$$
\begin{aligned}
& \cup \quad u_{1 t}-{ }^{-m i n}-\text { uin } \backslash \text { it } \frac{\cdots}{2^{n}-1} \text {, } \\
& \rightarrow a_{i t}=a_{m x}+\sum_{i=1}^{n-1}\left[n_{-1}-i\right] 2^{i} \xrightarrow[e^{n}-1]{a_{m_{a x}-1}^{\rightarrow}-a_{m}^{2}} \\
& \text { fitness (a) } \\
& \left\{a_{\text {it }}\right\} \quad \text { isin. M } \\
& \mathcal{L}_{i, t}=\mathcal{L}\left(\left\{a_{i t}\right\}\right)=e^{-\frac{x^{2}\left(a_{i t}\right)}{2}} \text {, likelihood } \\
& \underbrace{i s 1} \quad M \\
& \text {, fiejerditucess } \\
& \text { pito } \quad \bar{L}_{t}=\sum_{i=1}^{M} \mathcal{L}_{i t}
\end{aligned}
$$

$$
\begin{align*}
& \text { • ع } \\
& \text { 'ه } \\
& \text { for } t+1 \text { نَ } \tag{4}\\
& i=1, \ldots M
\end{align*}
$$

$$
\begin{aligned}
& M=\text { cts } \quad \text { jocis }
\end{aligned}
$$

T11111

$$
b(t, i, j)=\quad \begin{aligned}
& i=1, \ldots M \\
& j=1, \ldots n
\end{aligned}
$$

$$
\underset{\text { Relative }}{\text { Ritness }}: R(t, i) \equiv \frac{\mathcal{L}(b(t, i))}{\bar{L}}
$$

(B)

Roulette

(B) Cross-over

after Cross-over
p_{c}
dwol

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline & & & & \\
\hline 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& b(t+1, i, j)=\sqrt{i s 1,} \begin{array}{l}
\text { in } \\
j=1,
\end{array} \\
& b(t+1, i) \xrightarrow{\text { Decoding }}\{a(t+1, i)\} \\
& \text { 6フリビッに } \\
& \mathcal{L}_{(t+1, i) \sim e^{-x^{2}(t+1, i)}} \\
& R(t+1, t)= \\
& \text { 共 } \\
& {\left[\begin{array}{ll}
\text { gh } \\
\sim \\
\sim
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \forall: K \in[1, M]
\end{aligned}
$$

- Liefer $\mathscr{L} L_{\text {max }}$

$$
\begin{aligned}
b(t, i) \quad i=1, M & \longrightarrow\{a(t, i)\} \\
\sigma_{a}^{2}(t) & =\frac{1}{M} \sum_{i=1}^{M}[a(t, i)-\bar{a}(t)]^{2}
\end{aligned}
$$

$$
p_{m} \sim 0.1 \longrightarrow \underline{p_{m} \sim 0.001}
$$

اللزن ،.

$a=$? Free Parameter best

Start Frojrem

$$
\begin{aligned}
& a_{\text {min }} \quad a_{\text {max }}=\checkmark \quad \Delta a=J
\end{aligned}
$$

$$
\begin{aligned}
& n=\left|\frac{\ln N}{\ln 2}\right|+1=\square \quad \log , \quad \cos =1
\end{aligned}
$$

anyo 1 End loop
Do while (Convergence) $\Delta)^{2}{ }^{2}$

$$
t=t+1
$$

loop $i=1, \quad M$
10 X. Call Random $0<x<1$

$$
\begin{aligned}
& \text { loop } l=1, m-1 \\
& \text { if (sum2. } x<\text { sum1) Then } \\
& b(t, i, k)=b\left(\frac{t-1}{f}, l^{\prime}, k\right) \\
& \text { Endloop }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sum2 S Sum1 } \\
& \text { Suml }=\operatorname{Suml}+R(a(l+1)) \\
& \text { - Endloop }
\end{aligned}
$$

loop $l_{s 1}, m$

$$
R_{2}=\operatorname{Random}(0,1)
$$

Convergence checking.

$$
\text { Convergen }=|\bar{L}(t+1)-\bar{L}(t)| \quad \text { in }\}
$$

Write

$$
\begin{gathered}
a(t+1, i), \operatorname{Mox}(\mathcal{L}(t+1, i)) \\
\forall \quad i \in[1, M]
\end{gathered}
$$

End Program

Last modified: 12:01

