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1) Stochastic fields in Various fields of researches	

!

2)  Perturbative expansion of Statistics	

!

3)  Excursion and Critical sets  in a 2D 	

     stochastic field 	
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4) Clustering of Peaks and Up-crossing	
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5) Results and researches in progress 
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• Deterministic processes 	


• Chaotic processes	


• Stochastic Processes 
1) Purely Random processes 
2) Dependent processes  
3) Markov processes
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Why stochastic field?
1) Random fields are ubiquitous in physics.	

2) In the nature, there are many reasons to produce initial 

conditions in the random frameworks,   
e.g. Initial fluctuations are produced randomly in the position 
coordinate (due to quantum uncertainties)	


2) In addition, it could be possible to have stochastic evolution 
    (temporal and/or spatial)	

3) Consequently, we should use or establish robust method to 
find reliable results for underlying stochastic fields. 	

!
 



Some examples

• 1+1D fields  
(Earthquake, Heartbeat, Epilepsy, Stock index, Climate indexes, …  )

https://www.kaggle.com/c/seizure-prediction
4944 S. Hajian, M.S. Movahed / Physica A 389 (2010) 4942–4957

Fig. 1. Upper panel corresponds to the monthly sunspot number data set. The secular trend, obtained with a low-pass Fourier filter is shown as a thick
line in the upper panel. Lower panels indicate observed flux fluctuations of Daugava, French Broad, Nolichucky and Holston rivers, respectively. The inset
plot shows river flow for small scales.

an approach for analyzing correlation properties of a series by decomposing the original signal into its positive and
negative fluctuation components [62]. Based on the previous study, Podobnik et al. havemodified thementioned correlation
method and improved it to explore the cross-correlation between two non-stationary fluctuations, namedDetrended Cross-
Correlation Analysis (DCCA) [48] and its generalized, theMultifractal Detrended Cross-Correlation Analysis (MF-DXA)which
also examine higher orders detrended covariance [49].

As mentioned before, trends in data set may influence the accuracy of results. For reliable detection of the cross-
correlations, it is essential to distinguish trends from the intrinsic fluctuations in data. Generally, trends embedded in
measurements are of two types: Polynomial and Sinusoidal trends. Although the MF-DFA and MF-DXA methods eliminate
the polynomial trends, the sinusoidal trends remain [46,47]. There are several robust methods to eliminate the sinusoidal
one such as Fourier Detrended Fluctuations Analysis (F-DFA) [61,63], which is actually a high-pass filter, and Singular
Value Decomposition (SVD) [64,65]. One of the most disadvantage of the F-DFA method is the reduction of the size of
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FIG. 1: Time evolution of some indexes.
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tions determined by equation (8) and computed directly
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for
each moment, q’s. In the Gaussian case apparently,
��(q) = �+(q).

To make our results more sense and complete, we fol-
low approach introduced by G.F. Zebende [50] for so-
called cross-correlation coe�cient as:
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and finally we report �
DCCA

= 1

s

P
s

i=1

�
DCCA

(q =
2; i). The �

DCCA

= +1 corresponds to prefect cross-
correlation and �

DCCA

= 0 indicates no cross-correlation
between underlying data sets.

III. DATA DESCRIPTION

The data used in this paper consists on adjusted mar-
ket capitalization stock market indices of 48 developed

and emerging markets, constructed by Morgan Stan-
ley Capital International (MSCI) and downloaded from
DataStream. We use daily index prices over the period
January 1995 to February 2014, corresponding to 4995
observations per index. The MSCI classification depends
on three criteria: economic development, size and liq-
uidity and market accessibility and divide markets on
developed, emerging and frontier markets (for more de-
tails, see http://www.msci.com). Our database includes
23 markets classified as developed, 21 markets classified
as emerging and 4 frontier markets. The developed mar-
kets are: Canada, United States (from America), Aus-
tria, Belgium, Denmark, Finland, France, Germany, Ire-
land, Israel, Italy, the Netherlands, Norway, Portugal,
Singapore, Spain, Sweden, Switzerland, United King-
dom (from Europe), Australia, Honk Kong, Japan, New
Zealand and Singapore (from the Pacific). The emerg-
ing markets are Brazil, Chile, Colombia, Mexico, Peru
(from Americas), the Czech Republic, Egypt, Greece,
Hungary, Poland, Russia, South Africa, Turkey (Europe,
Middle East & Africa), China, India, Indonesia, Ko-
rea, Malaysia, Philippines, Taiwan, and Thailand (Asia).
The frontier markets are Argentina (Americas), Morocco
(Africa), Jordan (Middle East) and Pakistan (Asia). The
data are the relative price indexes for these markets,
where the base 100 was set in the first observation. In
order to illustrate the behaviour of those markets, we
present the time evolution divided by type ok markets
(Figure 1). In a very simplistic way, we can observe some
similar behaviour between some stock markets, besides
the di↵erences of scale. For example, in the developed
markets group, the Europe shows some ”synchroniza-
tion”, such as some markets of Asia, namely Singapore
and Japan. The emerging markets also seem to show
high levels of ”synchronization” or similar behaviour, es-
pecially in Europe and South America. It is important
to note the higher values of the Turkish stock market,
which may induce that this market had strong increment
on the period under analysis. Of course, this kind of
analysis is merely preliminary. In order to evaluate the
relations between those markets, it is important to use
robust techniques in linear and nonlinear terms

IV. RESULTS OF STOCK MARKET
COMOVEMENTS

In the previous section the mathematical tools to ex-
tract reliable information regarding the underlying data
have been explained. In the section we are going to apply
mentioned method on series.

A. Evidence of cointegration and causality tests

We tested the stability of our time series by regress-
ing it on a nonsignificant constant. The results indi-
cate the presence of structural breaks for all the vari-

Paulo Ferreira, Andreia Dionsio, S.M.S Movahed (in progress)
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Some examples
• 2D (1+2D) fields 

(CMB, Rough surfaces, …)

Planck Satellite results (2013) 
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FIG. 1. Sketch showing the Monte Carlo modeling set-up
for an ion-beam sputtering. As described in the text, an ion
beam trajectory makes an angle ✓ with the axes z, and the
projection of the ion-beam direction on the x�y plane, makes
an angle of �

exp

relative to the x axis. Anisotropic direction
is perpendicular to the x� y projection of the ion-beam.

III. METHODOLOGY: LEVEL CROSSING
ANALYSIS

As we will explain, in this paper we are interested
in finding a criterion to distinguish the isotropic and
anisotropic rough surfaces, consequently, the level cross-
ing method will be introduced in the two-Dimensions
(2D) framework. In order to make more sense for further
usage we introduce level crossing method with following
steps:
Step1: Definition of variables: Suppose that for a

rough surface in 2D, height of the fluctuations is repre-
sented by H(r) at coordinate r = (i, j) with resolution �
and size L⇥L (see Fig. 3). It is not compulsory that the
size of width and height of underlying rough surface to
be same. For convenience, suppose that the origin of the
coordinate system is placed at the center of rough sur-
face. We assign height fluctuations by H(xi, yi), where
xi and yi demonstrate the coordinate position through
the basis vectors namely, x and y, respectively. In this
case we have �L/2 < (xi, yi) < L/2 for the square shape
of rough surface.
Step2: Preparing data sets: We cut two categories

of slices for height fluctuation in two separate and orthog-
onal directions which are so-called u and w. It must point
out that these two direction are produced by rotation
counterclockwise with respect to the origin of coordinate
through the angle �. For � = 0 the common axes to be
retrieved. To make obvious, we called the (1 + 1)D fluc-
tuations throughout these direction as Hw(�;n,m) and
Hu(�;n,m). Here n refers to the nth slice throughout
the w or u directions. The size of these (1 + 1)D sig-
nals depend on the resolution and the direction of slicing
of underlying rough surface. The upper panel of Fig. 4
shows a schematic of (1+1)�D slice of underlying rough
surface. If H(r) to be invariant under Eulerian rotation,
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FIG. 2. Upper: Isotropic simulated rough surface for ✓ = 0�

and �

exp

= 0�. Moddel: An preferred direction for ✓ = 25�

and �

exp

= 23� exists for simulated surface. Lower panel
corresponds to simulated anisotropic rough surface for ✓ =
50� and �

exp

= 0�

S.M. Vaez Allaei et al., (in progress)

S.M.S. Movahed et. al., MNRAS 2013	

S.M.S. Movahed et. al., JCAP 2011
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FIG. 2: Left: Contour plot at some typical levels of a singular
multifractal rough surface generated by binomial cascade mul-
tifractal method with p = 0.22(H = 0.803). The right panel
indicates the contour lines of the same surface convolved with
H⇤ = 0.700. The system size is 256⇥ 256.

