In the name of God

Department of Physics Shahid Beheshti University

MODERN COSMOLOGY

Exercise Set 4

(Due Date: 1404/02/20)

- 1. For open $(\Omega^0_{total} < 0)$, closed $(\Omega^0_{total} > 0)$ and flat $(\Omega^0_{total} = 0)$ universes and in each case use $w_{\lambda} = -1$ and $w_{\lambda} = -2$ and $w_{\lambda} = -0.1$, compute and plot following parts:
 - \mathbf{A} : plot H as a function of a, z and t.
 - **B**: plot \ddot{a}/a as a function of a, z and t.
 - \mathbf{C} : plot ρ_m , ρ_r and ρ_{λ} as a function of a, z and t. Determine the dominant epoch of each components.
 - \mathbf{D} : plot deceleration parameter as a function of redshift. Determine the value of redshift which corresponds to accelerating era of universe.
 - ${f E}$: Comoving length scale as a function of a and z. (Hint: $\chi_0 \chi = c \int_t^{t_0} {dt' \over a(t')}$).
 - **F**: Look back time (cosmic age), t(z). Also plot t as a function of χ .
 - G: Angular diameter distant, d_A .
 - **H**: Luminosity distance, d_l . Use data of Gold sample and then compute distance modulus, $\mu \equiv m M$ and compare your results for $\Omega_m^0 = 0.31$ and $\Omega_\lambda^0 = 0.68$ and $w_\lambda = -1.0$. What happens if we have $w_\lambda > -1$ or $w_\lambda < -1$ (i.e. equation of state of dark energy), Show them in the same plot.
 - I: Comoving volume element Luminosity distance, d_l . Use data of Gold sample and then compute distance modulus, $\mu \equiv m-M$ and compare your results for $\Omega_m^0=0.31$ and $\Omega_\lambda^0=0.68$ and $w_\lambda=-1.0$. What happens if we have $w_\lambda>-1$ or $w_\lambda<-1$ (i.e. equation of state of dark energy)Show them in the same plot.
 - **J**: Compute maximum visible age of astronomical object as a function of redshift for $\Omega_m^0 = 0.31$ and $\Omega_{\lambda}^0 = 0.68$ and $w_{\lambda} = -1.0$. What happens if we have $w_{\lambda} > -1$ or $w_{\lambda} < -1$ (i.e. equation of state of dark energy)Show them in the same plot.
 - \mathbf{K} : Plot the traveling path of a photon emitted from the horizon of an observer at the big-bang epoch and moves through the observer. Suppose that $\Omega_m^0 = 0.31$ and $\Omega_\lambda^0 = 0.68$ and $w_\lambda = -1.0$. What happens if we have $w_\lambda > -1$ or $w_\lambda < -1$ (i.e. equation of state of dark energy)Show them in the same plot.
 - ${f L}$: Compare the Hubble velocity and peculiar velocity for small redshift.
 - **M**: Investigate Alcock-Paczynski quantity and compute it in terms of redshift. Suppose that $\Omega_m^0 = 0.31$ and $\Omega_\lambda^0 = 0.68$ and $w_\lambda = -1.0$. What happens if we have $w_\lambda > -1$ or $w_\lambda < -1$ (i.e. equation of state of dark energy)Show them in the same plot.
 - **N**: Compute CMB shift parameter. Suppose that $\Omega_m^0 = 0.31$ and $\Omega_{\lambda}^0 = 0.68$ and $w_{\lambda} = -1.0$ and $v_s = \frac{c}{\sqrt{3}}$. What happens if we have $w_{\lambda} > -1$ or $w_{\lambda} < -1$ (i.e. equation of state of dark energy)Show them in the same plot.

 \mathbf{O} : Compute Baryon Acoustic oscillation quantity, β .

$$\beta = \left[\frac{H(z=0.2)d_l^2(z=0.35)0.35(1+0.2)^2}{H(z=0.35)d_l^2(z=0.2)0.2(1+0.35)^2} \right]^{1/3}$$

Suppose that $\Omega_m^0=0.31$ and $\Omega_\lambda^0=0.68$ and $w_\lambda=-1.0$ and $v_s=\frac{c}{\sqrt{3}}$. What happens if we have $w_\lambda>-1$ or $w_\lambda<-1$ (i.e. equation of state of dark energy)Show them in the same plot.

P: Suppose we have a dynamical dark energy in the universe with $w_{\lambda} = w_0 a^{-\alpha}$ and $0 \le \alpha \le 1$. Do all

 \mathbf{Q} : In the plane of $(\Omega_m^0, \Omega_\lambda^0)$ and supposing $w_\lambda = -1$, plot the constant curve for $t_0 = 13.86 \,\mathrm{Gyr}$. Show the region that big-bang is not allowed.

 ${\bf R}$: Optical depth: The probability to intersect an object with redshift smaller than z called optical depth, i.e.

 $\tau(z) = \pi r_*^2 c \int_0^z \frac{n(z')dz'}{H(z')(1+z')}$

imagine that $n(z) = n_0(1+z)^3$, $n_0 \sim 0.02h^3Mpc^{-3}$, $r_* \sim 10h^{-1}Kpc$, compute and plot optical depth. At which redshift our universe will be opaque based on this cosmological objects.

- **2.** Suppose that the number density of astronomical objects is constant, n = cts, compute the number of astronomical object as a function of redshift. In the case of $n = \exp(-z)$ repeat your calculation.
- **3.** Suppose that we have matter dominant era, according to $\left(\frac{da}{dt}\right)^2 = \frac{8\pi G}{3}a^2\rho_m k$, where k determines geometry of universe, solve analytically a(t) as a function of t. (Hint: define an auxiliary variable let say x and then calculate a(x) and t(x))

Good luck, Movahed		