## Answer to Exercise Set \#4 of Critical Phenomena

## 1- (Goldenfeld book exercise 3-1):

part(a)
We want to nationalize this matrix:

$$
T=\left[\begin{array}{cc}
e^{K+h} & e^{-K} \\
e^{-K} & e^{K-h}
\end{array}\right]
$$

We should find $S$ (rotation matrix) to which diagonals above with $S^{-1} T S$, we know rotation matrix is of a form:

$$
S=\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]=\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]
$$

We can find easily inverse above and finally:

$$
T^{\prime}=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{cc}
e^{K+h} & e^{-K} \\
e^{-K} & e^{K-h}
\end{array}\right]\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]
$$

$T^{\prime}$ should be diagonal and off diagonal terms should be zero, finally we find:

$$
\begin{aligned}
e^{-K} \cos 2 \phi & =\frac{1}{2} \sin 2 \phi e^{K} 2 \sinh h \\
\cot 2 \phi & =e^{2 K} \sinh h
\end{aligned}
$$

part(b)
We know that:

$$
\begin{aligned}
\left\langle S_{i}\right\rangle & =\frac{1}{\mathcal{Z}} \sum_{S_{1}} \cdots \sum_{S_{N}} e^{-\beta \mathcal{H}_{\Omega}} S_{i} \\
& =\frac{1}{\mathcal{Z}} \sum_{S_{1}} \cdots \sum_{S_{N}}\left[\boldsymbol{T}_{S_{1} S_{2}} \boldsymbol{T}_{S_{2} S_{3}} \ldots \boldsymbol{T}_{S_{i-1} S_{i}} S_{i} \boldsymbol{T}_{S_{i+1} S_{i}} \ldots\right]
\end{aligned}
$$

Sum in $i$ is a matrix $A$ like:

$$
A_{a b}=\sum_{S_{i}} \boldsymbol{T}_{a S_{i}} \boldsymbol{T}_{S_{i} b} S_{i}
$$

We can write above expression as following:

$$
A=T\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] T
$$

Finally we have:

$$
\left\langle S_{i}\right\rangle=\frac{1}{\mathcal{Z}} \operatorname{Tr}\left(\sigma_{z} T^{N}\right)
$$

We can write above in diagonal space of matrix $\boldsymbol{T}$, we have:

$$
\left\langle S_{i}\right\rangle=\frac{\operatorname{Tr}\left[S^{-1} \sigma_{z} S\left(T^{\prime N}\right)\right]}{\operatorname{Tr}\left(T^{\prime}\right)^{N}}=\frac{\operatorname{Tr}\left[S^{-1} \sigma_{z} S\left(T^{\prime N}\right)\right]}{\operatorname{Tr}(T)^{N}}
$$

In last equation we know that $\operatorname{Tr}\left(T^{N}\right.$ is equal to $\operatorname{Tr}\left(\boldsymbol{T}^{\prime}\right)^{N}$.
Now we should calculate $\left\langle S_{i}\right\rangle$ with part a assumptions we have:

$$
S^{-1} \sigma_{z} S=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]=\left[\begin{array}{cc}
c^{2}-s^{2} & -2 c s \\
-2 c s & -c^{2}+s^{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos 2 \phi & -\sin 2 \phi \\
-\sin 2 \phi & -\cos 2 \phi
\end{array}\right]
$$

We have:

$$
\begin{aligned}
\left\langle S_{i}\right\rangle & =\frac{1}{\operatorname{Tr}\left(T^{\prime}\right)^{N}} \operatorname{Tr}\left(\left[\begin{array}{cc}
\cos 2 \phi & -\sin 2 \phi \\
-\sin 2 \phi & -\cos 2 \phi
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{N} & 0 \\
0 & \lambda_{2}^{N}
\end{array}\right]\right) \\
& =\frac{1}{\operatorname{Tr}\left(T^{\prime}\right)^{N}} \operatorname{Tr}\left(\left[\begin{array}{cc}
\lambda_{1}^{N} \cos 2 \phi & -\lambda_{2}^{N} \sin 2 \phi \\
-\lambda_{1}^{N} \sin 2 \phi & -\lambda_{2}^{N} \cos 2 \phi
\end{array}\right]\right) \\
& =\cos 2 \phi \frac{\lambda_{1}^{N}-\lambda_{2}^{N}}{\lambda_{1}^{N}+\lambda_{2}^{N}}=\cos 2 \phi\left(\frac{\lambda_{1}^{N}}{\lambda_{1}^{N}+\lambda_{2}^{N}}-\frac{\lambda_{2}^{N}}{\lambda_{1}^{N}+\lambda_{2}^{N}}\right)
\end{aligned}
$$

When we take the limit $N \rightarrow \infty$ and we know $\lambda_{1}>\lambda_{2}$ we have $\left\langle S_{i}\right\rangle \rightarrow \cos 2 \phi$.
We now that correlation function is:

$$
G(i, j)=\left\langle S_{i} S_{j}\right\rangle-\left\langle S_{i}\right\rangle\left\langle S_{j}\right\rangle
$$

So we should calculate $\left\langle S_{i} S_{j}\right\rangle$ we have:

$$
\begin{aligned}
\left\langle S_{i} S_{j}\right\rangle & =\frac{\operatorname{Tr}\left[\left(T^{\prime}\right)^{i-1} S^{-1} \sigma_{z} S\left(T^{\prime}\right)^{i+j-i} S^{-1} \sigma_{z} S\left(T^{\prime}\right)^{N-j-i+1}\right]}{\operatorname{Tr}\left(T^{\prime}\right)^{N}} \\
& =\frac{\operatorname{Tr}\left[S^{-1} \sigma_{z} S\left(T^{\prime}\right)^{j} S^{-1} \sigma_{z} S\left(T^{\prime}\right)^{N-j}\right]}{\operatorname{Tr}\left(T^{\prime}\right)^{N}}
\end{aligned}
$$

We have:

$$
\begin{aligned}
\left\langle S_{i} S_{j}\right\rangle & =\frac{1}{\operatorname{Tr}\left(T^{\prime}\right)^{N}} \operatorname{Tr}\left(\left[\begin{array}{cc}
\cos 2 \phi & -\sin 2 \phi \\
-\sin 2 \phi & -\cos 2 \phi
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{j} & 0 \\
0 & \lambda_{2}^{j}
\end{array}\right]\left[\begin{array}{cc}
\cos 2 \phi & -\sin 2 \phi \\
-\sin 2 \phi & -\cos 2 \phi
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{N-j} & 0 \\
0 & \lambda_{2}^{N-j}
\end{array}\right]\right) \\
& =\frac{1}{\operatorname{Tr}\left(T^{\prime}\right)^{N}} \operatorname{Tr}\left(\left[\begin{array}{cc}
\lambda_{1}^{j} \cos 2 \phi & -\lambda_{2}^{j} \sin 2 \phi \\
-\lambda_{1}^{j} \sin 2 \phi & -\lambda_{2}^{j} \cos 2 \phi
\end{array}\right]\left[\begin{array}{c}
\lambda_{1}^{N-j} \cos 2 \phi \\
-\lambda_{1}^{N-j} \sin 2 \phi \\
-\lambda_{2}^{N-j} \sin 2 \phi \\
N-j \\
\cos 2 \phi
\end{array}\right]\right) \\
& =\frac{1}{\lambda_{1}^{N}+\lambda_{2}^{N}}\left(\lambda_{1}^{N} \cos ^{2} 2 \phi+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{j} \lambda_{1}^{N} \sin ^{2} 2 \phi+\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{j} \lambda_{2}^{N} \sin ^{2} 2 \phi+\lambda_{2}^{N} \cos ^{2} 2 \phi\right) \\
& =\frac{\lambda_{1}^{N}}{\lambda_{1}^{N}+\lambda_{2}^{N}}\left(\left[\cos ^{2} 2 \phi+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{j} \sin ^{2} 2 \phi\right]+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{N}\left[\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{j} \sin ^{2} 2 \phi+\cos ^{2} 2 \phi\right]\right)
\end{aligned}
$$

When we take the limit $N \rightarrow \infty$ and we know $\lambda_{1}>\lambda_{2}$ we have:

$$
\begin{aligned}
\left\langle S_{i} S_{j}\right\rangle & \longrightarrow \cos ^{2} 2 \phi+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{j} \sin ^{2} 2 \phi \\
\left\langle S_{i}\right\rangle\left\langle S_{j}\right\rangle & \longrightarrow \cos ^{2} 2 \phi
\end{aligned}
$$

