In the name of God

Department of Physics Shahid Beheshti University COMPUTATIONAL PHYSICS

Exercise Set 10

(Due Date: 1402/02/31)

1. Decaying simulation: suppose the probability of decaying are $p=\lambda \Delta t$ and $p=\lambda \Delta t / t$. For both of them write down programs that simulate these phenomena.
2. Using Stone throwing method, compute the value of pi (π). Check your algorithm for various values of sampling, N.
3. Solve the following integration numerically:

$$
\left\langle v_{z}^{2}\right\rangle=\int_{-\infty}^{+\infty} d v_{x} \int_{-\infty}^{+\infty} d v_{y} \int_{-\infty}^{+\infty} d v_{z} v_{z}^{2} p_{v}(\vec{v})
$$

here $p_{v}(\vec{v})=\left(\frac{\beta m}{2 \pi}\right)^{3 / 2} \exp \left(-\frac{\beta m \vec{v}^{2}}{2}\right)$. Suppose that $\beta m=2$. Could your estimate you result before doing integration?
4. Based on Variational theorem in the quantum mechanics, write a variational Monte-Carlo program to estimate the ground state of 1D harmonic oscillator.

Good luck, Movahed

