exp|—= ,-A,~gb-+g//iB,-) = ———e? 751
/—oo iz1 (‘V27r) ( 2¢ s VDet A

We take Al._j1 = J/p and B; = BS;. We have to change above in order to use it in relation
of partition function, we have

2 % dl//i ﬁ —
; Slee B0 BD55) — [Det g Z H(ﬁS)/ («/ﬂ)em (_E%U s+ GBS

We can write For partition function with part (b) Hamiltonian we have:

3. Z (3850 G (8) =5 Th() Hu(5s:)
S1

Zao

§TO S Z o3850 ) (BS) JHi(pS)
S1
_— Tr(J) ,Det ﬂ] Z H(ﬂs) l_[ dlpl exp _élpi(]_l)i'w' +¢i(ﬁ5i)
2 ]7]
o N
_ 50 [Det g / d¢i LUy, Z...Zesiﬁ(Hiw»
V2r
= ¢ 5 D0 [pet g1 / Wi \ Ly, n( PHAD) | ﬂ<H+¢,>)]

lzLI

i1 \V2r i1
N [ N
oo IV d . B
— o5 T0) [Det ﬂ]‘l/ ;ﬁ e 2T iy l_[ (2 cosh B[H; + ¢i])
—o =1 \ V4T [ i=1

|z

_ 0 Dot gt / T2V -0y, i tog2 cosh Bl L+
—00 ; V277.'
i=1

We can write above in this fashion:
1 1
= 5V = 5 2 log (2cosh flH, + i)
1
We can shift integration variable like ¢; — ; — H; to have:

S= %(lﬁi - Hi)]i}l(%‘ - Hj) - % Z log (2 cosh f;)

3T multiply the identity by e™iF5) and summed in all degree of freedom
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part(d)
For this part we use saddle point approximation or steepest descents method,
for approximating partition function. If function S in previous part is minimum with
respect to ; then we can say the exponential is maximum (consider minus sign),
variation of function S is:

5 = 50 iy H 0~ HOJ} 8, = 5 37 B tanh(4)
= ), 0% [J5' (i = Hy) — tanh(Byy)]

So we have: B -
J;' (i — Hy) — tanh(By) = 0 (3)

So we approximate partition function as follows:
Zo ~ e PS5
We can Helmholtz free energy like:
F = —kpT log Zo ~ S{{i}
Magnetization is:

oF as

N Tk aH (¢l H)J; (4 - Hj) - ﬁzlog@coshﬁ%)

= (Wi —H)J;'

By using equation E we have: -
m; = tanh(fy;)

From above we can find ¢; as a function of m; we have:

eﬁl}i — e_ﬁl;i

- _ = [m; — 1] = ¢ Pl [m; + 1]
eBYi + e=B¥i

m; =

We find:

- 1 1+m;
=]
i 28 0g (1 — mi)
We put above in equation B to find H;{m;}, we have:

J;' (i — Hy) = tanh(By;) = l_ﬁl 0g (1 - ml) - Hi] = Ml

1 1+m;
H; = ﬁlog —m, —miJ;

Remember that we use Einstein summation convention in all calculation.




part(e)
We use previous part result and put it in Helmholtz free energy function, we have:

F = —kpT log Za ~ S{§)i} = %(lﬁ' - H)J;'(§; - H)) - %Z log (2 cosh ﬁlﬁ)

_l[il 1+m; —il 1+m,» _ ] [1 1+mj —il 1+m\ ]
=3 |25 0g e by 0g miJij| J; 2 |~ 28 og = m, m;Jij
__Zlog(2cosh[ﬂ—log(1+m1)])

:%]ijm,-mj Zlog 2COSh[ log(1+ml)])

1+m, 1—m;
1 +
Lymim, - ﬂzog( RE

Finally:
= 1 1 2

S({mi}) = gJymim; = 2 3 log| —===
ﬁ i 1 -

We know that Gibbs free energy is:

T{m;} = S{m;}) + ZHi<{mj}>mi

Put function of S({m;}) and H;({m;}) in above, we have:

e )

I'{m;} = ],Jm mj —

Zlog \/:

1 1 m; 1+m; 2
_§]Umlm]+BZ 710g(1—m1) —log i

_mi

We can verify equation of state by H; = dI'{m;}/0m;, we have:
1 1 14+ m; mi mi
—Jiim; + — =1 + -
Jumy ﬁZ[Q Og(1—mi) 1I—m2 1-m?

