

Monte Carlo methods
(1) Decaying Simulation
(2) Information Inference

- Normalization
- Marginalization cing'd. $p(x)=\int p(x, y) d y$
- Partition function

- Expectation Value $\langle f\rangle=$?
- PDF generator
(3) Optimization
- Variational monte Carlo
- Markov - Chain Monte-Carlo MCMC
- Hamiltonian Monte-Carlo HMC
- Bootstrap algorithm
- Demon algorithm

EX: Decaying 110 ser.

$$
t=0 \quad N_{0}, t_{M} \rightarrow N\left(t=t_{M}\right)=\frac{N}{2}
$$

$N(t)=W$ of particles at t
$\Delta N(t)=*$ of Decaying Particles during t and $t+\Delta t$

$$
\begin{aligned}
A: \quad \frac{d N}{d t}= & -\frac{\lambda \Delta t N(t)}{\Delta t}=-\lambda N(t) \\
\frac{d N}{d t}=-\lambda N(t) & \rightarrow \frac{N(t) s N_{0} e^{-\lambda t}}{\text { Theory © }}
\end{aligned}
$$

B: $\frac{d N}{d t}=-\frac{\lambda}{t} \frac{\Delta t}{\Delta t} N(t)=-\frac{\lambda N(t)}{t}$
$\left|N(t)=N . t^{-\lambda}\right|$ Theory (B)

What about Simulation?
(A)

$$
\begin{aligned}
& \text { djectraar } \\
& N(t)=N_{0} e^{-\lambda t}, \quad t_{s}=s \Delta t \\
& N(t) \longrightarrow N(s)=N_{0} e^{-\lambda s \Delta t}=N_{0} e^{-\tilde{N}^{p} \lambda^{p} s} \\
& N(s)=N_{0} e^{-p s}
\end{aligned}
$$

$$
P=\sqrt{N}=N_{\text {oid }}, N_{\text {old }}=V, S=0, \Delta t s
$$

Do while ($N>0$)

$$
\begin{aligned}
& \text { for } P(t) . \quad \frac{d N}{d t}=0 \rightarrow N=\operatorname{cts} \rightarrow
\end{aligned}
$$

