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Answer to Exercise set 1

1- For Boltzmann gas we know that particles are distinguishable so for any inter-
change between them we have new microstate, so for ni particles in cell number i with
дi sub cells that all belong to energy εi we can count all possible microstate:

WMB{ni} =
N !

n1!n2!...nk !
дn1

1 дn2
2 ...д

nk
k
= N !

∏
i

(дi)ni
ni !

However, ΩMB{ni} is defined to be 1/N ! of the last quantity:

WMB{ni} =
∏
i

(дi)ni
ni !

This definition corresponds to the rule of ”correct Boltzmann counting” and does not
correspond to any physical property of the particles in system. It is just a rule that
defines the mathematical model. The total phase space volume can be evaluate by
this:

ΩMB =
∑
{ni }

WMB{ni}

For Fermi gas we have different situation because of first indistinguishably and
second Pauli exclusion principle. Now particles can fill дi level by occupation number
(ni) just zero and one. So we can write:

wi =

(
дi
ni

)
=

дi !
ni !(дi − ni)!

WFD{ni} =
∏
i

wi =
∏
i

дi !
ni !(дi − ni)!

and finally:
ΩFD =

∑
{ni }

WFD{ni}

For Bose gas we have each level can be occupied by any number of particles. We
have дi − 1 partitions an ni particles, we should count all possible microstate, we have:

wi =

(
ni + дi − 1

ni

)
=

(ni + дi − 1)!
ni !(дi − 1)!

WBE{ni} =
∏
i

wi =
∏
i

(ni + дi − 1)!
ni !(дi − 1)!

and finally:
ΩBE =

∑
{ni }

WBE{ni}

To obtain the entropy S = k log Ω(E) we need to sum W {ni} over {ni}. This is a
formidable task. For the Boltzmann gas it was explicitly done. As we might correctly
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guess, however, Ω(E) is quite well approximated by W {n̄i}, where {n̄i} is the set of
occupation numbers that maximizes W {n̄i}. We adopt this approximation and verify
its correctness by showing that the fluctuations are small. Accordingly the entropy is
taken to be:

S = k log Ω(E) ≈ k log W {n̄i}
by Lagrange multiplier we can find distribution function for occupation numbers that
maximize the entropy.

Let’s attack our problem we should show that for high temperature we have:

ΩBE = ΩFD −→ ΩMB

In high temperature we have дi ≫ ni so for Bose gas we have:

WBE{n̄i} =
(n̄i + дi − 1)!
n̄i !(дi − 1)! =

(n̄i + дi − 1)(n̄i + дi − 2)...(дi)
n̄i !

≈
дn̄ii
n̄i !

For Fermi gas we have:

WFD{n̄i} =
дi !

n̄i !(дi − n̄i)!
=
дi(дi − 1)дi − 2)...(дi − n̄i)

n̄i !
≈
дn̄ii
n̄i !

Which is the same as Maxwell-Boltzmann phase space volume:

WMB{n̄i} =
(дi)n̄i
n̄i !

For general view of this question please see section 8.5 of Statistical Mechanics by
Huang and 3.8 of Pathria third edition.
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2- We begin with particles that is obey Maxwell-Boltzmann statistics. Number of
microstate for such particles calculate with:

ΩMB =
∑
{ni }

WMB{ni}

We can approximate this summation with:

S = k log ΩMB ≈ k log W {n̄i}

We have two important constrains: ∑
i

ni = N∑
i

niεi = E
(1)

We know that the volume in Γ space for Maxwell-Boltzmann is:

ΩMB ≈WMB{n̄i} = 1
∏
i

(дi)n̄i
n̄i !

Now we want to maximize ΩMB with above two constrains and find maximum occu-
pation number n̄i . We take logarithm and use Stirling’s approximation we have:

log ΩMB = −
K∑
i=1

logni ! +
K∑
i=1

ni logдi

log ΩMB = −
K∑
i=1

ni logni +
K∑
i=1

ni logдi + constant

K is number of cells. Now we use Lagrange multiplier and imply constrains, we have:

δ
(
log ΩMB

)
− δ

(
α

K∑
i=1

ni + β
K∑
i=1

niεi
)
= 0 (ni = n̄i)

K∑
i=1

[
− (logni + 1) + logдi − α − βεi

]
δni = 0 (ni = n̄i)

Finally:
log n̄i = −1 + logдi − α − βεi

So:

n̄i = дie
−α−βεi−1

For a gas without external potential we have:

Pi = Ce
−βεi

1We can consider constant N ! in here or we can ignore it, because it is a constant and in differen-
tiation it will be zero.
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Now we can write similar above for Fermi-Dirac distribution, we know that number of
states for fermions is:

ΩFD ≈WFD{n̄i} =
∏
i

дi !
n̄i !(дi − n̄i)!

use Stirling’s approximation:

log ΩFD =

K∑
i=1

[
logдi ! − logni ! − log(дi − ni)!

