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1. Wilso-Fisher fixed point:
A: Plot the RG flow for d < 4 and d > 4 (see Fig. 12.2 chapter 12 Goldenfeld)

2. Perturbative RG up to O(u3):
A: According to Kardar’s book notation in chapter 5, show that the contribution of [2]× [5] can be neglected
up to O(q2). Explain that why are we interested in considering q → 0.
B: Prove the Eq. (5.48) of Kardar’s Book.
C: Prove the Eq. (5.54) and (5.55) of Kardar’s Book. Then plot the RG flow according to Fig. 5.5.
D: Solve exercises, 1, 4, 6, Kardar’s Book, chapter 5.

3. Recursive relation based on dimensional analysis:
According to following Hamiltonian:
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here we have n-component vector m(r) = (m1(r),m2(r), ...,mn(r)). Now according to RG procedure, and
just taking into account rescaling and the re-normalizing, derive the β-function and then derive the correction
to scaling exponents. (Hint: this model has been introduced for Cubic symmetry breaking and see sec. 5.8
Cardy’s Book )

4. OPE approach to derive recursive relation and scaling exponents:
For the following Hamiltonian and according to OPE formalism, derive the β-function and correction to
coupling constant and therefore, find the fixed points and extract the scaling exponents for given fixed points.
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]
5. Solve exercise 12-2 of Goldenfeld’s book.

6. Dangerous coupling constant:
Consider a generic model for Free energy density as:

f(φ,∇φ) =
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here n = 3, 4, 6 corresponds to percolation, O(N) (including polymer) and tricriticality models, respectively.
Show that up to dimensional analysis for t′ = `xtt, h′ = `xhh and u′ = `xuu,

xt + 2xφ = d, xt = 2

xh + xφ = d, xh =
d

2
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xu + nxφ = d, xu =
d

2
(2− n) + n

It turns out that for d > 2n
n−2 , the u would be relevant. How can manage the following scaling behaviors for

u→ 0., namely
lim
u→0

M(t, h, u)

for two cases M(t, 0, 0) ∝ tβ and M(0, h, 0) ∝ h1/δ. Show that
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Good luck, Movahed