[34, 50]. Since it does not require the modulus maxima
procedure therefore this method is simpler than WTMM,
however, it involves a bit more e↵ort in programming.
In this work, we rely on the two dimensional multi-

fractal detrended fluctuation analysis (MF-DFA) to de-
termine the spectrum of the generalized Hurst exponent,
h(q). We then compare given results with theoretical
prediction to check the reliability of our simulation. Sup-
pose that for a rough surface in two dimensions height
of the fluctuations is represented by H(r) at coordinate
r = (i, j) with resolution �. The MF-DFA in two dimen-
sions has the following steps [34]
Step1 : Consider a two dimensional array H(i, j) where

i = 1, 2, ...,M and j = 1, 2, ..., N . Divide the H(i, j) into
Ms ⇥Ns non-overlapping square segments of equal sizes
s ⇥ s, where Ms = [Ms ] and Ns = [Ns ]. Each square
segment can be denoted by H⌫,w such that H⌫,w(i, j) =
H(l

1

+ i, l
2

+ j) for 1  i, j  s, where l
1

= (⌫ � 1)s and
l
2

= (w � 1)s.
Step 2 : For each non-overlapping segment, the cumu-

lative sum is calculated by:

Y⌫,w(i, j) =
iX

k1=1

jX

k2=1

H⌫,w(k1, k2); (7)

where 1  i, j  s.
Step 3 : Calculating the local trend for each segments

by a least-squares of the profile, linear, quadratic or
higher order polynomials can be used in the fitting pro-
cedure as follows:

B⌫,w(i, j) = ai+ bj + c, (8)

B⌫,w(i, j) = ai2 + bj2 + c. (9)

Then determine the variance for each segment as follows:

D⌫,w(i, j) = Y⌫,w(i, j)� B⌫,w(i, j), (10)

F 2

⌫,w(s) =
1

s2

sX

i=1

sX

j=1

D2

⌫,w(i, j). (11)

A comparison of the results for di↵erent orders of DFA
allows one to estimate the type of the polynomial trends
in the surface data.

FIG. 3: Upper panel: A part of height fluctuations of singular
measure mentioned in Fig. 2. Lower panel: The same surface
convolved with H⇤ = 0.700.

Step 4 : Averaging over all segments to obtain the q’th
order fluctuation function

Fq(s) =
⇣ 1

Ms ⇥Ns

MsX

⌫=1

NsX

w=1

⇥
F 2

⌫,w(s)
⇤q/2 ⌘1/q

, (12)

where Fq(s) depends on scale s for di↵erent values of q.
It is easy to see that Fq(s) increases with increasing s.
Notice that Fq(s) depends on the order q. In principle, q
can take any real value except zero. For q = 0 Eq. (12)
becomes

F
0

(s) = exp
⇣ 1

2Ms ⇥Ns

MsX

⌫=1

NsX

w=1

lnF 2

⌫,w(s)
⌘
. (13)

For q = 2 the standard DFA in two dimensions will be
retrieved.

S. Hosseinabadi et al.,  PRE 2012

Anisotropic surface 
Gaussian stochastic field	


primordial quantum fluctuations
Multifractal singular and 	


smoothed surfaces

dimension analysis and Minkowski functionals (MFs),
which do not require prior assumptions about the number
of regions or features in an image. For example, Rose et al.
(17) used fractal dimensions to describe the heterogeneity
found in dynamic contrast enhanced (DCE)-MRI parame-
ter maps and showed that the measured heterogeneity
could distinguish between low-grade and high-grade glio-
mas, a distinction that could not be made using distribu-
tion-based summary statistics. MFs have been widely
employed in cosmology as precise morphological and
structural descriptors, and used in the study of the evolu-
tion and morphology of galaxies and clusters of galaxies
(18,19). More recently they have been used as shape func-
tionals in neuromorphometric characterization (20), for
classifying normal and pathological pulmonary tissue
(21,22) and as parameters for the analysis of mineral dis-
tribution in hip fractures (23). We demonstrated recently
that MFs can be used to parameterize the heterogeneous
distribution of a targeted MRI contrast agent for detecting
tumor cell death and showed that this increased the sensi-
tivity of cell death detection in a drug-treated tumor (24).
We show here that MFs can be used with T2-weighted
images to detect the morphological changes that accom-
pany tumor cell death following drug treatment in the ab-
sence of any exogenous contrast agent.

METHODS

Drug Treatment and Tumor Histologic Evaluation

Tumors were grown by subcutaneous injection of 5 !
106 EL-4 murine lymphoma cells into the lower flank of
female C57BL/6 mice, and allowed to grow for 10 days.
Tumor cell death was induced either by treatment with a
cytotoxic drug, etoposide, which also induced tumor
shrinkage, or by using a vascular disrupting agent,
combretastatin A4-phosphate (CA4P), which produced
hemorrhagic necrosis in the absence of any significant
change in tumor size. Drug-treated animals received
intraperitoneal injections of 67 mg/kg etoposide or
100 mg/kg CA4P. Control animals were injected with the
solvent vehicle. Procedures were conducted in accord-
ance with project and personal licenses issued under the
United Kingdom Animals (Scientific Procedures)
Act 1986 and were designed with reference to the UK
Co-ordinating Committee on Cancer Research Guidelines
for the Welfare of Animals in Experimental Neoplasia.

The presence of tumor cell death was confirmed
histologically. Tumors were fixed in 10% formalin and
embedded in paraffin, and 5 mm sections were stained
with hematoxylin and eosin (Fig. 1). The fraction of cells
with fragmented nuclei (both apoptotic and necrotic
cells) was estimated using ImageJ software (National
Institutes of Health) as described in Refs. 8,25.

MRI

Experiments were performed at 9.4 T using a vertical
89-mm bore Oxford Instruments magnet (Oxford, UK)
interfaced to a Varian Inova console (Varian, Palo Alto,
CA) and a 45-mm-diameter volume coil (Millipede,
Varian). Multi-slice T2-weighted (repetition time
(TR)¼1.5 s, echo time (TE)¼40 ms, four transients per

slice, bandwidth¼100 kHz, field-of-view (FOV)¼35 mm
! 35 mm, data matrix 256 ! 128, slice thickness 1.5
mm) images were acquired using a spin-echo sequence.
The etoposide treatment group (N¼8) was imaged pre-
treatment, and again 24-h post-treatment, while for the
CA4P treatment group imaging was performed pre-treat-
ment and at 6 h (N¼8) or 24 h (N¼9) post-treatment. A
group of untreated control tumor-bearing mice (N¼11)
were also imaged twice, where the imaging sessions
were 24 h apart. A summary of the relevant information
about the different treatment categories is given in
Table 1.

