In the name of God

Department of Physics Shahid Beheshti University

ADVANCED COURSE ON COMPUTATIONAL PHYSICS AND OPTIMIZATION

Exercise Set 7

(Due Date: 1403/02/20)

- 1. Decaying simulation: suppose the probability of decaying are $p = \lambda \Delta t$ and $p = \lambda \Delta t/t$. For both of them write down programs that simulate these phenomena.
- 2. Using Stone throwing method, compute the value of pi (π) . Check your algorithm for various values of sampling, N.
- 3. Solve the following integration numerically:

$$\langle v_z^2 \rangle = \int_{-\infty}^{+\infty} dv_x \int_{-\infty}^{+\infty} dv_y \int_{-\infty}^{+\infty} dv_z v_z^2 p_v(\vec{v})$$

here $p_v(\vec{v}) = \left(\frac{\beta m}{2\pi}\right)^{3/2} \exp\left(-\frac{\beta m \vec{v}^2}{2}\right)$. Suppose that $\beta m = 2$. Could your estimate you result before doing integration?

4. Based on Variational theorem in the quantum mechanics, write a variational Monte-Carlo program to estimate the ground state of 1D harmonic oscillator.

Good luck, Movahed