In the name of God

Department of Physics Shahid Beheshti University

ADVANCED COURSE ON COMPUTATIONAL PHYSICS

First midterm exam

(Time allowed: 3 hours)

Theoretical part:

1. Widely-used commands in terminal:

A: What is the command to connect a cluster? (assume that the valid IP is 192.168.220.100) (2 points) B: What is the command to copy a file from cluster to our local computer? (assume that the valid IP is 192.168.220.100) (2 points)

C: What is the command to make a script as an executable file? (1 points)

2. Binomial PDF:

A: Prove that the variance of a binomial probability is

$$
\sigma^2 = Np(1-p)
$$

(5 points)

B Considering the result proved in Part A, now prove that for small $P(x)$, the error of the probability density function becomes

$$
\sigma_m = \frac{1}{Nh},
$$

where, h is the bin width. (5 points)

3. The concept of Probability Density Function (PDF): Suppose that

$$
\bar{\rho}(x) \equiv \left\langle \frac{1}{h} K\left(\frac{x-y}{h}\right) \right\rangle_y = \int_{-\infty}^{\infty} \frac{1}{h} K\left(\frac{x-y}{h}\right) \rho(y) dy
$$

Where K is a kernel such that $K(A) = 1$ for $|A| \leq \frac{1}{2}$, and $K(A) = 0$ otherwise. Also we define

$$
Bias[\bar{\rho}(x)] \equiv \rho(x) - \bar{\rho}(x)
$$

A: What is the result of the following limit:

$$
\lim_{h\to 0}\operatorname{Bias}[\bar{\rho}(x)]=?
$$

explain your result. (5 points)

B: Using the changing of variable as $s = \frac{x-y}{h}$ and by Tylor expansion of $\rho(x + sh)$ up to $\mathcal{O}(h^3)$, compute $\bar{\rho}(x)$. Finally, determine $\lim_{h\to 0} \text{Bias}(\bar{\rho}(x))$. (5 points)

 $C:$ Let's define L as

$$
L \equiv Var(\bar{\rho}(x)) + (Bias[\bar{\rho}(x)])^2
$$

Where $Var(\bar{\rho}(x))$ and $Bias[\bar{\rho}(x)]$ which have been obtained in part B of question 2 and and part B, respectively. Find the best value of h by minimizing the L. (5 points)

4. The concept of Correlation:

A: Explain different categories of correlation. (5 points)

B: We have recorded two sets of data, $\{x\}$ and $\{y\}$ in an experimental set up. We imagine that the statistical relation of two mentioned series is given by $y \triangleq ax + b$. Now we define an estimator for error as $\epsilon \equiv \langle (y - (ax + b))^2 \rangle$. By minimizing the ϵ , try to find the statistical meaning of $Cov \equiv \langle (x - \langle x \rangle)(y - \langle y \rangle)$. (5 points)

- **5.** Moments and Cumulants: For a Gaussian distribution of random variable, x, with variance equates to σ^2 , we use the mapping $x \to y = x - \langle x \rangle$. Show that \mathcal{K}_1 and \mathcal{K}_3 for y are zero. What is the second cumulant? (5 points)
- 6. For the non-linear Langevin equation as:

$$
\dot{v} = \gamma(t, v) + \eta(t)
$$

clarify the physical meaning of each term in mentioned equation. What are the typical properties of η ? (10) points)

Computational part:

7. Fitting algorithm. According to the data set provided for you, there are 10 pairs, each pair (\bar{x}_i, \bar{y}_i) is subject to asymmetric errors (see Figure 1). The error-bars for each point as represented by $\bar{x_i}^{\sigma_x^+}_{\sigma_x^-}$ and $\bar{y_i}^{\sigma_y^+}_{\sigma_y^-}$, are $\sigma_x^- = 0.5, \, \sigma_x^+ = 5, \, \sigma_y^- = 2, \, \sigma_y^+ = 5.$

A: To map our fitting problem with the asymmetric error-bars to a simple case such that the abundance of data points for x around corresponding mean value, namely \bar{x}_i and similarly for \bar{y}_i are constant on different boundary, do following tasks:

1) For each pair, (\bar{x}_i, \bar{y}_i) , generate some data points randomly for the range of $x_j^{(i)} \in [\bar{x}_i - \sigma_x, \bar{x}_i + \sigma_x^+]$ for $j = 1, ..., 20$ with constant PDF. (10 points)