FIG. 1. Representative sections of tumors stained with hematoxy-
lin and eosin from (a) an untreated control tumor, (b) a tumor 24 h
post-treatment with etoposide, and (c) 6 h post treatment with
CA4P. The etoposide treated tumors show widespread regions of
cell death, whereas at 6 h post CA4P treatment these regions are
more localized and smaller. Scale bar¼300 mm.
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Analysis of Image Heterogeneity Using 2D Minkowski
Functionals Detects Tumor Responses to Treatment

Timothy J. Larkin,1,2 Holly C. Canuto,1,2 Mikko I. Kettunen,1,2 Thomas C. Booth,1,2

De-En Hu,1,2 Anant S. Krishnan,1 Sarah E. Bohndiek,1,2 Andr!e A. Neves,1,2

Charles McLachlan,3 Michael P. Hobson,3 and Kevin M. Brindle1,2*

Purpose: The acquisition of ever increasing volumes of high
resolution magnetic resonance imaging (MRI) data has created
an urgent need to develop automated and objective image
analysis algorithms that can assist in determining tumor mar-
gins, diagnosing tumor stage, and detecting treatment
response.
Methods: We have shown previously that Minkowski function-
als, which are precise morphological and structural descriptors
of image heterogeneity, can be used to enhance the detection,
in T1-weighted images, of a targeted Gd31-chelate-based
contrast agent for detecting tumor cell death. We have used
Minkowski functionals here to characterize heterogeneity in
T2-weighted images acquired before and after drug treatment,
and obtained without contrast agent administration.
Results: We show that Minkowski functionals can be used to
characterize the changes in image heterogeneity that accom-
pany treatment of tumors with a vascular disrupting agent,
combretastatin A4-phosphate, and with a cytotoxic drug,
etoposide.
Conclusions: Parameterizing changes in the heterogeneity of
T2-weighted images can be used to detect early responses of
tumors to drug treatment, even when there is no change in
tumor size. The approach provides a quantitative and therefore
objective assessment of treatment response that could be
used with other types of MR image and also with other imag-
ing modalities. Magn Reson Med 71:402–410, 2014. VC 2013
Wiley Periodicals, Inc.

Key words: heterogeneity; tumor; Minkowski functionals;
image analysis

Magnetic resonance imaging of tissue morphology has
been widely used in oncology to detect the presence of
disease and to detect treatment response by measuring

decreases in tumor size (1). Since for some therapies
treatment-induced tumor cell death can be correlated
with patient survival (2–4), a more general method for
detecting treatment response would be to image tumor
cell death. This could be used to detect response to those
therapies that have little or no effect on tumor size and
provide earlier detection of response to those therapies
that do eventually induce tumor shrinkage (5).

Even relatively low resolution images, such as those
produced by computed tomography (CT) or MRI, can be
a sensitive indicator of underlying tissue biology (6)
and therefore could potentially be used to interrogate
more subtle features of tumor physiology and changes
in this physiology in response to treatment. Such an
approach, however, requires the development of image
metrics that give objective and quantitative assessments
of tissue morphology and that capture the underlying
biological information in a routine and automated
fashion.

A characteristic of tumors is their heterogeneous
appearance in MR images, a consequence of their irregu-
lar and uncoordinated growth and a chaotic and inter-
mittent blood supply that leads to periods of transient
ischemia and hypoxia. The resulting areas of necrosis
and hemorrhage can lead to hyper- and hypointensity,
respectively, in T2-weighted images (7) and may also be
influenced by treatment, where successful treatment can
result in a change in the size and distribution of these
areas (8).

Various approaches have been adopted for analyzing
heterogeneity in MR images of tumors, including k-means
clustering (9,10), texture analysis (11–13), and fractal
dimensions (14–16). However, texture analysis and the
k-means clustering algorithm, have some important limita-
tions. Texture analysis requires a large set of image
parameters to be calculated with a subset of these parame-
ters then chosen and used to differentiate between tissues
of different types. In a recent study, where texture analy-
sis was used to distinguish between benign and malignant
soft tissue masses on MR images, only small differences
were identified between the two and it was concluded
that more data were required to confirm the value of this
approach (13). A number of variations of the k-means
clustering algorithm have been used in MRI; however, in
most cases, the algorithm requires prior knowledge of the
number of expected regions or features and, furthermore,
due to the fact that the algorithm has a randomly assigned
starting point, the resulting clusters may not always con-
verge to the same point.

More recent approaches to image analysis have focused
on the use of shape-orientated descriptors, such as fractal
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Some examples
• 3D (1+3D) fields: 

(Large scale structure, …) 

1+3D

Excursion set theory 21

(a) Porous media. (b) Matrix-inclusion media.

Figure 1.9: Two excursion sets of the same realization with different level sets.

of porous media (see 4.2.1 in this chapter). By comparison, high values of κ lead to
meatball-like topology (FIG. (1.9(b))) where just several connected components remain.
These excursions, despite their very low volume fraction, could represent disconnected
media such as aggregates within a matrix. This last point raises the main issue of excur-
sion set modeling. In this chapter, solutions are proposed in order to yield high volume
fraction morphologies with disconnected topologies.

As the level set value has an impact on the kind of morphology obtained, both prob-
ability distribution of the RF and its covariance function have a major influence as well.
Among them, the correlation length Lc, fixing the length-scale of the excursion set, has a
key role. Playing with all these parameters gives a wild range of morphologies. But, in
order to manipulate these “objects”, tools that quantify them mathematically speaking are
needed.

In the next section functionals that measure both geometrical and topological quanti-
ties are defined. They provide global descriptors for excursion sets, giving a mathematical
basis for the main results presented in this chapter.

3.2 Measures of excursion set
3.2.1 General aspect

In order to specify a morphology both geometrical and topological properties have
to be considered. It has been proved that in a N-dimensional space, N + 1 descriptors
are enough to fully describe it. A large family of functionals aims to quantify those

Meso-scale FE and morphological modeling of heterogeneous media

Meatball:  isolated clusters 
in  low density 	


connected	  background	  Emmanuel Roubin Thesis, 2013
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Swiss cheese: isolated voids 
surrounded on all sides by 

walls	
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Feature of Stochastic fields	

by mathematics

# Density contrast field	

   1+4D	

!

# Velocity contrast field	

1+4D	

!

# Gravitational field	

1+4D	

!

# Height or Temperature 	

fields1+3D and 1+2D	
  

δ (t; X) ≡
ρ(t; X) − ρ(t; X)

ρ(t; X)

δ
!
V (t; X) ≡

!
V (t; X) −

!
V (t; X)

!
V (t; X)

δΦ(t; X) ≡
Φ(t; X) − Φ(t; X)

Φ(t; X)

δT (t; X) ≡
T (t; X) − T (t; X)

T (t; X)
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Preparing real field:	

Smoothed stochastic field

To cuts the high-frequency fluctuations (Low-pass filter)
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f → "f ≡ f − f → "f = 0 σ 0 = f 2 =
1

2π( )d /2 ddkP(k)∫ α ≡
f
σ 0
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−∞

+∞

∫

= 1+
in

n!
... ... M µ1µ2 ..µa ;ν1 ,ν2 ..νb

(a+b=n) λµ1
λµ2

...λµa
λν1
λν2

...λνb
νb =1

N

∑
ν2 =1

N

∑
ν1 =1

N

∑
µa =1

N

∑
µ2 =1

N

∑
µ1 =1

N

∑
.

/
0

1

2
3

n=1
∑

ln ZA (λ)( ) =
in

n!
... ... Kµ1µ2 ..µa ;ν1 ,ν2 ..νb

(a+b=n) λµ1
λµ2

...λµa
λν1
λν2

...λνb
νb =1

N

∑
ν2 =1

N

∑
ν1 =1

N

∑
µa =1

N

∑
µ2 =1

N

∑
µ1 =1

N

∑
.