1 1 1+m
a2

= H,

In last part we use equation @



3- (Goldenfeld book exercise 5-2):
part(a)
We should derivative form the Landau free energy with h = 0, so we have:

g -b+ Vb2 -4
8_£:’7(a+b’72+6774)=0=>77=0 and 2 =nt="2" 2 -
7 C

I remove one of answer that have imaginary answer. For stability we should take second
derivative so we have:

a;Tf:a+3br]2+50r74‘

for n=20 = %:a = a <0 soitis unstable

for = oIV e PL g T
For U:_(_b-'_\/ﬁ)l/z:’ %=M[ b2c_4ac_§]

For last two parts we have this:

8%n

ifb<0 2L Stable

{if b>0 >L < 0 Unstable
8%n

part (b)

We should have 52 = positive real number, that is impossible if we have a > 0 and
b > 0. If consider the case that b? — 4ac > 0 then expression —b + Vb2 — 4ac is always
negative, so in this region we have only one answer that is s = 0.

part (c)

We know that b < 0, a > 0 and ¢ > 0 so we can write:

2
oL = a+ 3bp® + 5ept

02
2
for n=0= %:a = a>0 soitis Stable
n
—b+ Vb2 -4 2 b’ —4ac b
for n=+( il ac)1/2:> —6£=Vb2—4ac[—ac——]
2¢ 021 c c
~b+ Vb2 -4 9? b’ —4ac b
for n=—( i 5 ac)1/2:> —82£=Vb2—4ac[—ac——]
c n c c

So we have:
8%n

ifb<0 2L Stable

{if b>0 2L 0 Unstable
92y

part (d)
We can solve Landau free energy density for different value of . We can sketch diagram
in a-b plane like below:
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Figure 1

In the curvature (a = b?/4c) we have first order transition because above the
parabolic line we have on stable answer and below this line we have three stable answer.
If we sketch for all possible a and b sign and values we have four category that is shown
in below diagrams:

a=0.67b=—4,c=6

a=—-4b=4,c=6

a=-4b=4c=6
-1.0

Figure 2
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Point n = 0 may called triciritical point because it can reached by changing three
parameter like T, P and h.
part (e)
We can calculate critical exponent by using Landau free energy equation, for f we
have:

1 1
£=§mf+6m6—w for b=0, h=0
oL N _(—a 1/4 _(—ait +agp 1/4 1
Gy ~Marer) =0=n= ()= ()T o =g
for & we know that C, = =T8> L/9T? and so we have:
0oL 10L
aT T, ot
—ait 12 1 —ait -1/2 _ —ait 1/2 _
= S (R T (et + agp) (R ) (2 4 SRR A,
2 4 c 4 c c
oc (—ayt + agp)l/2
0*’L 19°L 1
_ -1/2 —

for § we have(consider that in tricritical point a=0):

1 1
L= 5a772+60776_h’7 for b=0
0L

8—:2a17+cn5—h:0='2a17+0175:h =h~n" §=5
U]

for y we have:
d 5
%(Zar] +cn ) =1
on(h) 1
h = =
xr(h) oh 2a + 5cnt
3 1
T 2ait + asp + Sent

=y=y=1

We can find v by using scaling law derived in chapter 9 (2—«a = vd). I don’t know any
way to derive v explicitly.

part (f)

We know that the only difference between triciritical and ordinary behavior is addi-
tional term in Landau free energy 1/6¢n%. So if this term can merge to other terms the
cross over can happen, so if we have:

1/6cn® ~ 1/4bn* = b ~ cp?

In ordinary critical behavior we have stable order parameter in zero and 5 = (—at/b)"/2,
if we use this in above equation we have:

b~cn® = b~ c(-at/b) = b ~ —ac
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4- (Goldenfeld book exercise 5-3):

part(a)
We have relation like this in the chapter five text, we have:

o0

1 . )
M(x) = i Z e'"M,, M, = /M(x)e_’q”xdx
L

n=—oo

We put left to right equation so we get:

M(x) :I% i eiq"x[/LM(x')e_iq"x’dx']

- /L M(x')[% i €110~ 4!

n=—oo
So we have:
1 v :
o - = qn(x—x")
O(x—x") = i nzz_oo e
If we put right to left we can get:
I & _

M,,,[l / ei(an—qn)xdx]
LJL

Mn’[l /ei(n’—n)Zﬂx/de]
LJL

So we can define Kronecker delta function:

5nn’ = 1 /ei(qn’_Qn)xdx — 1 /ei(n’—n)Qﬂx/de (5)
LJ; L)

n=-—oo

If L goes to infinity we should consider density of states (L/(27)).

part (b)
I want to transform all terms in Landau free energy to Fourier space. For first term
we have:

2 — a_t N N i(qn+qm)x — a_t N — a_t N 2
/Lathx—LQZ ZMan/Le dx—LZMnM—n—LZ|Mn|
n=—00 m=—00 n=—co n=—oo

for second term we have:

(o) (o) (o)

g/LM4dx: 2% ( Z Z M,,Mn,e"(q”qn/)x)( Z i MmMm,ei(qm+qm/)x)dx

L n=—oon’=—o0 m=—oco m’=—0co
[ee] [ee] [ee]