Finally:

$$
G(i, j)=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{j} \sin ^{2} 2 \phi
$$

part(c)
We have magnetization and we want to derive an expression for susceptibility, we have:

$$
\begin{aligned}
\chi_{T} & =\left.\frac{\partial M}{\partial H}\right|_{T}=\left.\beta \frac{\partial M}{\partial h}\right|_{T}=\beta \frac{\partial}{\partial h}\left(\frac{\sinh h}{\sqrt{\sinh ^{2} h+w^{2}}}\right) \\
& =\beta \frac{\cosh h\left(\sinh ^{2} h+w^{2}\right)^{1 / 2}-\sinh h \cosh h\left(\sinh ^{2} h+w^{2}\right)^{-1 / 2}}{\sinh ^{2} h+w^{2}} \\
& =\beta\left[\frac{\cosh h}{\left(\sinh ^{2} h+w^{2}\right)^{1 / 2}}-\frac{\sinh ^{2} h \cosh h}{\left(\sinh ^{2} h+w^{2}\right)^{3 / 2}}\right] \\
& =\beta\left[\frac{\cosh h \sinh ^{2} h+w^{2} \cosh h-\sinh ^{2} h \cosh h}{\left(\sinh ^{2} h+w^{2}\right)^{3 / 2}}\right] \\
& =\beta\left[\frac{w^{2} \cosh h}{\left(\sinh ^{2} h+w^{2}\right)^{3 / 2}}\right]
\end{aligned}
$$

Now we want to calculate susceptibility with summation (equation 3.159) of correlation function we have:

$$
\begin{align*}
\chi_{T} & =\frac{1}{k_{B} T} \sum_{j=-\infty}^{\infty} G(i, i+j)=\frac{1}{k_{B} T} \sum_{j=-\infty}^{\infty}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{j} \sin ^{2} 2 \phi \\
& =\frac{\sin ^{2} 2 \phi}{k_{B} T} \sum_{j=-\infty}^{\infty}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{j}=\frac{\sin ^{2} 2 \phi}{k_{B} T}\left[1+2 \sum_{j=1}^{\infty}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{j}\right]  \tag{1}\\
& =\frac{\sin ^{2} 2 \phi}{k_{B} T}\left[1+\frac{2 \lambda_{2}}{\lambda_{1}-\lambda_{2}}\right]=\frac{\sin ^{2} 2 \phi}{k_{B} T}\left[\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}-\lambda_{2}}\right] \\
& =\frac{\sin ^{2} 2 \phi}{k_{B} T}\left[\frac{\cosh h}{\sqrt{\sinh ^{2} h+e^{-4 K}}}\right]
\end{align*}
$$

We know that:

$$
\sin ^{2} 2 \phi=\frac{1}{1+\cot ^{2} 2 \phi}=\frac{1}{1+e^{4 K} \sinh ^{2} h}=\frac{1}{e^{4 K}\left(\sinh ^{2} h+e^{-4 K}\right)}
$$

Finally we have:

$$
\begin{aligned}
\chi_{T} & =\frac{1}{k_{B} T} \frac{1}{e^{4 K}\left(\sinh ^{2} h+e^{-4 K}\right)}\left[\frac{\cosh h}{\sqrt{\sinh ^{2} h+e^{-4 K}}}\right] \\
& =\frac{1}{k_{B} T} \frac{e^{-4 K} \cosh h}{\left(\sinh ^{2} h+e^{-4 K}\right)^{3 / 2}}
\end{aligned}
$$

We take $w^{2}=e^{-4 K}$ so we have:

$$
\chi_{T}=\frac{1}{k_{B} T} \frac{w^{2} \cosh h}{\left(\sinh ^{2} h+w^{2}\right)^{3 / 2}}
$$

Above is equal to equation 1 results.
part (d)
We know that partition function with free boundary condition is:

$$
\mathcal{Z}=\sum_{S_{1}} \cdots \sum_{S_{N}} e^{h\left(s_{1}+\cdots+S_{N}\right)} e^{K\left(S_{1} S_{2}+\cdots+S_{N-1} S_{N}\right)}
$$

Above summation is NOT simply something in power of $N$ we should use a technique to do this. We can write partition function as below:

$$
\begin{aligned}
\mathcal{Z}_{N}(h, K) & =\sum_{S_{1}} \cdots \sum_{S_{N}} e^{h\left(s_{1}+\cdots+S_{N}\right)} e^{K\left(S_{1} S_{2}+\cdots+S_{N-1} S_{N}\right)} \\
& =\sum_{S_{1}} \cdots \sum_{S_{N}} e^{\frac{h}{2}\left(S_{1}+S_{2}\right)+K S_{1} S_{2}} \cdots e^{\frac{h}{2}\left(S_{N-1}+S_{N}\right)+K S_{N-1} S_{N}} e^{\frac{h}{2}\left(S_{1}+S_{N}\right)}
\end{aligned}
$$

We put the last exponential to correct our summation. We can write above in this way:

$$
\mathcal{Z}_{N}(h, K)=\operatorname{Tr}\left(\left[\begin{array}{cc}
e^{K+h} & e^{-K} \\
e^{-K} & e^{K-h}
\end{array}\right]^{N-1}\left[\begin{array}{cc}
e^{h} & 1 \\
1 & e^{-h}
\end{array}\right]\right)
$$

We use part a transformation, we have:

$$
\begin{aligned}
\mathcal{Z}_{N}(h, K) & =\operatorname{Tr}\left(\left[\begin{array}{cc}
\lambda_{1}^{N-1} & 0 \\
0 & \lambda_{2}^{N-1}
\end{array}\right]\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{cc}
e^{h} & 1 \\
1 & e^{-h}
\end{array}\right]\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right]\right) \\
& =\operatorname{Tr}\left(\left[\begin{array}{cc}
\lambda_{1}^{N-1} & 0 \\
0 & \lambda_{2}^{N-1}
\end{array}\right]\left[\begin{array}{cc}
c^{2} e^{h}+2 s c+s^{2} e^{-h} & -s c e^{h}+c^{2}-s^{2}+s c e^{-h} \\
-s c e^{h}+c^{2}-s^{2}+s c e^{-h} & -s^{2} e^{h}-2 s c+c^{2} e^{-h}
\end{array}\right]\right) \\
& =\operatorname{Tr}\left(\left[\begin{array}{cc}
\lambda_{1}^{N-1} & 0 \\
0 & \lambda_{2}^{N-1}
\end{array}\right]\left[\begin{array}{cc}
\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi & \cos 2 \phi-\sin 2 \phi \sinh h \\
\cos 2 \phi-\sin 2 \phi \sinh h & -\sin 2 \phi+e^{h} \cos ^{2} \phi-e^{-h} \sin ^{2} \phi
\end{array}\right]\right) \\
& =\operatorname{Tr}\left(\left[\begin{array}{cc}
\lambda_{1}^{N-1}\left[\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi\right] & \lambda_{1}^{N-1}[\cos 2 \phi-\sin 2 \phi \sinh h] \\
\lambda_{2}^{N-1}[\cos 2 \phi-\sin 2 \phi \sinh h] & \lambda_{2}^{N-1}\left[-\sin 2 \phi+e^{h} \cos ^{2} \phi-e^{-h} \sin ^{2} \phi\right]
\end{array}\right]\right) \\
& =\lambda_{1}^{N-1}\left[\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi\right]+\lambda_{2}^{N-1}\left[-\sin 2 \phi+e^{h} \cos ^{2} \phi-e^{-h} \sin ^{2} \phi\right] \\
& =\lambda_{1}^{N-1}\left[\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{N-1}\left(-\sin 2 \phi+e^{h} \cos ^{2} \phi-e^{-h} \sin ^{2} \phi\right)\right]
\end{aligned}
$$

We can find free energy as follows:

$$
\begin{aligned}
\mathcal{F}_{N}= & -k_{B} T \log \mathcal{Z}_{N}(h, K) \\
= & -k_{B} T(N-1) \log \lambda_{1}-k_{B} T \log \left[\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi\right. \\
& \left.\quad+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{N-1}\left(-\sin 2 \phi+e^{h} \cos ^{2} \phi-e^{-h} \sin ^{2} \phi\right)\right] \\
= & -k_{B} T(N-1) \log \lambda_{1}-k_{B} T \log \left[\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi\right] \\
& \quad-k_{B} T \log \left[1+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{N-1}\left(\frac{-\sin 2 \phi+e^{h} \cos ^{2} \phi-e^{-h} \sin ^{2} \phi}{\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi}\right)\right]
\end{aligned}
$$