/
0

1

2
3

n=1
∑

Perturbative expansion of Statistics I

Moment

CumulantFree energy

2



14

 

ZA (λ) ≡ exp iλiA( )
A

= dN A P(A)exp iλiA( )
−∞

+∞

∫

ZA (λ) = exp −
1
2
λT iK (2)iλ&

'(
)
*+

×
in

n!
... ... Kµ1µ2 ..µn ;ν1 ,ν2 ..νn

(a+b=n) λµ1
λµ2

...λµa
λν1
λν2

...λνb
νb =1

N

∑
ν2 =1

N

∑
ν1 =1

N

∑
µa =1

N

∑
µ2 =1

N

∑
µ1 =1

N

∑
&

'
(

)

*
+

n=3
∑

K (2) ≡ A⊗ A

=

Kµ11
Kµ12
!Kµ1n

Kµ1ν1
! Kµ1νn

" !
Kνn µ1

Kνn µ2
!Kνn µn

Kνnν1
!Kνnνn

&

'

(
(
(

)

*

+
+
+

2n×2n= N ×N

Perturbative expansion of Statistics II



15

 

ZA (λ) ≡ exp iλiA( )
A

= dN A P(A)exp iλiA( )
−∞

+∞

∫

P(
!
A) =

1
(2π )N dNλ ZA (λ)exp −iλiA( )

−∞

+∞

∫

= exp (−1)n

n!
... ... Kµ1µ2 ..µa ;ν1 ,ν2 ..νb

(a+b=n) ∂n

∂Aµ1
...∂Aµa

∂Aν1
...∂Aνbνb =1

N

∑
ν2 =1

N

∑
ν1 =1

N

∑
µa =1

N

∑
µ2 =1

N

∑
µ1 =1

N

∑
*

+
,

-

.
/

n=3

∞

∑
*

+
,

-

.
/

× PG (
!
A)

PG (
!
A) =

exp −
1
2
!
AT i K (2)( )−1

i
!
A*

+,
-
./

(2π )N /2 Det K (2)

Perturbative expansion of Statistics III

Covariance matrix or	

The inverse of Fisher 
information matrix 



16

 

F A = dN A P(A)F
−∞

+∞

∫

F A = = exp (−1)n

n!
... ... Kµ1µ2 ..µa ;ν1 ,ν2 ..νb

(a+b=n) ∂n

∂Aµ1
...∂Aµa

∂Aν1
...∂Aνbνb =1

N

∑
ν2 =1

N

∑
ν1 =1

N

∑
µa =1

N

∑
µ2 =1

N

∑
µ1 =1

N

∑
'

(
)

*

+
,

n=3

∞

∑
'

(
)

*

+
, F

G

F A = F G +
1
3!

K µ1µ2 µ3

(3) F; µ1µ2 µ3 G
+ ....

µ3 =1

N

∑
µ2 =1

N

∑
µ1 =1

N

∑

F ≡ δ (α − β) α ≡
f
σ 0

P(α ) = dAµ2∫ dAµ3
...dAµN

δ (α − β)P(
!
A)

P( f ) =
1

2πσ 0
2

exp −
α 2

2
'

()
*

+,
+

1
3!

K111
(3) ∂3δ (α − β)

∂β 3
G

+ ...

P( f ) =
1

2πσ 0
2

exp −
α 2

2
'

()
*

+,
1+

1
6

K111
(3)H 3(α ) +Ο(σ 0

3)4

56
7

89

Perturbative expansion of Statistics IV

T. Matsubara, 2003, 2013

Skewness

Hermit polynomial



Excursion sets:

Excursion set theory 21

(a) Porous media. (b) Matrix-inclusion media.

Figure 1.9: Two excursion sets of the same realization with different level sets.

of porous media (see 4.2.1 in this chapter). By comparison, high values of κ lead to
meatball-like topology (FIG. (1.9(b))) where just several connected components remain.
These excursions, despite their very low volume fraction, could represent disconnected
media such as aggregates within a matrix. This last point raises the main issue of excur-
sion set modeling. In this chapter, solutions are proposed in order to yield high volume
fraction morphologies with disconnected topologies.

As the level set value has an impact on the kind of morphology obtained, both prob-
ability distribution of the RF and its covariance function have a major influence as well.
Among them, the correlation length Lc, fixing the length-scale of the excursion set, has a
key role. Playing with all these parameters gives a wild range of morphologies. But, in
order to manipulate these “objects”, tools that quantify them mathematically speaking are
needed.

In the next section functionals that measure both geometrical and topological quanti-
ties are defined. They provide global descriptors for excursion sets, giving a mathematical
basis for the main results presented in this chapter.

3.2 Measures of excursion set
3.2.1 General aspect

In order to specify a morphology both geometrical and topological properties have
to be considered. It has been proved that in a N-dimensional space, N + 1 descriptors
are enough to fully describe it. A large family of functionals aims to quantify those

Meso-scale FE and morphological modeling of heterogeneous media

In principle, an excursion set is defined as an arbitrary 
feature considered in an arbitrary condition in the 
underlying stochastic field 

Emmanuel Roubin Thesis, 2013



Critical sets

In principle, a critical set is defined as extrema point or 
path in the underlying stochastic field 

1204 D. Novikov, S. Colombi and O. Doré

Figure 2. Skeleton and its local approximation for the Gaussian field of Fig. 1. Upper-left panel: the skeleton is drawn as well as the critical points. Local

minima are in yellow, saddle points in orange and local maxima in red. As discussed in the text, the skeleton passes through all the maxima and the saddle

points. The local maxima are the nodes where several lines converge, while the saddles points have only one line passing through. Note as well that local

maxima are always connected to saddles and reciprocally, except in, for example, the lower left of the panel, where we can see three saddles connected to each

other. This configuration is theoretically forbidden (see discussion in Appendix A) unless there is some degeneracy in the field, which we suspect is because

of our numerical implementation (see Appendix C). Upper-right panel: the skeleton is superposed to the smoothed field. Middle-left panel: same as for the

upper-left panel, but for the local approximation of the skeleton. The dark plus light blue lines assume S = 0 (equation 8), while the light blue lines verify

the more constraining conditions given by equations (2) and (3). Middle-right panel: same as upper-right panel but for the local approximation of the skeleton.

Lower-left and lower-right panels: the local approximation and the real skeleton are again superposed to the smooth field, but restricted to overdense regions

ρ ! ⟨ρ⟩.

From the last argument, the skeleton can be seen as the ensem-

ble of pairs of stable fields lines departing from saddle points and

connecting them to local maxima.8 The skeleton field lines can thus

be drawn by going along the trajectory with the following motion

8 See, however, footnote 7.

equation

dr

dt
≡ v = ∇ρ, (1)

starting from the saddle points, and with initial velocity parallel to

the major axis of the local curvature (i.e. parallel to the eigenvector

of the Hessian corresponding to λ1). The trajectory is followed until

C⃝ 2006 The Authors. Journal compilation C⃝ 2006 RAS, MNRAS 366, 1201–1216
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Figure 2. The final 3D skeleton derived from a 50-Mpc standard !CDM simulation run with sc gadget-2 using 5123 particles. This result is obtained after

post treating the skeleton using the method described in Appendix A.

are the extrema of the field. Indeed, the ‘real skeleton’ is defined as

a set of critical lines that connect maxima to saddle points. Much of

the topological behaviour of the skeleton is related to the distribution

of such extremal points. For the local skeleton described this paper,

the role of the extrema is similar but the whole set of critical lines

encompass additional branches linking all kind of field extrema

together.

Since the local skeleton is based on a local second-order approx-

imation of the density field, ρ, its properties can be understood

through the properties of the gradient ∇ρ and Hessian matrix H(ρ)

only. The eigenvalues of H define the local curvature at any point,

thus separating space into distinct regions depending on the sign of

these eigenvalues λi . Within a 3D space, as by definition λj < λi if

j > i, there exist four of these regions. Let I be the number of nega-

tive eigenvalues, then the regions where I is equal to 0, 1, 2 and 3.

This classification applies to critical points of the field in particular,

where ∇ρ = 0, the maxima (I = 3) and minima (I = 0) existing

within local clumps and voids, respectively, while two types of sad-

dle points can be distinguished: the filaments type saddle points (for

I = 2) and the pancake type ones (for I = 1).

Fig. 3 illustrates a second-order approximation of the density

field in the vicinity of the field extrema. The total set of critical lines

form a fully connected path linking all the critical points together

and exactly six branches pass through each of them in the direction

of the three eigenvectors of the Hessian. Empirically, it is possible

to picture the typical behaviour of the whole set of critical lines.

Defining E = {0, 1, 2, 3} and considering a given critical point

where I = n, if i < j < k ∈ E − {n}, this critical point Cn is usually

linked to three other pairs of critical points Ci , Cj and Ck (where

I = i, j and k, respectively) by critical lines aligned with eigenvectors

associated with eigenvalues λ1, λ2 and λ3, respectively, at point Cn .