= % i Z Z Z MnMn’MmMm’ n+m+n’+m’,0

n=—oon’=—oco0 m=—00 m’=—0co

13



for third term we have:

/)2/((?;;/[ = LQ/( gooM iqne ’qnx)( i Mm(i)qmeiqu)dx

m=—oo

— y (/ —i(qn qm)-x )
2L2 nYm n m

n=—00 m=—00
o]

2 2 2
= (=) > M
2L( I ) n__oon | nl
for the last term we have:

[565r = (Zw e z V(1)

- 2L2 Z Z qnqm / _’(Qn+qm)xdx

n=—oo m=
0271 9
= M,
o () an |

Finally Landau free energy in Fourier space is:

D%Landau = Z [fan|2 Z Z Z MnMn’MmMm’ n+m+n’+m’,0
n=—oo n’:—oo m=—00 m’=—00
2 2 4 4
+ M, ]
+ LM+ T e,

Second term make calculation very difficult but we can make it easier by assume that
m = —n and m’ = n’, we have:

_ N at v 2,2 2 iQ_”44 2
it = Y, |SIM 2L3Z|M||M|+2L(L) Mo+ (5 0 2

n=—0o

part (c)
Now we want to take derivative for M,. Derivative of all terms in %} sngau have ordinary
behavior except second term. Now I want to derivative second term:

[ee]

h h = — 8| M|

M,|* | My, ] — M ||IM..|? + |M,[*|M
[QL?,”_Z_]MZJ PIMl?| = 25 mezm Ml |+ 1V Ml

b S S — 2 2
=5 D0 D | IMallMal® + MM, |5nm]

n=—00 m=—00
=5 Z|M||M| L32|M|
n=-—o00 m=— n=—o0

14



Finally we can write derivative for M, we have:

agLandau = 2at 3 y 27T o 2” 4 4
A = M, M, M, + M, M, —(=—)" M,
BIM, | n;_ — |My| + L3| | E M| | "+ (T )?|My|n® + () [ Maln
% 2at Y 2 o 2r
= M[—+— § Mal2 + 22 + L2 4 44]:()
n:—ool nl L L3 m:—ool ml L3| n| L( L ) " L( L)

(6)

Now we want to derivate with respect to n we have:

ag anaau -
- 5,

n=—0oo

(—)QIM |(2n) + —( = )iIM, |(4n3)]

2L° L
47?2 &
=13 Z | M|

n=—oo

(7)

2
y + 20(%)2712171 =0

From equation B we can find two condition that can make equation equal to zero.
First, if we have one point sum and n = 0, second, we have |M,| behave specialty like
|M,| = |M_,| (which we assume it have because I can’t calculate the summation). For
first condition (n = 0) by put the condition in B we have:

0. 2at  2b —at
Landau a §|M0|2] =0=|My|=0 and |[My|=L —

= |Mo|| —
0| M|

b

We find stationary solution in Fourier space, by using inverse Fourier transformation
we find that M = 0 and M = +/—at/b is solution in real space. If we put condition
(M, = M_,) in B third and fourth term in summation will diverge and I have no idea
what is wrong.

part (d)

I can’t solve this part.
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5- (Goldenfeld book exercise 6-4):
part(a)
I use generating function for proof above. For nominator we can write generating
function form:

0o 0 _1yT T 0o 0 2r)N 1 _
— — [ Dxel2X'AX+X) _ 7 T p-1
a]qa]r/ ¢’ a5, 00 |Vdera® A4

1 [@2n)N
AL
7 N det A
/DXe—%XTAX _ 2m)N
-1_|@oN
Aqr d;A _

@2nN
det A

J=0

for denominator we have:

by dividing above we find:

<qur> = qr

part (b)
I want to prove that right hand side of equation equal to left hand side so:

1 H2 14T T
(xqxp) = /DXe(_§X AXH]TX)
¢ @V 0J.0]p
det A
2
(xgxq) = ! 9 /DXe(‘%XTAX”TX)
@mN 0Ja0J4
det A
1 02 1T T
(XgXe) = —— /DXe(_ix AX+TTX)
o (2m)N 0J.0]c
det A

We know that the Gaussian integral is:

/DXe(—%XTAX+]TX) _ /(Qﬂ)Ne%]TA-lj
det A

by using part (a) we know the result of above integrals and finally all two point functions
are:
(xaxp) = A7) (xexg) = A7)
=1 =1
<xaxd> = AL% <xbxc> = Abc
(XaXc) = Age  (XpXa) = A;;
So RHS is:

(Xaxp ) {exa) + (Xaxa) (upe) + (Raxe)(pxa) = Ag Ag) + A AL + Al Ay
Now we want to calculate left hand side of part (b), so we have:

1 ot / 1T T
XgXpXeXq) = DX 73X AX+JX)
Cxaxpxexa) N 0J,0Jp0].0]4

det A
84
= ——F—€
a.]aa.]ba]ca]d
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We can derivative exponential function by two pair of variables, so we can write:

04 %]TA—IJ
ajaa]ba]ca]d
1 4=1 , a=14-1, A=14-1
=ApAg T AA F A Ay

(XaXpXcXg) =

17



6- (Goldenfeld book exercise 7-1):

part(a)
Landau free energy is:
2 Un n

L= [ dbe | S0 + g + g

If we write effective Hamiltonian with above, we have:
— d 1 2
He{¢} = L = /d x{é(ngS) —r0¢ + }
We know that dimension of effective Hamiltonian is one ([Heg] = 1) so we should have:
[ / dx (V¢)’| =1 - LL7?[g =1 > [¢] =L

[ / dix rgg?| =1 — L rg] = 1 — [rg] = L2

[/ ddx un¢n — 1 N LdLn_nd/2[un] — 1 N [un] — L(nd—2d—2n)/2

We have already seen that Gaussian functional integrals are easy to do. So we will write
the partition function as a Gaussian functional integral with a modification, which we
treat by perturbation theory. We define the following dimensionless variables:

¢ . — Un -1/2

= T Un = T(nd—2d-2m)/2’ L=ry

We have to calculate partition function for all purposes, so we have:

Z(up) = /DQD exp [-Ho{¢} — Hint{}] (8)

Hy =/ { (Vo)* + 1'”O(P}
Hiny = /ddx{%(/’n}

If Hiyy = 0, the integral E is just the Gaussian approximation, which is exactly soluble.
The partition function has, however, a contribution from the interactions, Hj,. We
might imagine that if u, < 1, then we could use perturbation theory:

Z / D(p e~ 0 Hint

_ 1
= /D‘P e~ Mo (1 — Hip + E(Hint)Q -

Where:

The important point is that the partition function depends on one dimensionless pa-
rameter uy; this is our perturbation parameter. Written out explicitly,

- - —2d-2n)/4
L, = 1, [(d+2dR2m/2 unr(()nd d—2n)/

18



ro is a characteristic length for the system which is correlation length and it varies
between finite value to infinite value so for d > 2n/(n — 2), u, — oo and perturbation
theory becomes meaningless! On the other hand, for d < 2n/(n—2), u, — 0, and mean
field theory becomes increasingly accurate as T — T,'.

part(b)

In problem 5-2 we have a term with n = 6 and we can find that d > (2x6)/(6 -2) = 3,
perturbation theory for this problem will be accurate for dimension d > 3.
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7- Exercise # 2 of set # 4
First, we define the two-point function:

G(ri — 1) = (SiSj) — (Si){S))
Partition function is:
Zo=Tr e PHo — Ty exp ﬂ]ZSiSj + ﬁHZSi
(ij) i

We can obtain averages by differentiating from partition function:

1 Z _ 1 0Zqo
E i) — —T i ﬁ(]_{Q - -
> S0 Zao ! |55 Sife BZo OH
1 » 1 9%°Zq
QN — _— § Q.| p=PHa —
ZU. Sisi = Zg 1 . %€ p>Za 0H?

Now we want to calculate susceptibility:

oM __#F 1 #logZa
~0H  9H? NB OH2

_ L 0 |1z

"~ NB 0H |Zq 0H

1 [ 1 a?zg_( 1 azg)zl

XT

T NB | Zo 0B \Zq oH
5 2
=N Z<Si5j> - (Z(&'))
ij i
In mean field theory we have:

2
D (SiS)y = (Z(s») = M?
ij i

So we have G(r; — r;j) = 0. According to Goldenfeld text result of none zero correla-
tion function comes from Landau theory which is solving the equation of correlation
function.
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8- Exercise # 3 of set # 4
The Helmholtz free energy given by:

T = / Dy e PHIO)

where the integral [ Dn is a functional integral over all degrees of freedom associated
with 5, instead of an integral over all microstate. Landau’s assumption is that we can
replace the entire partition function by the following:

BT ~ / Dy e L) ()

For example, if 7 is the mean magnetization, a given value for the magnetization can be
determined by many different microstates. It is assumed that all of this information is
contained in £{n(r)}. This is a non-trivial assumption which can nonetheless be proven
for certain systems. The conversion of the degree of freedom from Sto n is known as
coarse-graining, and is at the heart of the relationship between statistical mechanics
and thermodynamics. The next step is to minimize L{n(r)}(to maximize integrated),
performing a saddle point approximation (or steepest descent) to the functional integral
in g, giving:
e P ~ e PLmin{n(r)}

this is relation between Helmholtz free energy and Landau free energy.
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