We know that free energy is given by:

$$
\mathcal{F}_{N}=N f_{b}(h, K)+f_{s}(h, K)+F_{f s}(N, h, K)
$$

where $f_{b}$ is the bulk free energy, $f_{s}$ is the surface free energy due to the boundaries, and $F_{f s}$ is an intrinsically finite size contribution. With above definition we have:

$$
\begin{aligned}
f_{b}(h, K) & =-k_{B} T \log \lambda_{1} \\
f_{s}(h, K) & =-k_{B} T \log \left[\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi\right]+k_{B} T \log \lambda_{1} \\
F_{f s}(N, h, K) & =-k_{B} T \log \left[1+\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{N-1}\left(\frac{-\sin 2 \phi+e^{h} \cos ^{2} \phi-e^{-h} \sin ^{2} \phi}{\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi}\right)\right]
\end{aligned}
$$

From part (a) we know that $\phi=\cot ^{-1}\left(e^{2 K} \sinh h\right) / 2$, put this in finite size free energy we can find function $C(h, K)$.
part(e)
We know that surface free energy is:

$$
f_{s}(h, K)=-k_{B} T \log \left[\frac{\sin 2 \phi+e^{h} \cos ^{2} \phi+e^{-h} \sin ^{2} \phi}{\lambda_{1}}\right]
$$

If we take $h=0$ we have $\phi=\pi / 4$, for above we have:

$$
\begin{equation*}
f_{s}(h, K)=-k_{B} T \log \left[\frac{1}{\cosh K}\right] \tag{2}
\end{equation*}
$$

For next part we should find:

$$
\begin{aligned}
f_{s}(h, K) & =\lim _{N \rightarrow \infty}\left[\mathcal{F}^{\text {free }}-\mathcal{F}^{\text {periodic }}\right] \\
& =-k_{B} T \lim _{N \rightarrow \infty}\left[\log \left(2(2 \cosh K)^{N-1}\right)-\log \left((2 \cosh K)^{N}+(2 \sinh K)^{N}\right)\right] \\
& =-k_{B} T \lim _{N \rightarrow \infty}\left[\log 2+(N-1) \log (2 \cosh K)-N \log (2 \cosh K)-\log \left(\left(1+(2 \tanh K)^{N}\right)\right]\right.
\end{aligned}
$$

We know that $\tanh x<1$ so in limit this term approach to zero, so we have:

$$
f_{s}(h, K)=-k_{B} T[\log 2-\log (2 \cosh K)]=-k_{B} T \log \left[\frac{1}{\cosh K}\right]
$$

Which is the same with equation 2 result.

## 2- (Goldenfeld book exercise 3-3):

part(a)
We should calculate this integral:

$$
\frac{1}{(2 \pi)^{N / 2}} \int_{-\infty}^{\infty} d^{N} X \exp \left(-\frac{1}{2} X^{\dagger} \cdot A \cdot X+X^{\dagger} \cdot B\right)
$$

If $D$ is diagonalized matrix of A with transformation $A=Q^{-1} D Q$, with change of variable in the form $Y=Q X$ we can obtain:

$$
\begin{aligned}
\int_{-\infty}^{\infty} d^{N} X \exp \left(-\frac{1}{2} X^{\dagger} \cdot A \cdot X+X^{\dagger} \cdot B\right) & =\int_{-\infty}^{\infty} d^{N} Y\left|\frac{d^{N} X}{d^{N} Y}\right| \exp \left(-\frac{1}{2} Y^{\dagger} \cdot D \cdot Y+Y^{\dagger} Q \cdot B\right) \\
& =\int_{-\infty}^{\infty} \prod_{i=1}^{N} d Y_{i}\left|\frac{d X_{i}}{d Y_{i}}\right| \exp \left(-\frac{1}{2} Y_{i}^{2} D_{i i}+\left(Y_{i} Q_{i j}\right) B_{j}\right) \\
& =\prod_{i=1}^{N} \int_{-\infty}^{\infty} d Y_{i}^{\mathbb{|}}\left|\frac{d X_{i}}{d Y_{i}}\right| \exp \left(-\frac{1}{2} Y_{i}^{2} D_{i i}+\left(Y_{i} Q_{i j}\right) B_{j}\right)
\end{aligned}
$$

Finally:

$$
\begin{aligned}
\frac{1}{(2 \pi)^{N / 2}} \prod_{i=1}^{N} \int_{-\infty}^{\infty} d Y_{i} \exp \left(-\frac{1}{2} Y_{i}^{2} D_{i i}+\left(Y_{i} Q_{i j}\right) B_{j}\right)^{2} & =\frac{1}{(2 \pi)^{N / 2}} \prod_{i=1}^{N}\left[\frac{2 \pi}{D_{i i}}\right]^{1 / 2} \exp \left(\frac{1}{2} B_{j} Q_{i j} D_{i i}^{-1} Q_{i j} B_{j}\right) \\
& =\frac{1}{(2 \pi)^{N / 2}}\left[(2 \pi)^{N} \prod_{i=1}^{N} \frac{1}{D_{i i}}\right]^{1 / 2} \exp \left(\frac{1}{2} B \cdot A^{-1} \cdot B\right) \\
& =\frac{1}{\sqrt{\operatorname{Det} A}} e^{\frac{1}{2} B \cdot A^{-1} \cdot B}
\end{aligned}
$$

part (b)
We know that Hamiltonian is:

$$
\begin{aligned}
\mathcal{H}_{\Omega} & =-\beta H_{\Omega}=\frac{1}{2} \sum_{i \neq j} J_{i j} S_{i} S_{j}+\sum_{i} H_{i} S_{i} \\
& =\frac{1}{2} \sum_{i j} J_{i j} S_{i} S_{j}-\frac{1}{2} \sum_{i} J_{i i} S_{i}^{2}+\sum_{i} H_{i} S_{i}
\end{aligned}
$$

In above identity if we choose $X_{i}=\beta S_{i}$ and $A=J / \beta$ we have:

$$
\begin{aligned}
\mathcal{H}_{\Omega} & =\frac{1}{2}\left(\beta S_{i}\right)\left(\frac{J_{i j}}{\beta}\right)\left(\beta S_{j}\right)-\frac{1}{2}\left(\beta S_{i}\right)\left(\frac{J_{i i}}{\beta}\right)\left(\beta S_{i}\right)+H_{i}\left(\beta S_{i}\right) \\
& =\frac{1}{2}\left(\beta S_{i}\right)\left(\frac{J_{i j}}{\beta}\right)\left(\beta S_{j}\right)-\frac{\beta}{2} \operatorname{Tr}(J)+H_{i}\left(\beta S_{i}\right)
\end{aligned}
$$

[^0]We know that $S_{i}^{2}=1$ so we can choose $\frac{\beta}{2} \operatorname{Tr}(J)$ as zero energy, and apply part (a) identity.
part(c)
We use part (b) Hamiltonian and use part (a) identity to calculate partition function, we know that identity is:

$$
\int_{-\infty}^{\infty} \prod_{i=1}^{N}\left(\frac{d \psi_{i}}{\sqrt{2 \pi}}\right) \exp \left(-\frac{1}{2} \psi_{i} A_{i j} \psi_{j}+\psi_{i} B_{i}\right)=\frac{1}{\sqrt{\operatorname{Det} A}} e^{\frac{1}{2} B_{i}\left(A^{-1}\right)_{i j} B_{j}}
$$

We take $A_{i j}^{-1}=J / \beta$ and $B_{i}=\beta S_{i}$. We have to change above in order to use it in relation of partition function, we have ${ }^{3}$ :
$\sum_{S_{1}} \cdots \sum_{S_{N}} e^{\frac{1}{2}\left(\beta S_{i}\right) \frac{J_{i j}}{\beta}\left(\beta S_{j}\right)} e^{H_{i}\left(\beta S_{i}\right)}=\sqrt{\operatorname{Det} \beta J^{-1}} \sum_{S_{1}} \cdots \sum_{S_{N}} e^{H_{i}\left(\beta S_{i}\right)} \int_{-\infty}^{\infty} \prod_{i=1}^{N}\left(\frac{d \psi_{i}}{\sqrt{2 \pi}}\right) \exp \left(-\frac{\beta}{2} \psi_{i}\left(J^{-1}\right)_{i j} \psi_{j}+\psi_{i}\left(\beta S_{i}\right)\right)$
We can write For partition function with part (b) Hamiltonian we have:

$$
\begin{aligned}
& \mathcal{Z}_{\Omega}=\sum_{S_{1}} \cdots \sum_{S_{N}} e^{\frac{1}{2}\left(\beta S_{i}\right)\left(\frac{J_{i j}}{\beta}\right)\left(\beta S_{j}\right)} e^{-\frac{\beta}{2}} \operatorname{Tr}(J) \\
& H^{H_{i}\left(\beta S_{i}\right)} \\
&=e^{-\frac{\beta}{2}} \operatorname{Tr}(J) \\
& \sum_{S_{1}} \cdots \sum_{S_{N}} e^{\frac{1}{2}\left(\beta S_{i}\right)\left(\frac{J_{i j}}{\beta}\right)\left(\beta S_{j}\right)} e^{H_{i}\left(\beta S_{i}\right)} \\
&=e^{-\frac{\beta}{2}} \operatorname{Tr}(J) \sqrt{\operatorname{Det} \beta J^{-1}} \sum_{S_{1}} \cdots \sum_{S_{N}} e^{H_{i}\left(\beta S_{i}\right)} \int_{-\infty}^{\infty} \prod_{i=1}^{N}\left(\frac{d \psi_{i}}{\sqrt{2 \pi}}\right) \exp \left(-\frac{\beta}{2} \psi_{i}\left(J^{-1}\right)_{i j} \psi_{j}+\psi_{i}\left(\beta S_{i}\right)\right) \\
&=e^{-\frac{\beta}{2} \operatorname{Tr}(J)} \sqrt{\operatorname{Det} \beta J^{-1}} \int_{-\infty}^{\infty} \prod_{i=1}^{N}\left(\frac{d \psi_{i}}{\sqrt{2 \pi}}\right) e^{-\frac{\beta}{2} \psi_{i}\left(J^{-1}\right)_{i j} \psi_{j}}\left[\sum_{S_{1}} \cdots \sum_{S_{N}} e^{S_{i} \beta\left(H_{i}+\psi_{i}\right)}\right] \\
&=e^{-\frac{\beta}{2}} \operatorname{Tr}(J) \sqrt{\operatorname{Det} \beta J^{-1}} \int_{-\infty}^{\infty} \prod_{i=1}^{N}\left(\frac{d \psi_{i}}{\sqrt{2 \pi}}\right) e^{-\frac{\beta}{2} \psi_{i}\left(J^{-1}\right)_{i j} \psi_{j}}\left[\prod_{i=1}^{N}\left(e^{\beta\left(H_{i}+\psi_{i}\right)}+e^{-\beta\left(H_{i}+\psi_{i}\right)}\right)\right] \\
&=e^{-\frac{\beta}{2}} \operatorname{Tr}(J) \\
& \operatorname{Det} \beta J^{-1} \int_{-\infty}^{\infty} \prod_{i=1}^{N}\left(\frac{d \psi_{i}}{\sqrt{2 \pi}}\right) e^{-\frac{\beta}{2} \psi_{i}\left(J^{-1}\right)_{i j} \psi_{j}}\left[\prod_{i=1}^{N}\left(2 \cosh \beta\left[H_{i}+\psi_{i}\right]\right)\right] \\
&=e^{-\frac{\beta}{2} \operatorname{Tr}(J)} \sqrt{\operatorname{Det} \beta J^{-1}} \int_{-\infty}^{\infty} \prod_{i=1}^{N}\left(\frac{d \psi_{i}}{\sqrt{2 \pi}}\right) e^{-\frac{\beta}{2} \psi_{i}\left(J^{-1}\right)_{i j} \psi_{j}} e^{\sum_{i} \log \left(2 \cosh \beta\left[H_{i}+\psi_{i}\right]\right)}
\end{aligned}
$$

We can write above in this fashion:

$$
S=\frac{1}{2} \psi_{i} J_{i j}^{-1} \psi_{j}-\frac{1}{\beta} \sum_{i} \log \left(2 \cosh \beta\left[H_{i}+\psi_{i}\right]\right)
$$

We can shift integration variable like $\psi_{i} \rightarrow \psi_{i}-H_{i}$ to have:

$$
S=\frac{1}{2}\left(\psi_{i}-H_{i}\right) J_{i j}^{-1}\left(\psi_{j}-H_{j}\right)-\frac{1}{\beta} \sum_{i} \log \left(2 \cosh \beta \psi_{i}\right)
$$

[^1]
## part(d)

For this part we use saddle point approximation or steepest descents method, for approximating partition function. If function $S$ in previous part is minimum with respect to $\psi_{i}$ then we can say the exponential is maximum (consider minus sign), variation of function $S$ is:

$$
\begin{aligned}
\delta S & =\frac{1}{2} \delta \psi_{i} J_{i j}^{-1}\left(\psi_{j}-H_{j}\right)+\frac{1}{2}\left(\psi_{i}-H_{i}\right) J_{i j}^{-1} \delta \psi_{j}-\frac{1}{\beta} \sum_{i} \beta \delta \psi_{i} \tanh \left(\beta \psi_{i}\right) \\
& =\sum_{i} \delta \psi_{i}\left[J_{i j}^{-1}\left(\psi_{i}-H_{i}\right)-\tanh \left(\beta \psi_{i}\right)\right]
\end{aligned}
$$

So we have:

$$
\begin{equation*}
J_{i j}^{-1}\left(\bar{\psi}_{i}-H_{i}\right)-\tanh \left(\beta \bar{\psi}_{i}\right)=0 \tag{3}
\end{equation*}
$$

So we approximate partition function as follows:

$$
\mathcal{Z}_{\Omega} \approx e^{-\beta S\left\{\bar{\psi}_{i}\right\}}
$$

We can Helmholtz free energy like:

$$
\mathcal{F}=-k_{B} T \log \mathcal{Z}_{\Omega} \approx S\left\{\bar{\psi}_{i}\right\}
$$

Magnetization is:

$$
\begin{aligned}
m_{i} & =-\frac{\partial \mathcal{F}}{\partial H_{i}} \approx-\frac{\partial S}{\partial H_{i}}=-\frac{\partial}{\partial H_{i}}\left[\frac{1}{2}\left(\psi_{i}-H_{i}\right) J_{i j}^{-1}\left(\psi_{j}-H_{j}\right)-\frac{1}{\beta} \sum_{i} \log \left(2 \cosh \beta \psi_{i}\right)\right] \\
& =\left(\bar{\psi}_{i}-H_{i}\right) J_{i j}^{-1}
\end{aligned}
$$

By using equation 3 we have:

$$
m_{i}=\tanh \left(\beta \bar{\psi}_{i}\right)
$$

From above we can find $\bar{\psi}_{i}$ as a function of $m_{i}$ we have:

$$
m_{i}=\frac{e^{\beta \bar{\psi}_{i}}-e^{-\beta \bar{\psi}_{i}}}{e^{\beta \bar{\psi}_{i}}+e^{-\beta \bar{\psi}_{i}}} \Rightarrow e^{\beta \bar{\psi}_{i}}\left[m_{i}-1\right]=e^{-\beta \bar{y}_{i}}\left[m_{i}+1\right]
$$

We find:

$$
\bar{\psi}_{i}=\frac{1}{2 \beta} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)
$$

We put above in equation 3 to find $H_{i}\left\{m_{i}\right\}$, we have:

$$
\begin{align*}
J_{i j}^{-1}\left(\bar{\psi}_{i}-H_{i}\right) & =\tanh \left(\beta \bar{\psi}_{i}\right) \Rightarrow\left[\frac{1}{2 \beta} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)-H_{i}\right]=m_{i} J_{i j} \\
H_{i} & =\frac{1}{2 \beta} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)-m_{i} J_{i j} \tag{4}
\end{align*}
$$

Remember that we use Einstein summation convention in all calculation.

## part(e)

We use previous part result and put it in Helmholtz free energy function, we have:

$$
\begin{aligned}
\mathcal{F} & =-k_{B} T \log \mathcal{Z}_{\Omega} \approx S\left\{\bar{\psi}_{i}\right\}=\frac{1}{2}\left(\bar{\psi}_{i}-H_{i}\right) J_{i j}^{-1}\left(\bar{\psi}_{j}-H_{j}\right)-\frac{1}{\beta} \sum_{i} \log \left(2 \cosh \beta \bar{\psi}_{i}\right) \\
& =\frac{1}{2}\left[\frac{1}{2 \beta} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)-\frac{1}{2 \beta} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)-m_{i} J_{i j}\right] J_{i j}^{-1}\left[\frac{1}{2 \beta} \log \left(\frac{1+m_{j}}{1-m_{j}}\right)-\frac{1}{2 \beta} \log \left(\frac{1+m_{j}}{1-m_{j}}\right)-m_{j} J_{i j}\right] \\
& -\frac{1}{\beta} \sum_{i} \log \left(2 \cosh \left[\beta \frac{1}{2 \beta} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)\right]\right) \\
& =\frac{1}{2} J_{i j} m_{i} m_{j}-\frac{1}{\beta} \sum_{i} \log \left(2 \cosh \left[\frac{1}{2} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)\right]\right) \\
& =\frac{1}{2} J_{i j} m_{i} m_{j}-\frac{1}{\beta} \sum_{i} \log \left(\sqrt{\frac{1+m_{i}}{1-m_{i}}}+\sqrt{\frac{1-m_{i}}{1+m_{i}}}\right) \\
& =\frac{1}{2} J_{i j} m_{i} m_{j}-\frac{1}{\beta} \sum_{i} \log \left(\frac{2}{\sqrt{1-m_{i}^{2}}}\right)
\end{aligned}
$$