Most of the time, each of these branches connect to critical points Ci ,

Cj and Ck along the eigenvectors associated with eigenvalues λ1, λ2

Figure 3. Illustration of a second-order approximation of the density field

around a maximum (I = 0), filament (I = 1) and pancake (I = 2) saddle

point and a minimum (I = 3). The colour stands for the density, ranging from

purple in low-density regions to red in high-density regions. The axes are

the eigenvectors of the Hessian, and give the direction of the six branches

of the local critical lines going through these critical points (i.e. where the

gradient of the field and the eigenvectors of H are aligned). The skeleton is

the subset of these critical lines linking maxima (Fig. 3a) and filament saddle

points (Fig. 3b), in the direction of the eigenvector associated with λ1.

and λ3, respectively, evaluated at points Ci , Cj and Ck , respectively.

In this picture, the critical lines can be seen as a fully connected path

linking all the different regions defined by the sign of the eigenvalues

of H.
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ABSTRACT

We discuss the skeleton as a probe of the filamentary structures of a two-dimensional random

field. It can be defined for a smooth field as the ensemble of pairs of field lines departing from

saddle points, initially aligned with the major axis of local curvature and connecting them to

local maxima. This definition is thus non-local and makes analytical predictions difficult, so

we propose a local approximation: the local skeleton is given by the set of points where the

gradient is aligned with the local curvature major axis and where the second component of the

local curvature is negative.

We perform a statistical analysis of the length of the total local skeleton, chosen for simplicity

as the set of all points of space where the gradient is either parallel or orthogonal to the main

curvature axis. In all our numerical experiments, which include Gaussian and various non-

Gaussian realizations such as χ 2 fields and Zel’dovich maps, the differential length f of the

skeleton is found within a normalization factor to be very close to the probability distribution

function (pdf) of the smoothed field, as expected and explicitly demonstrated in the Gaussian

case where semi-analytical results are derived.

As a result of the special nature of the skeleton, the differences between f and the pdf

are small but noticeable. We find in the Gaussian case that they increase with the coherence

parameter 0 ! γ ! 1 of the field:

f (x, γ ) ≡
1

Ltot

∂L

∂x
≃

1
√

2π
e
−x2/2

[1 + 0.15γ 2
(x2 − 1) − 0.015γ 4

(x4 − 6x2 + 3)].

Here, Ltot is the total length of the skeleton and L(x) is the length of the skeleton in the

excursion ρ > σ x where σ is the variance of the density field. This result makes the skeleton

an interesting alternative probe of non-Gaussianity. Our analyses furthermore assume that the

total length of the skeleton is a free, adjustable parameter. This total length could in fact be

used to constrain cosmological models, in cosmic microwave background maps but also in

three-dimensional galaxy catalogues, where it estimates the total length of filaments in the

Universe.

Making the link with other works, we also show how the skeleton can be used to study the

dynamics of large-scale structure.

Key words: cosmology: theory – large-scale structure of Universe.

1 INTRODUCTION

The observed large-scale distribution of galaxies presents remark-

able structures, such as clusters of galaxies, filaments, sheets and

large voids. It is widely admitted that these structures grew from

⋆E-mail: d.novikov@imperial.ac.uk (DN); colombi@iap.fr (SC); olivier@

astro.princeton.edu (OD)

small initial fluctuations through gravitational instability. At very

large scale, the filamentary pattern seen in the cosmic web is

expected to be similar to that of the initial field (e.g. Bond,

Kofman & Pogosyan 1996). Because these primordial inhomo-

geneities also imprinted the temperature fluctuations seen now in

the cosmic microwave background (CMB), the characterization of

the observed large-scale structures both in galaxy catalogues and in

CMB maps can help to probe the nature of these primordial fluctua-

tions, in particular whether they have a Gaussian distribution or not.
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ABSTRACT

The skeleton formalism, which aims at extracting and quantifying the filamentary structure of

our Universe, is generalized to 3D density fields. A numerical method for computing a local

approximation of the skeleton is presented and validated here on Gaussian random fields. It

involves solving equation (H∇ρ × ∇ρ) = 0, where ∇ρ and H are the gradient and Hessian

matrix of the field. This method traces well the filamentary structure in 3D fields such as

those produced by numerical simulations of the dark matter distribution on large scales, and

is insensitive to monotonic biasing.

Two of its characteristics, namely its length and differential length, are analysed for Gaus-

sian random fields. Its differential length per unit normalized density contrast scales like

the probability distribution function of the underlying density contrast times the total length

times a quadratic Edgeworth correction involving the square of the spectral parameter. The

total length-scales like the inverse square smoothing length, with a scaling factor given by

0.21 (5.28 + n) where n is the power index of the underlying field. This dependency implies

that the total length can be used to constrain the shape of the underlying power spectrum, hence

the cosmology.

Possible applications of the skeleton to galaxy formation and cosmology are discussed. As

an illustration, the orientation of the spin of dark haloes and the orientation of the flow near

the skeleton is computed for cosmological dark matter simulations. The flow is laminar along

the filaments, while spins of dark haloes within 500 kpc of the skeleton are preferentially

orthogonal to the direction of the flow at a level of 25 per cent.

Key words: cosmology: theory – dark matter – large-scale structure of Universe.

1 INTRODUCTION

Recent galaxy surveys like 2dF (Colless et al. 2003) or Sloan Digital

Sky Survey (SDSS) (Gott et al. 2005) emphasized the complexity

of the matter distribution in the Universe which presents large-scale

structures such as filaments, clusters or walls on the boundaries of

low-density bubbles (voids). On the theoretical side, the currently

favoured scenario suggests that the Universe evolved from Gaussian

initial conditions to form the structures that are observed nowadays.

Numerical simulations have successfully captured the main features

of the observed filamentary distribution, both statistically and visu-

ally. The skeleton formalism in 2D was introduced in (Novikov,

Colombi & Doré 2006) (NCD) and aims at making possible the

extraction and analysis of these filamentary structures. This paper

⋆E-mail: sousbie@iap.fr (TS); pichon@iap.fr (CP); colombi@iap.fr (SC);

novikov@astro.ox.ac.uk (DN); pogosyan@phys.ualberta.ca (DP)

extends it to three dimensions in order to describe the Universe’s

large-scale matter distribution and its dynamical environment.

In the literature, various steps towards a quantitative descrip-

tion of the large structures have been suggested. Statistical tools

such as correlation functions (e.g. Peebles 1980) and power spectra

(e.g. Peacock 1998) have been widely used and have been success-

ful in describing matter distribution and constraining cosmological

parameter. Recently, fast algorithms have been designed for first and

second order (Szapudi et al. 2005), as well as higher order statistics

(counts in cells etc.) as in Croton et al. (2004) or Kulkarni et al.

(2007). The Minkowski functionals have also been very popular

since their first applications to matter density field topology (see

e.g. Gott, Melott & Dickinson 1986). By studying the average prop-

erties of excursion sets, they allow the extraction of characteristic

numbers that reflect the topology of the field such as the genus, com-

puted from the mean curvature of isodensity surfaces (see Hamilton,

Gott & Weinberg 1986). This approach is in fact very powerful and

has been used to test various properties of matter distribution such as

its Gaussianity in Doroshkevich (1970), Gott et al. (1986), Winitzki

C⃝ 2007 The Authors. Journal compilation C⃝ 2007 RAS

Peaks

Skeleton is given by the set of points where the gradient is aligned with local 
curvature major axis and simultaneously, second component of local curvature is 
negative

Skeleton as a probe of filamentary 2D     &    3D 



Statistical measures for 
Excursion and Critical sets

• Topological measures  
- Genus # of handles - # of isolated regions (                                ) 
- Minkowski Functionals (T. Matsubara et.al. 2013) 

- Euler characteristics  # of maxima + # of minima - # of saddle points 
- Gaussian curvature 	


•  Geometrical measures 
- Crossing statistics (Riec 1944, 1945, Ryden 1988, Rahimitabar et. al., 2001-2012, S.M. Vaez 
Allaei et. al., (2014) in progress, S.M.S. Movahed et. al. (2014), in progress)  

- Peaks theory (BBBKS (1986), Matsubara (2003-2013), S.M.S. Movahed, Javanmardi, R.K. Sheth. 