2) Do the same task as the part 1 just for \bar{y}_i . (10 points)

3) Now, for each i, collect the pairs as $(x_j^{(i)}, y_j^{(i)})$. where $i = 1, ..., 10$ and $j = 1, ..., 20$. Finally you have new data set with (x_k, y_k) , where $k = 1, ..., 10 \times 20$ and write them in a text file. (5 points)

B: Now by this new data set in your hand, and considering a linear line as theoretical prediction, Y_{theo} . $ax + b$ with two free parameters, compute the a_{best} and b_{best} . (15 points)

Figure 1: The asymmetric data sets around each filled circle symbols.

Good luck, Movahed

 $\overline{}$

فب الرعن الراسم Answer Key for First miltern numerical Analysis 1403. and Advanced computational Phylic $(5$ Points) 1 Commands A ssh User @192.168.220.100 B Scp User @192.168.220.100:/address/ It means here $0 + x$ $9 + x$ \odot chmod $\frac{3+x}{y+x}$ filenamesh Binomial PDf $P(n) = \binom{N}{n} \begin{matrix} n & N-n \\ n & P \end{matrix}$ A) $\langle n \rangle = \sum_{n=1}^{N} n \binom{N}{n} p^{n} (1-p)^{N-n}$ \equiv NP $\sigma^2 = \langle (n - \langle n \rangle)^2 \rangle = \sum^{n} (n - \langle n \rangle)^2 {N \choose n} p^n (1-p)^{N-n}$ $\frac{2}{\gamma} = \frac{2}{\rho N(N-1) + N \rho - \rho^2 N^2}$

 $= b^2/2 - b^2/2 + Np - b^2/2$ 5 points $= N p - N p^2 = N p (1-p)$ $P(x) = lim_{N \to \infty} \frac{n(x)}{N}$ (B) $rac{dP(x)}{dx}$ = pcx): PDF or $rac{dP(x)}{dx}$ = pcx) $rac{\sigma^2}{\sigma^2} = \left(\frac{\sigma_{\Delta P(x)}}{\sigma x}\right)^2 = \frac{N P(1-P)}{N (N P)^2}$ $\sigma_m^2 = \frac{\sigma_{P(m)}}{\langle n(n) \rangle} = \frac{N P(x(1-P(m))}{N^2 N^2 N P(n)} = \frac{(1-P(m))}{N^2 N^2}$ 5-Paints $\sigma_m = \frac{1}{Nbx}$ or $\sigma_m = \frac{1}{Nb}$ A $\mathcal{G}(x) = \left\langle \frac{1}{h} K \left(\frac{x-y}{h} \right) \right\rangle_s \left| \frac{1}{y} \frac{K \left(\frac{x-y}{h} \right)}{h} g(y) \right|$ $Bias[Fe] = S(n) - S(n)$ $\lim_{h\to0}$ Bias = Scay - Lin $\int dy$ $\left(\frac{K(x-y)}{h}\right)$ 9

 $\frac{l_{im}}{h_{m}} = \frac{\delta_{b}(x-y)}{\delta}$ looks like
h-s. $\frac{1}{h} = \frac{\delta_{m}}{\delta}$ $lim_{h \to 0}$ $B_{\text{ras}}(\overline{g_{(n)}}) = f(x) - \int dy \int_{0}^{x} (x-y) f(y) dx$
= $f(x) = 0$ In this case the Kernel include only those values equates to x and therefore our Bias Corresponds to Scas itself. 5 Paints $S = \frac{x-y}{h}$ \Rightarrow $Sh = x-y \Rightarrow y=x-sh$
 $S(y) = S(x-sh) = S(x) - Sk \frac{dS}{dx}$
 $+ \frac{(sh)^2}{a!} \frac{d^2S}{dx^2} + \frac{O(sh^3)}{c}$

or $O(h^3)$ \circled{B} $\overline{g}(x) = \left\langle \frac{1}{h} K(\frac{x-y}{h}) \right\rangle_{y} = \int dy \frac{K(\frac{x-y}{h})}{h} \times g(x)$ Therefore $- sh \frac{d\beta}{dx}\Bigg|_{h=0} + \frac{(sh)^2}{4!} \frac{d^2\beta}{dx^2}\Bigg|_{h=0} + \frac{\varrho(h^3)}{2!}$