Finally:

$$
\bar{S}\left(\left\{m_{i}\right\}\right)=\frac{1}{2} J_{i j} m_{i} m_{j}-\frac{1}{\beta} \sum_{i} \log \left(\frac{2}{\sqrt{1-m_{i}^{2}}}\right)
$$

We know that Gibbs free energy is:

$$
\Gamma\left\{m_{i}\right\}=\bar{S}\left(\left\{m_{i}\right\}\right)+\sum_{i} H_{i}\left(\left\{m_{j}\right\}\right) m_{i}
$$

Put function of $\bar{S}\left(\left\{m_{i}\right\}\right)$ and $H_{i}\left(\left\{m_{j}\right\}\right)$ in above, we have:

$$
\begin{aligned}
\Gamma\left\{m_{i}\right\} & =\frac{1}{2} J_{i j} m_{i} m_{j}-\frac{1}{\beta} \sum_{i} \log \left(\frac{2}{\sqrt{1-m_{i}^{2}}}\right)+\sum_{i}\left(\frac{1}{2 \beta} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)-m_{i} J_{i j}\right) m_{i} \\
& =-\frac{1}{2} J_{i j} m_{i} m_{j}+\frac{1}{\beta} \sum_{i}\left[\frac{m_{i}}{2} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)-\log \left(\frac{2}{\sqrt{1-m_{i}^{2}}}\right)\right]
\end{aligned}
$$

We can verify equation of state by $H_{i}=\partial \Gamma\left\{m_{i}\right\} / \partial m_{i}$, we have:

$$
\begin{aligned}
H_{i} & =-J_{i j} m_{j}+\frac{1}{\beta} \sum_{i}\left[\frac{1}{2} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)+\frac{m_{i}}{1-m_{i}^{2}}-\frac{m_{i}}{1-m_{i}^{2}}\right] \\
& =-J_{i j} m_{j}+\frac{1}{\beta} \sum_{i}\left[\frac{1}{2} \log \left(\frac{1+m_{i}}{1-m_{i}}\right)\right] \\
& =H_{i}
\end{aligned}
$$

In last part we use equation 4 .

## 3- (Goldenfeld book exercise 5-2):

part(a)
We should derivative form the Landau free energy with $h=0$, so we have:

$$
\frac{\partial \mathcal{L}}{\partial \eta}=\eta\left(a+b \eta^{2}+c \eta^{4}\right)=0 \Rightarrow \eta=0 \quad \text { and } \quad \eta^{2}=\eta_{s}^{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 c}
$$

I remove one of answer that have imaginary answer. For stability we should take second derivative so we have:

$$
\begin{aligned}
& \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}=a+3 b \eta^{2}+5 c \eta^{4} \\
& \text { for } \quad \eta=0 \quad \Rightarrow \quad \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}=a \Rightarrow a<0 \quad \text { so it is unstable } \\
& \text { for } \quad \eta=+\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 c}\right)^{1 / 2} \Rightarrow \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}=\sqrt{b^{2}-4 a c}\left[\frac{\sqrt{b^{2}-4 a c}}{c}-\frac{b}{c}\right] \\
& \text { for } \quad \eta=-\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 c}\right)^{1 / 2} \Rightarrow \quad \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}=\sqrt{b^{2}-4 a c}\left[\frac{\sqrt{b^{2}-4 a c}}{c}-\frac{b}{c}\right]
\end{aligned}
$$

For last two parts we have this:

$$
\left\{\begin{array}{lll}
\text { if } b>0 & \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}<0 & \text { Unstable } \\
\text { if } b<0 & \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}>0 & \text { Stable }
\end{array}\right.
$$

part (b)
We should have $\eta_{s}^{2}=$ positive real number, that is impossible if we have $a>0$ and $b>0$. If consider the case that $b^{2}-4 a c>0$ then expression $-b+\sqrt{b^{2}-4 a c}$ is always negative, so in this region we have only one answer that is $\eta_{s}=0$.
part (c)
We know that $b<0, a>0$ and $c>0$ so we can write:

$$
\begin{aligned}
& \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}=a+3 b \eta^{2}+5 c \eta^{4} \\
& \text { for } \eta=0 \Rightarrow \quad \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}=a \Rightarrow a>0 \quad \text { so it is Stable } \\
& \text { for } \eta=+\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 c}\right)^{1 / 2} \Rightarrow \quad \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}=\sqrt{b^{2}-4 a c}\left[\frac{\sqrt{b^{2}-4 a c}}{c}-\frac{b}{c}\right] \\
& \text { for } \eta=-\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 c}\right)^{1 / 2} \Rightarrow \quad \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}=\sqrt{b^{2}-4 a c}\left[\frac{\sqrt{b^{2}-4 a c}}{c}-\frac{b}{c}\right]
\end{aligned}
$$

So we have:

$$
\left\{\begin{array}{lll}
\text { if } b>0 & \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}<0 & \text { Unstable } \\
\text { if } b<0 & \frac{\partial^{2} \mathcal{L}}{\partial^{2} \eta}>0 & \text { Stable }
\end{array}\right.
$$

part (d)
We can solve Landau free energy density for different value of . We can sketch diagram in a-b plane like below:


Figure 1

In the curvature $\left(a=b^{2} / 4 c\right)$ we have first order transition because above the parabolic line we have on stable answer and below this line we have three stable answer. If we sketch for all possible $a$ and $b$ sign and values we have four category that is shown in below diagrams:


Figure 2

Point $\eta=0$ may called triciritical point because it can reached by changing three parameter like $T, P$ and $h$.
part (e)
We can calculate critical exponent by using Landau free energy equation, for $\beta$ we have:

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} a \eta^{2}+\frac{1}{6} c \eta^{6}-h \eta \quad \text { for } \quad b=0, h=0 \\
\frac{\partial \mathcal{L}}{\partial \eta} & =\eta\left(a+c \eta^{4}\right)=0 \Rightarrow \eta=\left(\frac{-a}{c}\right)^{1 / 4}=\left(\frac{-a_{1} t+a_{2} p}{c}\right)^{1 / 4} \Rightarrow \beta=\frac{1}{4}
\end{aligned}
$$

for $\alpha$ we know that $C_{v}=-T \partial^{2} \mathcal{L} / \partial T^{2}$ and so we have:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial T} & =\frac{1}{T_{c}} \frac{\partial \mathcal{L}}{\partial t} \\
& =\frac{a_{1}}{2}\left(\frac{-a_{1} t+a_{2} p}{c}\right)^{1 / 2}+\frac{1}{4}\left(-a_{1} t+a_{2} p\right)\left(\frac{-a_{1} t+a_{2} p}{c}\right)^{-1 / 2}\left(\frac{-a_{1}}{c}\right)+\frac{c}{4}\left(\frac{-a_{1} t+a_{2} p}{c}\right)^{1 / 2}\left(\frac{-a_{1}}{c}\right) \\
& \propto\left(-a_{1} t+a_{2} p\right)^{1 / 2} \\
\frac{\partial^{2} \mathcal{L}}{\partial T^{2}} & =\frac{1}{T_{c}^{2}} \frac{\partial^{2} \mathcal{L}}{\partial t^{2}} \propto\left(-a_{1} t+a_{2} p\right)^{-1 / 2} \Rightarrow \quad \alpha=1 / 2
\end{aligned}
$$

for $\delta$ we have(consider that in tricritical point $\mathrm{a}=0$ ):

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} a \eta^{2}+\frac{1}{6} c \eta^{6}-h \eta \quad \text { for } \quad b=0 \\
\frac{\partial \mathcal{L}}{\partial \eta} & =2 a \eta+c \eta^{5}-h=0 \Rightarrow 2 a \eta+c \eta^{5}=h \quad \Rightarrow h \sim \eta^{5} \quad \delta=5
\end{aligned}
$$

for $\gamma$ we have:

$$
\begin{aligned}
\frac{\partial}{\partial h}\left(2 a \eta+c \eta^{5}\right) & =1 \\
\chi_{T}(h)=\frac{\partial \eta(h)}{\partial h} & =\frac{1}{2 a+5 c \eta^{4}} \\
& =\frac{1}{2 a_{1} t+a_{2} p+5 c \eta^{4}} \Rightarrow \gamma=\gamma^{\prime}=1
\end{aligned}
$$

We can find $v$ by using scaling law derived in chapter 9 ( $2-\alpha=v d$ ). I don't know any way to derive $v$ explicitly.