MNRAS 2013)  
- Skeletons and saddles (Novikov et. al., 2006; Pogosyan et. al. 2012) 

- Contour analysis (Kondev et. al., PRE 2000; A.A Saberi et. al. PRL, 2008; S. Hosseinabadi et.al., 
PRE 2012) 

C ≡ kdA = 4π (1− g)∫



Topology is (roughly) the study of properties invariant 
under "continuous transformation	


- Two shapes are topologically equivalent if and only if one 
shape can continuously deform to the other shape.	

e.g. Sphere, cube, pyramid are all topologically equivalent. 	

On the other hands, Sphere and torus are different from 
topological point of view. 

9/13/1393 AP, 15:00Introduction to topology
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Introduction to topology
Topology is (roughly) the study of properties invariant under "continuous transformation".

More formally:
Let S, T be sets with a structure for which the idea of continuity makes sense. e.g. Subsets of Rn, metric
spaces, ...
Then a bijection f from S to T is called a homeomorphism or topological isomorphism if both f and f-1

are continuous. We then write S  T.
In Klein's formulation, the set of all such maps from a space to itself is a group and topology is the
associated geometry.

Examples

1. A line and a curve are homeomorphic: 

2. A circle S1 and a knot K (subsets of R3) are homeomorphic -- even though one cannot be deformed

into the other (in R3). 

Strangely, R3 - S1 and R3 - K are not homeomorphic.

3. A closed (including its boundary) disc and closed unit square are homeomorphic. 

4. A sphere (the surface) and the surface of a cube are homeomorphic.

"Proof"

A brief about Topology



An important motivation:

Both of these fields have same power spectrum	

But their textures are completely different 
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Figure 7. Density of peaks as a function of threshold level for
simulated pure Gaussian CMB map and accumulated by cosmic
string component have been illustrated in this plot. Upper left:
Gµ = 2× 10−8. Upper right: Gµ = 1× 10−7. Middle left: Gµ =
8×10−7. In the middle right panel the Gaussian+String simulated
map has been replaced by a simulated Gaussian map that posses
the power spectrum like a Gaussian+String simulated map with
Gµ = 8 × 10−7. The lower panels indicate the residue between
theoretical prediction of number density and that of directly given
by simulation.

of extrema alone is not sufficient, nevertheless it is able to
pick up the footprints of CS for almost Gµ ! 5× 10−7.

This inference could be justified regarding Fig. 8. The
morphology of Gaussian+String map is completely different
from a Gaussian map that contains the same power spec-
trum as Gaussian+String map, in addition the role of su-
perimposed CS in the second map is similar to noise. Sub-
sequently one can expect that the clustering method to be
much more powerful than n(ϑ) and also can be used as a
benchmark for tracking non-Gaussianity. It is interesting to
point out that, recently, Pogosyan et.al. determined theoret-
ical formula for computing the number density of extrema on
weakly non-Gaussian 2-Dimensional field. They showed that
various non-Gaussianity could be distinguished by means of
n(ϑ) (Pogosyan et al. 2011). While here our results demon-
strated that, at least non-Gaussianity due to straight CS is
not detected by direct calculating n(ϑ). Indeed the effect
of CS components on the CMB map according to extrema
counts view is the same as noise irrespective to nature of its
probability density function.

For different values of Gµ with various values of map
size and finite Beam size we have generated ensembles of
100 maps or even more. To check the effect of finite size

Figure 8. Left panel corresponds to a Gaussian+String with
Gµ = 8 × 10−7. Right panel illustrates a Gaussian map with
size 5◦ × 5◦ and resolution equates to R = 1′. Blue dots show the
position of peaks above ϑ = 0.5σ0. One should emphasize that
these two map have same power spectrum. It is clear that the
morphology of these two map are completely different.

Figure 9. Two-Point Correlation Function of peaks for simulated
CMB map. Top panel shows the results for pure Gaussian map as
well as Gaussian+Beam for FWHM equates to 4′ and 10′ at ϑ =
1σ0. Lower panel corresponds to peak-peak correlation function
for Gaussian+Beam with FWHM of beam is 4′ for various values
of ϑ. The map size is 10◦ with resolution R = 1′.

of simulated map and evaluation the reliability of numeri-
cal results, we increased the number of ensemble members
and the size of maps. We use Eq. (7) to compute TPCF for
various maps with size 10 degree and resolution 1 arcmin
(600 × 600 pixels). Fig. 9 indicates the results for Gaus-
sian CMB map. Upper panel of this figures corresponds to
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Figure 9. Two-Point Correlation Function of peaks for simulated
CMB map. Top panel shows the results for pure Gaussian map as
well as Gaussian+Beam for FWHM equates to 4′ and 10′ at ϑ =
1σ0. Lower panel corresponds to peak-peak correlation function
for Gaussian+Beam with FWHM of beam is 4′ for various values
of ϑ. The map size is 10◦ with resolution R = 1′.

of simulated map and evaluation the reliability of numeri-
cal results, we increased the number of ensemble members
and the size of maps. We use Eq. (7) to compute TPCF for
various maps with size 10 degree and resolution 1 arcmin
(600 × 600 pixels). Fig. 9 indicates the results for Gaus-
sian CMB map. Upper panel of this figures corresponds to

M
ov

ah
ed

 e
t.a

l, 
M

N
R

A
S 

20
13

l

l(
l+

1
)C

l
/2
/

(µ
K

)2

2500 5000 7500
100

101

102

103

104

Gaussian G+S
G+S



Why is topology so important?

To answer to this question let me explain PDF and 
correlation function 	

- PDF shows the abundance of features 	

while 	

-correlation corresponds to probability of finding 
features with a condition 	

!

To distinguish between various stochastic fields 
mentioned tools are not enough 



Probabilistic frameworks

- Beside the mathematical definition of some criteria, in 
principle, it is possible to derive them in probabilistic 
frameworks	

!

- One most relevant motivation for such approaches is 
that, it facilitates to compare computational and 
theoretical predictions  
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Theoretical approach

One-point statistics

Two-point statistics



1D= no. of crossing 	


2D= mean length of iso-density contour

3D= mean surface of iso-density region 

Crossing from Mathematics
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FIG. 5. Sketch of joint probability density function of a typi-
cal fluctuation and its derivative with respect to correspond-
ing dynamical parameter (position) in the level crossing the-
ory. The shaded area indicates the total probability of finding
crossing with positive slope at level H⇧ = ↵. (The main idea
for this plot has been inferred form Risken? )

of for which its memories have been destroyed by shuf-
fling method. For isotropic Gaussian rough surface we
have:

N⇧
tot(q) =

�1

�0

2
q

2�1

⇡
�

✓
1 + q

2

◆
, q > �1 (22)

For correlation length anisotropic Gaussian surface (Eq.
(16)), we have:

N⇧
tot(q) =

kc2
q

2�1

⇡
p
H � 1⇠⇧

�

✓
1 + q

2

◆
, q > �1 (23)

and for scaling exponent anisotropic Gaussian surface
(Eq. (18)), the value of N⇧

tot(q) reads as:

N⇧
tot(q) =

kc2
q

2�1

⇡
p
H⇧ � 1⇠⇧

�

✓
1 + q

2

◆
, q > �1 (24)

The upper panel of Fig. 6 shows isotropic Gaussian
rough surface. The filled circle symbols in the lower
panel of this figure correspond to numerical computation
of ⌫+(↵) while the solid line is calculated by Eq. (12)
which is theoretical prediction for ⌫+(↵) as a function of
↵. Our results demonstrate that there exists a good con-
sistency between numerical and theoretical prediction.
In the following sections, we are going to derive the

⌫+⇧ (�,↵) for height fluctuations in the two distinct direc-
tions and then by comparing them we try to find a robust
criterion to distinguish the isotropic and anisotropic sur-
face due to growth mechanisms.
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FIG. 6. Upper panel: Isotropic Gaussian rough surface. Mid-
dle panel: Level crossing analysis for the isotropic Gaussian
rough surfaces. Lower panel is N⇧

tot

(q) for isotropic Gaussian
rough surface.The red line represents theoretical prediction
and filled circles correspond to numerical computation.