]
≈

K∑
i=1

[
дi logдi − ni logni − (дi − ni) log(дi − ni)

]
We differentiate of above and put our constrains in by Lagrange multiplier, so we have:

δ

[
log ΩFD − α

K∑
i=1

ni + β
K∑
i=1

niεi
]
= 0 (ni = n̄i)

K∑
i=1

[
− logni + log(дi − ni) − α − βεi

]
δni = 0 (ni = n̄i)

Finally:
− logni + log(дi − ni) − α − βεi = 0

n̄i =
дi

e−α+βεi + 1

Similarly we can write above for Bose-Einstein distribution and find:

n̄i =
дi

e−α+βεi − 1

For second approach we can calculate grand partition function. For classic ideal gas
we can find grand partition function as:

Q(z,V ,T ) =
∞∑

N=0
zNQN (V ,T ) = ezV /λ3 (2)

Where λ = h/(2πmkT )1/2 is thermal wavelength.In the Bose–Einstein and Fermi–Dirac
cases grand partition functions is:

Q(z,V ,T ) =
{∏

ε(1 − ze−βε)−1 Bose-Einstein∏
ε(1 + ze−βε) Fermi-Dirac

We can summarize our results by define q-potential of system:

q(z,V ,T ) = log Q(z,V ,T )
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We can use above definition for summarize our results as below:

q(z,V ,T ) = 1
a

∑
ε

log(1 + aze−βε)

where a = 1, +1, or 0, depending on the statistics governing the system. In particular,
the classical case a → 0 gives:

qMB(z,V ,T ) = z
∑
ε

e−βε = zQ1

In agreement with equation 2 for one particle. Now we can calculate occupation number
mean value we have:

⟨nε⟩ = −1
β

∂

∂ε
log Q(z,V ,T )

= −1
β

∂
∂εQ(z,V ,T )
Q(z,V ,T )

= −1
β

(∂q
∂ε

)
z,T ,all other ε

=
1

z−1eβε + a

(3)

We shall now examine statistical fluctuations in the variable nε , we know that:

⟨n2
ε ⟩ =

1
Q
[(

− 1
β

∂

∂ε

)2
Q
]
z,T ,all other ε

⟨n2
ε ⟩ − ⟨nε⟩2 =

1
Q
[(

− 1
β

∂

∂ε

)2
Q
]
z,T ,all other ε

−
[ 1
Q
(
− 1
β

∂

∂ε

)
Q
]2

z,T ,all other ε

= (−1
β
)2 1
Q
[∂2Q
∂ε2 − 1

Q
(∂Q
∂ε

)2]
z,T ,all other ε

=
[(

− 1
β

∂

∂ε

)2
log Q

]
z,T ,all other ε

=
[(

− 1
β

∂

∂ε

)
⟨nε⟩

]
z,T

Now put result of equation 3 in above we have:

⟨n2
ε ⟩ − ⟨nε⟩2 =

[(
− 1
β

∂

∂ε

) 1
z−1eβε + a

]
z,T

=
z−1eβε[

z−1eβε + a
]2

We can write above in this way:

⟨n2
ε ⟩ − ⟨nε⟩2

⟨nε⟩2 = z−1eβε =
1

⟨nε⟩
− a

In the classical case (a = 0), the relative fluctuation is normal. In the Fermi–Dirac case,
it is given by 1/⟨nε⟩ − 1, which is below normal and tends to vanish as hn ⟨nε⟩ → 1. In
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the Bose- Einstein case, the fluctuation is clearly above normal.

For greater understanding of the statistics of the occupation numbers, we evaluate
the quantity pε(n), which is the probability that there are exactly n particles in a state
of energy ε, For Bose-Einstein case we have:

pε(n)|BE = (ze−βε)n[1 + ze−βε] =
( ⟨nε⟩
⟨nε⟩ + 1

)n 1
⟨nε⟩ + 1

Where n can be any positive integer number. For Fermi-Dirac case we have:

pε(n)|FD = (ze−βε)n[1 + ze−βε]−1

Where n can be 0 or 1, we have:

pε(n)|FD =
{

1 − ⟨nε⟩ for n = 0
⟨nε⟩ for n = 1

For Maxwell-Boltzmann case we have:

pε(n)|MB =
(ze−βε)n/n!
exp(ze−βε)