## part (f)

We know that the only difference between triciritical and ordinary behavior is additional term in Landau free energy $1 / 6 c \eta^{6}$. So if this term can merge to other terms the cross over can happen, so if we have:

$$
1 / 6 c \eta^{6} \sim 1 / 4 b \eta^{4} \Rightarrow b \sim c \eta^{2}
$$

In ordinary critical behavior we have stable order parameter in zero and $\eta=(-a t / b)^{1 / 2}$, if we use this in above equation we have:

$$
b \sim c \eta^{2} \Rightarrow b^{2} \sim c(-a t / b) \Rightarrow b^{2} \approx-a c
$$

## 4- (Goldenfeld book exercise 5-3):

## part(a)

We have relation like this in the chapter five text, we have:

$$
M(x)=\frac{1}{L} \sum_{n=-\infty}^{\infty} e^{i q_{n} x} M_{n}, \quad M_{n}=\int_{L} M(x) e^{-i q_{n} x} d x
$$

We put left to right equation so we get:

$$
\begin{aligned}
M(x) & =\frac{1}{L} \sum_{n=-\infty}^{\infty} e^{i q_{n} x}\left[\int_{L} M\left(x^{\prime}\right) e^{-i q_{n} x^{\prime}} d x^{\prime}\right] \\
& =\int_{L} M\left(x^{\prime}\right)\left[\frac{1}{L} \sum_{n=-\infty}^{\infty} e^{i q_{n}\left(x-x^{\prime}\right)}\right] d x^{\prime}
\end{aligned}
$$

So we have:

$$
\delta\left(x-x^{\prime}\right)=\frac{1}{L} \sum_{n=-\infty}^{\infty} e^{i q_{n}\left(x-x^{\prime}\right)}
$$

If we put right to left we can get:

$$
\begin{aligned}
M_{n} & =\int_{L}\left[\frac{1}{L} \sum_{n=-\infty}^{\infty} e^{i q_{n^{\prime}} x} M_{n^{\prime}}\right] e^{-i q_{n} x} d x \\
& =\sum_{n=-\infty}^{\infty} M_{n^{\prime}}\left[\frac{1}{L} \int_{L} e^{i\left(q_{n^{\prime}}-q_{n}\right) x} d x\right] \\
& =\sum_{n=-\infty}^{\infty} M_{n^{\prime}}\left[\frac{1}{L} \int_{L} e^{i\left(n^{\prime}-n\right) 2 \pi x / L} d x\right]
\end{aligned}
$$

So we can define Kronecker delta function:

$$
\begin{equation*}
\delta_{n n^{\prime}}=\frac{1}{L} \int_{L} e^{i\left(q_{n^{\prime}}-q_{n}\right) x} d x=\frac{1}{L} \int_{L} e^{i\left(n^{\prime}-n\right) 2 \pi x / L} d x \tag{5}
\end{equation*}
$$

If $L$ goes to infinity we should consider density of states $(L /(2 \pi))$.
part (b)
I want to transform all terms in Landau free energy to Fourier space. For first term we have:

$$
\int_{L} a t M^{2} d x=\frac{a t}{L^{2}} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} M_{n} M_{m} \int_{L} e^{i\left(q_{n}+q_{m}\right) x} d x=\frac{a t}{L} \sum_{n=-\infty}^{\infty} M_{n} M_{-n}=\frac{a t}{L} \sum_{n=-\infty}^{\infty}\left|M_{n}\right|^{2}
$$

for second term we have:

$$
\begin{aligned}
\frac{b}{2} \int_{L} M^{4} d x & =\frac{b}{2 L^{4}} \int_{L}\left(\sum_{n=-\infty}^{\infty} \sum_{n^{\prime}=-\infty}^{\infty} M_{n} M_{n^{\prime}} e^{i\left(q_{n}+q_{n^{\prime}}\right) x}\right)\left(\sum_{m=-\infty}^{\infty} \sum_{m^{\prime}=-\infty}^{\infty} M_{m} M_{m^{\prime}} e^{i\left(q_{m}+q_{m^{\prime}}\right) x}\right) d x \\
& =\frac{b}{2 L^{3}} \sum_{n=-\infty}^{\infty} \sum_{n^{\prime}=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \sum_{m^{\prime}=-\infty}^{\infty} M_{n} M_{n^{\prime}} M_{m} M_{m^{\prime}} \delta_{n+m+n^{\prime}+m^{\prime}, 0}
\end{aligned}
$$

for third term we have:

$$
\begin{aligned}
\int_{L} \frac{\gamma}{2}\left(\frac{\partial M}{\partial x}\right)^{2} & =\frac{\gamma}{2 L^{2}} \int_{L}\left(\sum_{n=-\infty}^{\infty} M_{n} i q_{n} e^{i q_{n} x}\right)\left(\sum_{m=-\infty}^{\infty} M_{m}(i) q_{m} e^{i q_{m} x}\right) d x \\
& =-\frac{\gamma}{2 L^{2}} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} q_{n} q_{m} M_{n} M_{m}\left(\int_{L} e^{-i\left(q_{n}+q_{m}\right) x} d x\right) \\
& =\frac{\gamma}{2 L}\left(\frac{2 \pi}{L}\right)^{2} \sum_{n=-\infty}^{\infty} n^{2}\left|M_{n}\right|^{2}
\end{aligned}
$$

for the last term we have:

$$
\begin{aligned}
\int_{L} \frac{\sigma}{2}\left(\frac{\partial^{2} M}{\partial x^{2}}\right)^{2} & =\frac{\sigma}{2 L^{2}} \int_{L}\left(\sum_{n=-\infty}^{\infty} M_{n}\left(-q_{n}^{2}\right) e^{i q_{n} x}\right)\left(\sum_{m=-\infty}^{\infty} M_{m}\left(-q_{m}^{2}\right) e^{i q_{m} x}\right) d x \\
& =\frac{\sigma}{2 L^{2}} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} q_{n}^{2} q_{m}^{2} M_{n} M_{m}\left(\int_{L} e^{-i\left(q_{n}+q_{m}\right) x} d x\right) \\
& =\frac{\sigma}{2 L}\left(\frac{2 \pi}{L}\right)^{4} \sum_{n=-\infty}^{\infty} n^{4}\left|M_{n}\right|^{2}
\end{aligned}
$$

Finally Landau free energy in Fourier space is:

$$
\begin{aligned}
\mathscr{L}_{\text {Landau }}=\sum_{n=-\infty}^{\infty}\left[\frac{a t}{L}\left|M_{n}\right|^{2}+\frac{b}{2 L^{3}} \sum_{n^{\prime}=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}\right. & \sum_{m^{\prime}=-\infty}^{\infty} M_{n} M_{n^{\prime}} M_{m} M_{m^{\prime}} \delta_{n+m+n^{\prime}+m^{\prime}, 0} \\
& \left.+\frac{\gamma}{2 L}\left(\frac{2 \pi}{L}\right)^{2} n^{2}\left|M_{n}\right|^{2}+\frac{\sigma}{2 L}\left(\frac{2 \pi}{L}\right)^{4} n^{4}\left|M_{n}\right|^{2}\right]
\end{aligned}
$$

Second term make calculation very difficult but we can make it easier by assume that $m=-n$ and $m^{\prime}=n^{\prime}$, we have:

$$
\mathscr{L}_{\text {Landau }}=\sum_{n=-\infty}^{\infty}\left[\frac{a t}{L}\left|M_{n}\right|^{2}+\frac{b}{2 L^{3}} \sum_{m=-\infty}^{\infty}\left|M_{n}\right|^{2}\left|M_{m}\right|^{2}+\frac{\gamma}{2 L}\left(\frac{2 \pi}{L}\right)^{2} n^{2}\left|M_{n}\right|^{2}+\frac{\sigma}{2 L}\left(\frac{2 \pi}{L}\right)^{4} n^{4}\left|M_{n}\right|^{2}\right]
$$

## part (c)

Now we want to take derivative for $M_{n}$. Derivative of all terms in $\mathscr{L}_{\text {Landau }}$ have ordinary behavior except second term. Now I want to derivative second term:

$$
\begin{aligned}
\frac{\partial}{\partial\left|M_{n}\right|}\left[\frac{b}{2 L^{3}} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}\left|M_{n}\right|^{2}\left|M_{m}\right|^{2}\right] & =\frac{b}{L^{3}} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}\left[\left|M_{n}\right|\left|M_{m}\right|^{2}+\left|M_{n}\right|^{2}\left|M_{m}\right| \frac{\partial\left|M_{m}\right|}{\partial\left|M_{n}\right|}\right] \\
& =\frac{b}{L^{3}} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}\left[\left|M_{n}\right|\left|M_{m}\right|^{2}+\left|M_{n}\right|^{2}\left|M_{m}\right| \delta_{n m}\right] \\
& =\frac{b}{L^{3}} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}\left|M_{n}\right|\left|M_{m}\right|^{2}+\frac{b}{L^{3}} \sum_{n=-\infty}^{\infty}\left|M_{n}\right|^{3}
\end{aligned}
$$

