99 人r, rr

"MCMC"
"Convergence Test"

, $\Delta \subset(\infty$..an 1 nintio:

©

©

socin : B *

2N

$$
2 N=1000000 \longrightarrow N=500000
$$

MCMC 「م,

- $\{D\}:\left\{D_{i}\right\}, i=1, \ldots N_{D} \quad \sigma_{8}^{2} ; \dot{j} / j$
 T:T
MCMC Algorithm
Import Data

Compute $X_{\text {old }}^{2}\left(\{\theta\}_{\text {old }}\right)$ dionderulctis int
Lloop on MCMC

Compute $\bar{\chi}_{\text {New }}\left(\{\theta\}_{\text {Ned }}\right)$

$$
\begin{aligned}
& \Delta x^{2}=\chi_{N_{\text {er }}}^{2}\left(\{\theta\}_{\text {Ness }}\right)-\chi_{\text {ord }}^{2}\left(\{\theta\}_{\text {ord }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { • } \\
& \text { posterior } \\
& P=\mathcal{L}=e^{-x^{2} / 2}
\end{aligned}
$$

(B) Check Acceptance Rate $A R \equiv \min \left\{1, \frac{\tilde{P}_{\text {New }}}{P_{\text {add }}}\right\}$

End loop

Subroutine (B)

MCMC - Disadvantages. MK MK زاقیم
(1) $\{\theta\}_{\text {New }},\{\theta\}_{\text {ord }}$ are highly Correlated

(2) Delay in Convergence for highly Non. linear X^{2}

Hamiltonian MC (HMC)

$$
\mathcal{H}(\{\theta\},\{\xi\})=\frac{X^{2}(\{\theta\})}{2}+K(\{\xi\})
$$

$$
\left\{\dot{q}=\frac{d q}{d t}=p\right.
$$

$$
\begin{aligned}
\overline{\dot{p}=-q} \rightarrow \ddot{q}=-q & \Rightarrow \mid \ddot{q}+q=0 \\
& \xlongequal[\text { ciser, }]{ }=j
\end{aligned}
$$

$q(t)=c_{n}(t), p(t), s_{n}(t)$

$$
\begin{equation*}
\mathcal{L}=p\left(\{D\} \mid\{\theta\},\left\{\frac{k}{\}}\right)=e^{-\mathcal{H}(\{\theta\},\{\xi\})}\right. \tag{2}
\end{equation*}
$$

likelihood

$$
\operatorname{dex}^{\prime} P=e^{-\frac{x^{2}(\{\theta\})}{2}-\tilde{K}(\{\xi\})}
$$