=
⟨nε⟩n
n!

e−⟨nε ⟩

For more information read section 6-2 and 6-3 of Pathria.
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3- We want to calculate energy that radiated from a d-dimension body with tem-
perature T , we use relations of perfect black body with a multiplier that comes from
absorption coefficient γ (ω) which is:

γ (ω) = ω2kT (d + 1)

So we evaluate below:
Ib(ω,T ) = γ (ω) Ibb(ω,T )

b means body and bb means blackbody. We know that:

Ibb(ω,T ) =
c

4
u(ω,T )

Now we want number of photons that their energy is between ℏω and ℏ(ω + dω) this
quantity is d ⟨n(ω)⟩/dω, we can write above as:

Ibb(ω,T ) =
c

4
u(ω,T ) = c

4
ℏω

d
⟨
n(ω)

⟩
dω

=
c

4
ℏω д(ω)⟨n(ω)

⟩
,

⟨
n(ω)

⟩
=

1
eβℏω − 1⟨

n(ω)
⟩

is average of number of photons that radiated from body per frequency and
unit area, which obey from Bose-Einstein statistics, д(ω) is density of states. Number
of modes that have wave vector smaller that k is:

N (k) = Vd

(2π
L )d
=
( L

2π

)d πd/2

(d/2)Γ(d/2)k
d , k =

ω

c

N (ω) =
( L

2π

)d πd/2

(d/2)Γ(d/2)
ωd

cd

д(ω) = N (ω)
dω

=
( L

2π

)d πd/2

(d/2)Γ(d/2) d
ωd−1

cd

дs is spin degree of freedom and L radius of our d-dimension body.

We have enough information so we can evaluate desired quantity of question, we
have:

Ibb(ω,T ) =
c

4
ℏω д(ω)

⟨
n(ω)

⟩
=

c

4
ℏω

( L

2π

)d πd/2

(d/2)Γ(d/2) d
ωd−1

cd
1

eβℏω − 1

Total amount of energy radiated from body is:

Ib(T ) =
ˆ ∞

0
dω Ib(ω,T ) =

ˆ ∞

0
dω γ (ω) Ibb(ω,T )

Calculation is straight forward.

7



4- First solution: (a) We can write:

dS =
( ∂S
∂T

)
V
dT +

( ∂S
∂V

)
T
dV

We have:
PV =

U

3
=
σT 4

3
⇒

(∂P
∂T

)
V
=

4
3
σT 3

Now we want to evaluate:
dS =

dU + PdV

T
(4)

We know:

dU = CvdT +

[(∂P
∂T

)
V
− P

]
dV

From question information we we have:

dU = σT 4dV + 4σT 3VdT = CvdT +
(4
3
σT 4 − 1

3
σT 4

)
dV , Cv = 4σVT 3 (5)

From 4 and 5 we have:

dS =
CV

T
dT +

1
T

[(∂U
∂V

)
T
+ P

]
dV

= 4σVT 2dT +
4
3
σT 3dV

(b) For adiabatic expansion we know dS = 0 so we have:

CV

T
dT +

1
T

[(∂U
∂V

)
T
+ P

]
dV = 0 ⇒ dT

T
= −1

3
dV

V
⇒ T ∝ V −1/3

Volume is proportional to R3 so we have T ∝ R−1.
Second solution: (a) We can find entropy by below relation:

s(T ) =
(∂P
∂T

)
µ
=

1
3V

(∂U
∂T

)
µ
=

4
3
σT 3

(b) The density of the universe was high enough in this era, so the weak and electro-
magnetic interaction rates kept all these species in thermal equilibrium with one other.
Therefore, as the universe expanded adiabatically, the entropy in a co-moving volume
of linear size a remained constant as the volume expanded from some initial value a a3

0
to a final volume a3

1:
stotalT0a

3
0 = stotalT1a

3
1

Since the entropy density is proportional to T 3 , the temperature and length scale at
time t are related by

T (t)a(t) = const .
This is the same relation that applies for a freely expanding photon gas, but here it
arises from an adiabatic equilibrium process. The temperature of universe as a function
of the age of the universe t during this era is

T (t) = 1010K

√
0.992s

t

For more information read section 9-3 of Pathria third edition.
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5- Virial theorem states that:

V = −
⟨∑

i

qi · Ûpi
⟩
= −

⟨∑
i

ri · Fi
⟩
= −3NkT

Now we want to derive equation of state for a non-interacting gas. The only force
that act on gas molecule is come from gas container’s wall. We can see this force (in
average) as a pressure P that come from walls, so the force of this pressure is −PdA(the
negative sign appears because the force is directed inward while the vector dS is directed
outward), we can find virial:

V0 =
⟨∑

i

qiFi
⟩

0
=

˛
A
(−PdA) · r = −P

˛
A
r · dA

Using divergence theorem 2 we have:

V0 = −P
˛
A
r · dA = −P

˛
A
∇ · r dV = −P

˛
A

1
r2

( ∂
∂r

r3
)
dV = −3PV (6)

Now from virial theorem we can find ideal gas equation of state:

PV = NkT

For a system with a interacting Hamiltonian is

H =
3N∑
i=1

p2
i

2m
+
∑
i>j

Uij

Now we want to calculate equation of state for a interacting gas with above Hamiltonian
with virial theorem. Assuming the inter particle potential to be central and denoting
it by the symbol u(r ), where r = |ri − rj |, if we have two particles i and j, with position
vectors ri and rj , we should calculate below:

ri ·
(
− ∂u
∂ri

)
+ rj ·

(
− ∂u
∂rj

)
= ri ·

(
− ∂u

∂ |ri − rj |2
∂ |ri − rj |2
∂ri

)
+ rj ·

(
− ∂u

∂ |ri − rj |2
∂ |ri − rj |2
∂rj

)
= − ∂u

∂ |ri − rj |2

[
ri ·

(∂ |ri − rj |2
∂ri

)
+ rj ·

(∂ |ri − rj |2
∂rj

)]
= − ∂u
∂r2

[
ri ·

(∂ |ri − rj |2
∂ri

)
+ rj ·

(∂ |ri − rj |2
∂rj

)]
Now we should calculate below first:

∂ |ri − rj |2
∂ri

=
∂

∂ri

(
r2
i + r

2
j − 2rirj cosθij

)
= ∇i

(
r2
i + r

2
j − 2rirj cosθij

)
= (2ri − 2rj cosθij)r̂i

2˝
V ∇ · F dV =

‚
A F · n dA
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θij means angle between ri and rj , and:

∇i =
∂

∂ri
r̂i +

1
ri

∂

∂θi
θ̂i +

1
ri sinθi

∂

∂φi
φ̂i

Similarly we can find:

∂ |ri − rj |2
∂rj

= (2rj − 2ri cosθij)r̂j

Finally

ri ·
(
− ∂u
∂ri

)
+ rj ·

(
− ∂u
∂rj

)
= −2∂u(r )

∂r2

[
r2
i + r

2
j − 2rirj cosθij

]
= − 2

2r
∂u(r )
∂r

r2

= −r ∂u(r )
∂r

Now we can consider only pairs in system instead of particles, we have N (N −1)/2 pairs
and if N ≫ 1 this number goes to N 2/2, we have:

N 2

2

⟨
− r
∂u(r )
∂r

⟩
= −N

2

2V

ˆ ∞

0

(
r
∂u(r )
∂r

)
д(r )4πr2dr (7)

Combining 6 and 7 we have:

PV = NkT

[
1 − 2πn

3kT

ˆ ∞

0

(
r
∂u(r )
∂r

)
д(r )r2dr

]
The internal energy of the system can also be expressed in terms of the functions u(r )
and д(r ). Noting that the average kinetic energy is still given by the expression 3

2NkT ,
we have for the total energy:

U =
3
2
NkT

[
1 + 4πn

3kT

ˆ ∞

0
u(r )д(r )r2dr

]
For detail calculation please refer to Pathria book second edition section 3-7 page 63.
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6- We should calculate total energy with this integral:

E(R) = 1
2

ˆ
Ω
ddrddr ′ρ(r )U (r − r ′)ρ(r )

For uniform system, ρ(r ) = ρ and the integral becomes:

E(R) = A
ρ2

2

ˆ
Ω
ddrddr ′

1
|r − r ′|σ

Now we make the change of variable r = Rx ;r ′ = Ry and Ω becomes the unit sphere,
we have:

E(R) = A
ρ2

2

ˆ
Ω
RdddxRdddy

1
|Rx − Ry |σ

=
1
2
Aρ2R2d−σ

ˆ
ddxddy

1
|x −y |σ

∝ R2d−σ

Now we can calculate energy per volume of such system we have:

Eb ≡
E(R)
V (R) ∝

R2d−σ

Rd
= Rd−σ

in limit R → ∞ we see that the thermodynamic limit is only well defined if and only if
d > σ .

For more information see page 27 of ”Lectures on Phase Transitions and the Renormalization
Group” by Goldenfeld.
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7- http://www.physics.ohio-state.edu/~braaten/statmech/goldenfeld-1.pdf
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