IV. RESULTS AND DISCUSSION

After generating a typical rough surface via synthetic
method or preparing one in an experiment, an impor-
tant question is that, whether a preferred direction to
be existed in the underlying rough surface. In other
words, suppose we have an arbitrary feature of the rough
surface which call it A(r) (in this paper we suppose
A(r) ⌘ H(r)). Statistical isotropy causes A(r) to be

S.M. Vaez Alaei e. al., (in progress)

Homogeneous and Isotropic field
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FIG. 1. Sketch showing the Monte Carlo modeling set-up
for an ion-beam sputtering. As described in the text, an ion
beam trajectory makes an angle ✓ with the axes z, and the
projection of the ion-beam direction on the x�y plane, makes
an angle of �

exp

relative to the x axis. Anisotropic direction
is perpendicular to the x� y projection of the ion-beam.

III. METHODOLOGY: LEVEL CROSSING
ANALYSIS

As we will explain, in this paper we are interested
in finding a criterion to distinguish the isotropic and
anisotropic rough surfaces, consequently, the level cross-
ing method will be introduced in the two-Dimensions
(2D) framework. In order to make more sense for further
usage we introduce level crossing method with following
steps:

Step1: Definition of variables: Suppose that for a
rough surface in 2D, height of the fluctuations is repre-
sented by H(r) at coordinate r = (i, j) with resolution �
and size L⇥L (see Fig. 3). It is not compulsory that the
size of width and height of underlying rough surface to
be same. For convenience, suppose that the origin of the
coordinate system is placed at the center of rough sur-
face. We assign height fluctuations by H(xi, yi), where
xi and yi demonstrate the coordinate position through
the basis vectors namely, x and y, respectively. In this
case we have �L/2 < (xi, yi) < L/2 for the square shape
of rough surface.

Step2: Preparing data sets: We cut two categories
of slices for height fluctuation in two separate and orthog-
onal directions which are so-called u and w. It must point
out that these two direction are produced by rotation
counterclockwise with respect to the origin of coordinate
through the angle �. For � = 0 the common axes to be
retrieved. To make obvious, we called the (1 + 1)D fluc-
tuations throughout these direction as Hw(�;n,m) and
Hu(�;n,m). Here n refers to the nth slice throughout
the w or u directions. The size of these (1 + 1)D sig-
nals depend on the resolution and the direction of slicing
of underlying rough surface. The upper panel of Fig. 4
shows a schematic of (1+1)�D slice of underlying rough
surface. If H(r) to be invariant under Eulerian rotation,

y
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u

φ
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FIG. 2. Upper: Isotropic simulated rough surface for ✓ = 0�

and �

exp

= 0�. Moddel: An preferred direction for ✓ = 25�

and �

exp

= 23� exists for simulated surface. Lower panel
corresponds to simulated anisotropic rough surface for ✓ =
50� and �

exp

= 0�
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invariant under Eulerian transformation, namely:

hA(r)i = hA(Rr)i (25)

here R represents the rotation matrix. In Euclidean
space, the new coordinate in rotated xy-plane counter-
clockwise through the angle � about the origin of co-
ordinate are given by: w = x cos(�) + y sin(�) and
u = x sin(�) � y cos(�). As mentioned before, we are
looking for finding a criterion to quantify the probable
anisotropy embedded in rough surface. To this end, we
apply the level crossing method to calculate ⌫+⇧ and N⇧

tot

of our synthetic rough surfaces and try to find the prob-
able preferred direction. The systematic way to search
the probable anisotropy in the rough surface is done by
a Bayesian function as follows

P(�, q|F) =
L(F|�, q)P (�)R L(F|�, q)P (�)d�

(26)

where F : {N⇧
tot(�, q)} and � is the rotational angle and

q is the order of moment used for determining modified
roughness. P (�) is the prior for selecting � and L is
so-called likelihood function. Usually, in the absence of
initial degree of believe for �, the above equation be-
comes a simple likelihood analysis. Based on the ansatz
L ⇠ exp(Q2/2), the likelihood to be maximised when the
following quantity becomes maximize:

Q2(�, q) ⌘
NX

n=1

[Nw
tot(n;�, q)�Nu

tot(n;�, q)]
2

[�2
w(n;�, q) + �2

u(n;�, q)]
(27)

here �⇧(n;�, q) denotes the error bar of generalized total
upcrossing and n runs from 1 to total number of sam-
ple’s profiles. Since we are looking for � for which, the
biggest di↵erence to be detected so we compute Q2(�, q)
as a function of � for each value of q. Upper panel of
Fig. 7 shows the uncrossing as a function of level for two
arbitrary perpendicular directions in a isotropic rough
surface. While the lower panel corresponds to the same
quantity just for anisotropic rough surface. In this plot,
we select u and w axis in the maximum anisotropic di-
rection imposed in synthetic rough surface. As we ex-
pected, ⌫+↵ ’s for various one-dimensional cutting exhibit
similar behaviour, while for anisotropic morphology we
got di↵erent results for various directions. Fig. 8 shows
Q2(�) for q = 0 as a function of � for a mentioned
anisotropic rough surface simulated based on IBS method
with � = 23�. It has demonstrated that there are two
peaks around � ⇠ 23� and � ⇠ 23� + 90�.
In order to quantify degree of anisotropy in underly-

ing rough surface and find reliable results we should in-
vestigate the statistical deviation between Nu

tot(�, q) and
Nw

tot(�, q). The significance of mentioned deviation, is
systematically performed by calculating Student’s t�test
for equal sample size and unequal mean and variance for
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FIG. 7. Upper panel shows the upcrossing analysis for com-
pletely isotropic rough surface for two arbitrary directions.
Lower panel corresponds to ⌫
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↵

as a function of level for
anisotropic rough surface for two anisotropic directions.
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FIG. 8. The value of Q2 as a function of � for anisotropic
rough surface shown in Fig. 2 with � = 23�.

each q’s and � according to:

t(�, q) = [Nu
tot(�, q)�Nw

tot(�, q)]

⇥
s

Nrun

�2
u(�, q) + �2

w(�, q)
(28)

here Nrun indicates the number of ensemble which
is equal to n introduced in section III. The
so-called P�value, p(�, q), corresponds to t(�, q)
for m = 2Nrun � 2 degrees of freedom is
determined by two-tailed hypothesis: p(�, q) =

2
R1
t(�,q)

�((m+1)/2)
�(m/2)

1p
m⇡

⇣
1 + x2

m

⌘�(m+1)/2
dx. The chi-
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FIG. 1. Sketch showing the Monte Carlo modeling set-up
for an ion-beam sputtering. As described in the text, an ion
beam trajectory makes an angle ✓ with the axes z, and the
projection of the ion-beam direction on the x�y plane, makes
an angle of �

exp

relative to the x axis. Anisotropic direction
is perpendicular to the x� y projection of the ion-beam.

III. METHODOLOGY: LEVEL CROSSING
ANALYSIS

As we will explain, in this paper we are interested
in finding a criterion to distinguish the isotropic and
anisotropic rough surfaces, consequently, the level cross-
ing method will be introduced in the two-Dimensions
(2D) framework. In order to make more sense for further
usage we introduce level crossing method with following
steps:
Step1: Definition of variables: Suppose that for a

rough surface in 2D, height of the fluctuations is repre-
sented by H(r) at coordinate r = (i, j) with resolution �
and size L⇥L (see Fig. 3). It is not compulsory that the
size of width and height of underlying rough surface to
be same. For convenience, suppose that the origin of the
coordinate system is placed at the center of rough sur-
face. We assign height fluctuations by H(xi, yi), where
xi and yi demonstrate the coordinate position through
the basis vectors namely, x and y, respectively. In this
case we have �L/2 < (xi, yi) < L/2 for the square shape
of rough surface.
Step2: Preparing data sets: We cut two categories

of slices for height fluctuation in two separate and orthog-
onal directions which are so-called u and w. It must point
out that these two direction are produced by rotation
counterclockwise with respect to the origin of coordinate
through the angle �. For � = 0 the common axes to be
retrieved. To make obvious, we called the (1 + 1)D fluc-
tuations throughout these direction as Hw(�;n,m) and
Hu(�;n,m). Here n refers to the nth slice throughout
the w or u directions. The size of these (1 + 1)D sig-
nals depend on the resolution and the direction of slicing
of underlying rough surface. The upper panel of Fig. 4
shows a schematic of (1+1)�D slice of underlying rough
surface. If H(r) to be invariant under Eulerian rotation,
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FIG. 9. The significance of di↵erence given by p-value analysis
for anisotropic rough surface shown in Fig. 2 with � = 23�.

square for mentioned P-value reads as:

�2(�) = �2
q
maxX

q=q
min

ln p(�, q) (29)

Finally, by using chi-square distribution function for

µ ⌘ 2
⇣

q
max

�q
min

�q

⌘
� 2 degrees of freedom, final P-value,

Pfinal(�), associated to the �2(�) will be computed as:

Pfinal(�) = 1� 1

2µ/2�(µ/2)

Z �2(�)

0
e�x/2xµ/2�1dx (30)

For 3� significance level namely Pfinal(�) < 0.0027, we
can conservatively say that there exists a significance dif-
ference between two upcrossing quantities for two direc-
tions, u and w at given �. Fig. 9 represents the P-value
for anisotropic rough surface used in Fig. 8.