Finally we can write derivative for $M_{n}$, we have:

$$
\begin{align*}
\frac{\partial \mathscr{L}_{\text {Landau }}}{\partial\left|M_{n}\right|} & =\sum_{n=-\infty}^{\infty}\left[\frac{2 a t}{L}\left|M_{n}\right|+\frac{b}{L^{3}}\left|M_{n}\right| \sum_{m=-\infty}^{\infty}\left|M_{m}\right|^{2}+\frac{b}{L^{3}}\left|M_{n}\right|^{3}+\frac{\gamma}{L}\left(\frac{2 \pi}{L}\right)^{2}\left|M_{n}\right| n^{2}+\frac{\sigma}{L}\left(\frac{2 \pi}{L}\right)^{4}\left|M_{n}\right| n^{4}\right] \\
& \left.=\left.\sum_{n=-\infty}^{\infty}\left|M_{n}\right|\left|\frac{2 a t}{L}+\frac{b}{L^{3}} \sum_{m=-\infty}^{\infty}\right| M_{m}\right|^{2}+\frac{b}{L^{3}}\left|M_{n}\right|^{2}+\frac{\gamma}{L}\left(\frac{2 \pi}{L}\right)^{2} n^{2}+\frac{\sigma}{L}\left(\frac{2 \pi}{L}\right)^{4} n^{4}\right]=0 \tag{6}
\end{align*}
$$

Now we want to derivate with respect to $n$ we have:

$$
\begin{align*}
\frac{\partial \mathscr{L}_{\text {Landau }}}{\partial n} & =\sum_{n=-\infty}^{\infty}\left[\frac{\gamma}{2 L}\left(\frac{2 \pi}{L}\right)^{2}\left|M_{n}\right|(2 n)+\frac{\sigma}{2 L}\left(\frac{2 \pi}{L}\right)^{4}\left|M_{n}\right|\left(4 n^{3}\right)\right] \\
& =\frac{4 \pi^{2}}{L^{3}} \sum_{n=-\infty}^{\infty}\left|M_{n}\right|\left[\gamma+2 \sigma\left(\frac{2 \pi}{L}\right)^{2} n^{2}\right] n=0 \tag{7}
\end{align*}
$$

From equation 7 we can find two condition that can make equation equal to zero. First, if we have one point sum and $n=0$, second, we have $\left|M_{n}\right|$ behave specialty like $\left|M_{n}\right|=\left|M_{-n}\right|$ (which we assume it have because I can't calculate the summation). For first condition $(n=0)$ by put the condition in 6 we have:

$$
\frac{\partial \mathscr{L}_{\text {Landau }}}{\partial\left|M_{n}\right|}=\left|M_{0}\right|\left[\frac{2 a t}{L}+\frac{2 b}{L^{3}}\left|M_{0}\right|^{2}\right]=0 \Rightarrow\left|M_{0}\right|=0 \quad \text { and } \quad\left|M_{0}\right|=L \sqrt{\frac{-a t}{b}}
$$

We find stationary solution in Fourier space, by using inverse Fourier transformation we find that $M=0$ and $M=\sqrt{-a t / b}$ is solution in real space. If we put condition $\left(M_{n}=M_{-n}\right)$ in 6 third and fourth term in summation will diverge and I have no idea what is wrong.
part (d)
I can't solve this part.

## 5- (Goldenfeld book exercise 6-4):

## part(a)

I use generating function for proof above. For nominator we can write generating function form:

$$
\begin{aligned}
\frac{\partial}{\partial J_{q}} \frac{\partial}{\partial J_{r}} \int D X e^{\left(-\frac{1}{2} X^{T} A X+J^{T} X\right)} & =\left.\frac{\partial}{\partial J_{q}} \frac{\partial}{\partial J_{r}}\left[\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}} e^{-\frac{1}{2}} J^{T} A^{-1} J\right]\right|_{J=0} \\
& =A_{q r}^{-1} \sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}}
\end{aligned}
$$

for denominator we have:

$$
\int D X e^{-\frac{1}{2} X^{T} A X}=\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}}
$$

by dividing above we find:

$$
\left\langle x_{q} x_{r}\right\rangle=\frac{A_{q r}^{-1} \sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}}}{\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}}}=A_{q r}^{-1}
$$

part (b)
I want to prove that right hand side of equation equal to left hand side so:

$$
\begin{aligned}
& \left\langle x_{a} x_{b}\right\rangle=\frac{1}{\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}}} \frac{\partial^{2}}{\partial J_{a} \partial J_{b}} \int D X e^{\left(-\frac{1}{2} X^{T} A X+J^{T} X\right)} \\
& \left\langle x_{a} x_{d}\right\rangle=\frac{1}{\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}}} \frac{\partial^{2}}{\partial J_{a} \partial J_{d}} \int D X e^{\left(-\frac{1}{2} X^{T} A X+J^{T} X\right)} \\
& \left\langle x_{a} x_{c}\right\rangle=\frac{1}{\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}}} \frac{\partial^{2}}{\partial J_{a} \partial J_{c}} \int D X e^{\left(-\frac{1}{2} X^{T} A X+J^{T} X\right)}
\end{aligned}
$$

We know that the Gaussian integral is:

$$
\int D X e^{\left(-\frac{1}{2} X^{T} A X+J^{T} X\right)}=\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}} e^{\frac{1}{2} J^{T} A^{-1} J}
$$

by using part (a) we know the result of above integrals and finally all two point functions are:

$$
\begin{array}{ll}
\left\langle x_{a} x_{b}\right\rangle=A_{a b}^{-1} & \left\langle x_{c} x_{d}\right\rangle=A_{c d}^{-1} \\
\left\langle x_{a} x_{d}\right\rangle=A_{a d}^{-1} & \left.\left\langle x_{b} x_{c}\right\rangle=A_{b c}^{-1}\right\rangle \\
\left\langle x_{a} x_{c}\right\rangle=A_{a c}^{-1} & \left\langle x_{b} x_{d}\right\rangle=A_{b d}^{-1}
\end{array}
$$

So RHS is:

$$
\left\langle x_{a} x_{b}\right\rangle\left\langle x_{c} x_{d}\right\rangle+\left\langle x_{a} x_{d}\right\rangle\left\langle x_{b} x_{c}\right\rangle+\left\langle x_{a} x_{c}\right\rangle\left\langle x_{b} x_{d}\right\rangle=A_{a b}^{-1} A_{c d}^{-1}+A_{a d}^{-1} A_{b c}^{-1}+A_{a c}^{-1} A_{b d}^{-1}
$$

Now we want to calculate left hand side of part (b), so we have:

$$
\begin{aligned}
\left\langle x_{a} x_{b} x_{c} x_{d}\right\rangle & =\frac{1}{\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} A}}} \frac{\partial^{4}}{\partial J_{a} \partial J_{b} \partial J_{c} \partial J_{d}} \int D X e^{\left(-\frac{1}{2} X^{T} A X+J^{T} X\right)} \\
& =\frac{\partial^{4}}{\partial J_{a} \partial J_{b} \partial J_{c} \partial J_{d}} e^{\frac{1}{2} J^{T} A^{-1} J}
\end{aligned}
$$

We can derivative exponential function by two pair of variables, so we can write:

$$
\begin{aligned}
\left\langle x_{a} x_{b} x_{c} x_{d}\right\rangle & =\frac{\partial^{4}}{\partial J_{a} \partial J_{b} \partial J_{c} \partial J_{d}} e^{\frac{1}{2} J^{T} A^{-1} J} \\
& =A_{a b}^{-1} A_{c d}^{-1}+A_{a d}^{-1} A_{b c}^{-1}+A_{a c}^{-1} A_{b d}^{-1}
\end{aligned}
$$

## 6- (Goldenfeld book exercise 7-1):

part(a)
Landau free energy is:

$$
L=\int d^{d} x\left\{\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} r_{0} \phi^{2}+\frac{u_{n}}{n!} \phi^{n}\right\}
$$

If we write effective Hamiltonian with above, we have:

$$
H_{\mathrm{eff}}\{\phi\} \equiv \beta L=\int d^{d} x\left\{\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} r_{0} \phi^{2}+\frac{u_{n}}{n!} \phi^{n}\right\}
$$