 $\int_{h}(-hds)\frac{k(s)}{h}g(x)+\int_{h}(-hds)\frac{k(s)}{h}(-sh)g(x)$ $\zeta(x) =$ + \int (-hds) $\frac{k(s)}{h}$ (-sh)² e'' + $\mathcal{R}(h^3)$ = $-\frac{\zeta(x) + h\zeta}{\int ds}$ \f(s) - $\frac{h^{2} \zeta''}{2!}$ ds ζ^{2} k (s) + $\zeta(h)$

even $\frac{\int_{-h}^{h} z_{d}^{2} ds \zeta^{2}}{\int_{-h}^{h} z_{d}^{2} ds \zeta^{2}} = \frac{\zeta^{3}}{3} \Big|_{h}^{h}$ $f(x) = -f(x) + \frac{h^2 g''}{2l} + \frac{1}{2}$ 5-Points $\lim_{x \to 0} B_{i\alpha_3} = \frac{f(x)}{f(x)} - \frac{f(x)}{f(x)} = 2 f(x)$ $L = Var(\vec{\xi}(M) + (Bias[\vec{\xi}(M)])^2$ (C) = σ_{m}^{2} + $(\text{Bias } \overline{[\overline{g}(n)]})^{2}$ $L = \frac{1}{\sqrt[n]{h^2}} + (9(n) - (-9(n) - \frac{h^2 g''}{2a}))$ \overline{oz} d L \overline{dk} = L $5-$ Points

4) A:
$$
\hat{x}
$$
 Value
\n
$$
\hat{y}
$$
 Figure
\n
$$
\hat{y}
$$
\n<math display="block</p>

 $P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\langle x \rangle)^2}{2\sigma^2}}$ $5)$ $y = \chi - \langle \chi \rangle \rightarrow \text{p(y)}$, $\frac{1}{\sqrt{\lambda \pi \sigma^2}} e^{-\frac{y}{2\sigma^2}}$ K_i = M,= $\langle y \rangle$ = $\langle x - \langle x \rangle \rangle$ = $\langle x \rangle$ - $\langle x \rangle$ = 0 $K_3 = M_3 - 3M_1M_2 + 2M_1^3$
= $M_3 = \langle \frac{M}{M} \rangle = \int dy \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}} y^3 = 0$ $K_{2} = M_{2} - M_{1}^{2} = M_{2} - K_{1}^{2} = M_{2} = \sigma^{2}$ $5 - Poits$ Non-Linear Langevin Eq. ϵ) $\frac{dv}{dt} = \frac{\gamma(t, \theta) + \eta(t)}{\gamma}$ Stochastic Part Deferministic Part

 $\langle \eta(t) \rangle$ =0 $p(q_{(t)}) = \sqrt{(0, o_q)}$ $\langle \eta(t) \eta(t) \rangle = \sigma_2 \int_0^t (t-t')$ $\left(\begin{array}{c} 10 - \rho \text{ oints} \end{array}\right)$ Computational part A) Use Random Generator to generate Data for each Point with Center $\overline{\mathcal{X}}_i$ and \overline{y}_i $x_i^{(i)} = \alpha + R(b.a) = (\bar{x}_i - \bar{x}_i) + R[\bar{x}_i^{\dagger} - \bar{x}_i^{\dagger}]$ $y_i^{\text{(c)}} = (\bar{y}_i - \bar{y}_j) + \hat{R} [\bar{y}_j^{\dagger} - \bar{y}_j^{\dagger}]$ R and R' are Random Number with Flat Probability Distribution

$$
\textcircled{B} \qquad \qquad \frac{\text{V}}{\text{the}} = a\,\text{2} + b
$$

$$
\frac{2}{\gamma} \sum_{k=1}^{200} \left[\vartheta_k - (a\frac{x}{k} + b) \right]^2
$$

$$
b = \frac{N}{N} \sum_{k=1}^{N} y_{k} = \frac{N}{N} \sum_{k=1}^{N} x_{k}
$$

 $Q \simeq 2.37$

$$
b \simeq 2.47 \times 10^{-2}
$$