In the name of God

Department of Physics Shahid Beheshti University

ADVANCED COURSE ON COMPUTATIONAL PHYSICS

Exercise Set 7

(Due Date: 1403/09/03)

1. Random walk: For random walk in $1L$, compute $\langle x(N) \rangle$ and σ_N^2 for following cases:
--	--

A: Suppose each steps coming form random variable with flat PDF.

B: Suppose the probability of step value is a gaussian and to be random, namely: $P(s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{s^2}{2\sigma^2}\right)$. Suppose $\sigma = 0.1, 1, 10$.

C: Suppose the probability of step value is $p(s) \sim \tanh(s)/s$ and $s \in [-4, 4]$ to be random. The probability of forward jumping is $p_+ = 0.3$ and probability of backward jumping is $p_- = 0.7$.

D: Using the violin plot, plot the $\langle x(t) \rangle$ for t=10, t=100 and t=1000. Explain your results.

E: Using the violin plot, plot the $\sigma(t)$ for t=10, t=100 and t=1000. Explain your results.

F: Using p(x(t)) compute the $p(\sigma^2(t))$ and compare your results with that of illustrated in part D and E.

2. Langevin particle: Simulate a particle based on Langevin equation and then compute:

 $\mathbf{A}:\langle v(t)\rangle.$

 $\mathbf{B}:\langle v(t)^2\rangle.$

 $\mathbf{C}:\langle v(t_1)v(t_2)\rangle.$

 $\mathbf{D}: \langle x(t) \rangle.$

 $\mathbf{E}:\langle x(t)^2\rangle.$

 $\mathbf{F}: \langle x(t_1)x(t_2)\rangle.$

 $\mathbf{G}:p(v).$

H : Compare all of above parts with theoretical predictions.

I: $p(v(t); v(t+\tau))$. What happens if $\tau \to \infty$.

Good luck, Movahed	