We know that dimension of effective Hamiltonian is one $\left(\left[H_{\text {eff }}\right]=1\right)$ so we should have:

$$
\begin{aligned}
& {\left[\int d^{d} x(\nabla \phi)^{2}\right]=1 \rightarrow L^{d} L^{-2}[\phi]^{2}=1 \rightarrow[\phi]=L^{1-d / 2}} \\
& {\left[\int d^{d} x r_{0} \phi^{2}\right]=1 \rightarrow L^{d} L^{2-d}\left[r_{0}\right]=1 \rightarrow\left[r_{0}\right]=L^{-2}} \\
& {\left[\int d^{d} x u_{n} \phi^{n}\right]=1 \rightarrow L^{d} L^{n-n d / 2}\left[u_{n}\right]=1 \rightarrow\left[u_{n}\right]=L^{(n d-2 d-2 n) / 2}}
\end{aligned}
$$

We have already seen that Gaussian functional integrals are easy to do. So we will write the partition function as a Gaussian functional integral with a modification, which we treat by perturbation theory. We define the following dimensionless variables:

$$
\varphi=\frac{\phi}{L^{1-d / 2}} ; \quad \quad \overline{u_{n}}=\frac{u_{n}}{L^{(n d-2 d-2 n) / 2}} ; \quad L=r_{0}^{-1 / 2}
$$

We have to calculate partition function for all purposes, so we have:

$$
\begin{equation*}
\mathcal{Z}\left(\overline{u_{n}}\right)=\int D \varphi \exp \left[-H_{0}\{\varphi\}-H_{\text {int }}\{\varphi\}\right] \tag{8}
\end{equation*}
$$

Where:

$$
\begin{aligned}
H_{0} & =\int d^{d} x\left\{\frac{1}{2}(\nabla \varphi)^{2}+\frac{1}{2} r_{0} \varphi^{2}\right\} \\
H_{\text {int }} & =\int d^{d} x\left\{\frac{\overline{u_{n}}}{n!} \varphi^{n}\right\}
\end{aligned}
$$

If $H_{\text {int }}=0$, the integral 8 is just the Gaussian approximation, which is exactly soluble. The partition function has, however, a contribution from the interactions, $H_{\text {int }}$. We might imagine that if $\overline{u_{n}} \ll 1$, then we could use perturbation theory:

$$
\begin{aligned}
\mathcal{Z} & =\int D \varphi e^{-H_{0}} e^{-H_{\text {int }}} \\
& =\int D \varphi e^{-H_{0}}\left(1-H_{\text {int }}+\frac{1}{2!}\left(H_{\text {int }}\right)^{2}-\ldots\right)
\end{aligned}
$$

The important point is that the partition function depends on one dimensionless parameter $u_{n}$; this is our perturbation parameter. Written out explicitly,

$$
\overline{u_{n}}=u_{n} L^{(-n d+2 d+2 n) / 2}=u_{n} r_{0}^{(n d-2 d-2 n) / 4}
$$

$r_{0}$ is a characteristic length for the system which is correlation length and it varies between finite value to infinite value so for $d>2 n /(n-2), \overline{u_{n}} \rightarrow \infty$ and perturbation theory becomes meaningless! On the other hand, for $d<2 n /(n-2), \overline{u_{n}} \rightarrow 0$, and mean field theory becomes increasingly accurate as $T \rightarrow T_{c}^{+}$. part(b)
In problem $5-2$ we have a term with $n=6$ and we can find that $d>(2 \times 6) /(6-2)=3$, perturbation theory for this problem will be accurate for dimension $d>3$.

## 7- Exercise \# 2 of set \# 4

First, we define the two-point function:

$$
G\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)=\left\langle S_{i} S_{j}\right\rangle-\left\langle S_{i}\right\rangle\left\langle S_{j}\right\rangle
$$

Partition function is:

$$
\mathcal{Z}_{\Omega}=\operatorname{Tr} e^{-\beta \mathcal{H}_{\Omega}}=\operatorname{Tr} \exp \left[\beta J \sum_{\langle i j\rangle} S_{i} S_{j}+\beta H \sum_{i} S_{i}\right]
$$

We can obtain averages by differentiating from partition function:

$$
\begin{aligned}
\sum_{i}\left\langle S_{i}\right\rangle & =\frac{1}{\mathcal{Z}_{\Omega}} \operatorname{Tr}\left[\sum_{i} S_{i}\right] e^{-\beta \mathcal{H}_{\Omega}}=\frac{1}{\beta \mathcal{Z}_{\Omega}} \frac{\partial \mathcal{Z}_{\Omega}}{\partial H} \\
\sum_{i j}\left\langle S_{i} S_{j}\right\rangle & =\frac{1}{\mathcal{Z}_{\Omega}} \operatorname{Tr}\left[\sum_{i j} S_{i} S_{j}\right] e^{-\beta \mathcal{H}_{\Omega}}=\frac{1}{\beta^{2} \mathcal{Z}_{\Omega}} \frac{\partial^{2} \mathcal{Z}_{\Omega}}{\partial H^{2}}
\end{aligned}
$$

Now we want to calculate susceptibility:

$$
\begin{aligned}
\chi_{T} & =\frac{\partial M}{\partial H}=-\frac{\partial^{2} \mathcal{F}}{\partial H^{2}}=\frac{1}{N \beta} \frac{\partial^{2} \log \mathcal{Z}_{\Omega}}{\partial H^{2}} \\
& =\frac{1}{N \beta} \frac{\partial}{\partial H}\left[\frac{1}{\mathcal{Z}_{\Omega}} \frac{\partial \mathcal{Z}_{\Omega}}{\partial H}\right] \\
& =\frac{1}{N \beta}\left[\frac{1}{\mathcal{Z}_{\Omega}} \frac{\partial^{2} \mathcal{Z}_{\Omega}}{\partial H^{2}}-\left(\frac{1}{\mathcal{Z}_{\Omega}} \frac{\partial \mathcal{Z}_{\Omega}}{\partial H}\right)^{2}\right] \\
& =\frac{\beta}{N}\left[\sum_{i j}\left\langle S_{i} S_{j}\right\rangle-\left(\sum_{i}\left\langle S_{i}\right\rangle\right)^{2}\right]
\end{aligned}
$$

In mean field theory we have:

$$
\sum_{i j}\left\langle S_{i} S_{j}\right\rangle=\left(\sum_{i}\left\langle S_{i}\right\rangle\right)^{2}=M^{2}
$$

So we have $G\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)=0$. According to Goldenfeld text result of none zero correlation function comes from Landau theory which is solving the equation of correlation function.

## 8- Exercise \# 3 of set \# 4

The Helmholtz free energy given by:

$$
e^{-\beta \mathcal{F}}=\int \mathcal{D} \eta e^{-\beta \mathcal{H}\{\eta(r)\}}
$$

where the integral $\int \mathcal{D} \eta$ is a functional integral over all degrees of freedom associated with $\eta$, instead of an integral over all microstate. Landau's assumption is that we can replace the entire partition function by the following:

$$
\begin{equation*}
e^{-\beta \mathcal{F}} \approx \int \mathcal{D} \eta e^{-\beta \mathcal{L}\{\eta(r)\}} \tag{9}
\end{equation*}
$$

For example, if $\eta$ is the mean magnetization, a given value for the magnetization can be determined by many different microstates. It is assumed that all of this information is contained in $\mathcal{L}\{\eta(r)\}$. This is a non-trivial assumption which can nonetheless be proven for certain systems. The conversion of the degree of freedom from Sto $\eta$ is known as coarse-graining, and is at the heart of the relationship between statistical mechanics and thermodynamics. The next step is to minimize $\mathcal{L}\{\eta(r)\}$ (to maximize integrated), performing a saddle point approximation (or steepest descent) to the functional integral in 9, giving:

$$
e^{-\beta \mathcal{F}} \approx e^{-\beta \mathcal{L}_{\min }\{\eta(r)\}}
$$

this is relation between Helmholtz free energy and Landau free energy.


[^0]:    ${ }^{1}$ We have $\operatorname{Det}\left(1 / Q^{T}\right)=\operatorname{Det}(1 / Q)=\operatorname{Det}\left(Q^{-1}\right)=\operatorname{Det}\left(Q^{T}\right)=+1$.
    ${ }^{2}$ This integral is helpful:

    $$
    \int_{-\infty}^{\infty} e^{-u y^{2}} e^{v y} d y=\sqrt{\frac{\pi}{\alpha}} e^{v^{2} / 4 u}
    $$

[^1]:    ${ }^{3}$ I multiply the identity by $e^{H_{i}\left(\beta S_{i}\right)}$ and summed in all degree of freedom

