タッヅル

$$
\int_{\infty}^{\infty}
$$

$$
\begin{aligned}
& \text { ins } \\
& \text { (1) } \\
& \underset{\left\{\sigma_{m x_{1}}, \ldots \sigma_{m x_{n}}\right\}}{\left\{x_{1} \ldots x_{n}\right\}} \underset{f(\{x\})=v}{ } y \pm \underbrace{\overbrace{m}^{\sigma_{n}}}_{\text {? }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 之 J, }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{x_{1} \ldots x_{n}\right\} \longrightarrow y
\end{aligned}
$$

ر少
(
(1)

Mean Standard $n \times n$ Deviation

$$
\begin{aligned}
& \left\langle x_{i} x_{j}\right\rangle=i n \operatorname{cin}_{j} \\
& \left\langle\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right)\right\rangle
\end{aligned}
$$

$$
P(y=\bar{x})=\overbrace{N(\bar{x}, \sigma)}^{\underbrace{}_{P\left(x_{1}\right)} P\left(x_{2}\right) \ldots P\left(x_{n}\right)}
$$

Centeral
limit theaven

$$
\begin{aligned}
& \text { - - - } \\
& x=\text { שׁׂر } \\
& p(x) \quad ?=\pi \text { (x) }
\end{aligned}
$$

فخنَ ,

$$
\begin{aligned}
& \cup_{m_{\bar{q}}}=\frac{1}{\sigma_{m x}^{2}}\left(\sum_{i=1}^{n} 1\right)_{n}=\bar{n} \\
& \sigma_{m}^{2}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& +\left|\frac{\uparrow}{\sigma_{m} \sim \theta\left(\frac{1}{\sqrt{n}}\right)}\right| \alpha \\
& e^{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}} \\
& \text { if } x \rightarrow \bar{x}+\sigma \rightarrow e^{-\frac{\left(\vec{x}+\sigma^{2}-\bar{x}\right)^{2}}{2 \sigma^{2}}} \\
& =e^{-\frac{\sigma^{2}}{2 \sigma^{2}}}=e^{-\frac{1}{2}}=0.606 \\
& \int \sigma_{2}, \sigma_{1} \text { 竍 } \\
& \text { if } x \rightarrow\left\{\begin{array}{l}
\bar{x}+2 \sigma \\
\bar{x}-2 \sigma
\end{array} \rightarrow e^{-2} \sim 0.13\right. \\
& -x^{2}
\end{aligned}
$$

$$
\begin{aligned}
N(0, \sigma)= & \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{2 \sigma^{2}}{2}} \\
& \int_{-\sigma}^{+\sigma} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x \\
= & 0.683 \\
& \times 100-68.3
\end{aligned}
$$