V. CONCLUSION

should be revised In this work, we relied on the so-
called level crossing analysis to identify one of the most
important property of rough surfaces, namely statisti-
cal isotropy. Based on crossing analysis, as a robust
method, we introduced characteristic wavelength, ⌫+⇧ and
generalized total uppcrossing, N⇧

tot quantities for 1 + 1-
dimensional cuts of underlying surface height. We sim-
ulate synthetic isotropic and anisotropic rough surfaces
in the context of *************************. By rotat-
ing the two perpendicular basis axes around the origin
of coordinate about �, the mentioned quantities to be
calculated. We gust that N⇧

tot could play the role of a
criterion to discriminate statistical isotropic with respect
to anisotropic ones. To this end, we inferred significance
of given deviation of N⇧

tot in u and w directions by using
so-called p�value definition.

Acknowledgments:

1 M. Navez, C. Sella, and C. Chaperot, Compte. Rend. 254,
240 (1962);

2 S. Habenicht, W. Bolse, K. P . Lieb, and K. Reimann,
Phys. Rev. B, 60, R2200 (1999).

3 U Valbusa, C Boragno, and F Buatier de Mongeot, J.
Phys.: Condens. Matter 14, 8153 (2002).

4 F. Frost, B. Ziberi, A. Schindler and B. Rauschenbach,
App. Phys. A: Materials Science & Processing, 91, 4
(2008).

5 R. Kree, T. Yasseri and A. K. Hartmann, Nucl. Ins. Meth.
in Phys. B 267, 1403 (2009).

6 T Yasseri, and R. Kree, Nucl. Ins. Meth. in Phys. B 268,
2496 (2010).

7 Maynard A. D., Aitken R. J., Butz T., Colvin V., Don-
aldson K., Oberdrster G., Philbert M. A., Ryan J., Seaton
A., Stone V., et al., Nature 444. 267 (2006).
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invariant under Eulerian transformation, namely:

hA(r)i = hA(Rr)i (25)

here R represents the rotation matrix. In Euclidean
space, the new coordinate in rotated xy-plane counter-
clockwise through the angle � about the origin of co-
ordinate are given by: w = x cos(�) + y sin(�) and
u = x sin(�) � y cos(�). As mentioned before, we are
looking for finding a criterion to quantify the probable
anisotropy embedded in rough surface. To this end, we
apply the level crossing method to calculate ⌫+⇧ and N⇧

tot

of our synthetic rough surfaces and try to find the prob-
able preferred direction. The systematic way to search
the probable anisotropy in the rough surface is done by
a Bayesian function as follows

P(�, q|F) =
L(F|�, q)P (�)R L(F|�, q)P (�)d�

(26)

where F : {N⇧
tot(�, q)} and � is the rotational angle and

q is the order of moment used for determining modified
roughness. P (�) is the prior for selecting � and L is
so-called likelihood function. Usually, in the absence of
initial degree of believe for �, the above equation be-
comes a simple likelihood analysis. Based on the ansatz
L ⇠ exp(Q2/2), the likelihood to be maximised when the
following quantity becomes maximize:

Q2(�, q) ⌘
NX

n=1

[Nw
tot(n;�, q)�Nu

tot(n;�, q)]
2

[�2
w(n;�, q) + �2

u(n;�, q)]
(27)

here �⇧(n;�, q) denotes the error bar of generalized total
upcrossing and n runs from 1 to total number of sam-
ple’s profiles. Since we are looking for � for which, the
biggest di↵erence to be detected so we compute Q2(�, q)
as a function of � for each value of q. Upper panel of
Fig. 7 shows the uncrossing as a function of level for two
arbitrary perpendicular directions in a isotropic rough
surface. While the lower panel corresponds to the same
quantity just for anisotropic rough surface. In this plot,
we select u and w axis in the maximum anisotropic di-
rection imposed in synthetic rough surface. As we ex-
pected, ⌫+↵ ’s for various one-dimensional cutting exhibit
similar behaviour, while for anisotropic morphology we
got di↵erent results for various directions. Fig. 8 shows
Q2(�) for q = 0 as a function of � for a mentioned
anisotropic rough surface simulated based on IBS method
with � = 23�. It has demonstrated that there are two
peaks around � ⇠ 23� and � ⇠ 23� + 90�.
In order to quantify degree of anisotropy in underly-

ing rough surface and find reliable results we should in-
vestigate the statistical deviation between Nu

tot(�, q) and
Nw

tot(�, q). The significance of mentioned deviation, is
systematically performed by calculating Student’s t�test
for equal sample size and unequal mean and variance for
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here Nrun indicates the number of ensemble which
is equal to n introduced in section III. The
so-called P�value, p(�, q), corresponds to t(�, q)
for m = 2Nrun � 2 degrees of freedom is
determined by two-tailed hypothesis: p(�, q) =
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square for mentioned P-value reads as:

�2(�) = �2
q
maxX

q=q
min

ln p(�, q) (29)

Finally, by using chi-square distribution function for
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⇣

q
max

�q
min

�q

⌘
� 2 degrees of freedom, final P-value,

Pfinal(�), associated to the �2(�) will be computed as:

Pfinal(�) = 1� 1

2µ/2�(µ/2)
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0
e�x/2xµ/2�1dx (30)

For 3� significance level namely Pfinal(�) < 0.0027, we
can conservatively say that there exists a significance dif-
ference between two upcrossing quantities for two direc-
tions, u and w at given �. Fig. 9 represents the P-value
for anisotropic rough surface used in Fig. 8.

V. CONCLUSION

should be revised In this work, we relied on the so-
called level crossing analysis to identify one of the most
important property of rough surfaces, namely statisti-
cal isotropy. Based on crossing analysis, as a robust
method, we introduced characteristic wavelength, ⌫+⇧ and
generalized total uppcrossing, N⇧

tot quantities for 1 + 1-
dimensional cuts of underlying surface height. We sim-
ulate synthetic isotropic and anisotropic rough surfaces
in the context of *************************. By rotat-
ing the two perpendicular basis axes around the origin
of coordinate about �, the mentioned quantities to be
calculated. We gust that N⇧

tot could play the role of a
criterion to discriminate statistical isotropic with respect
to anisotropic ones. To this end, we inferred significance
of given deviation of N⇧

tot in u and w directions by using
so-called p�value definition.
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Perturbative parts in D-dimension Isotropic field



1) In principle Genus is 	

 G3= # of handles to the surface - # of holes enclosed by the surface	

 G3= # of handles of contours - # of isolated contours	

 G2= # of contours around higher dense region - # of contours around 	

         lower dense region	

!
!
!
!
!
!
!
2) It is related to Gaussian curvature of surface as:	

!
!

G=0                        G=1                          G=3

Genus from Mathematics



!
!
3) If there is no information about Gaussian curvatures, Euler characteristic can be 
used for determining Genus as:	


Genus from Mathematics

Multi-connected field has G>0



G(ν) = −
1
2
Θ(δ − νσ 0 )δD (η1)δD (η2 ) η3 Θ(η3)(ξ11ξ22 − ξ12

2 )

= G(ν) G + Perturbation parts Non−Gaussian,Anisotropic

G(ν) = −
1
2
Θ(δ − νσ 0 )δD (η1)δD (η2 ) η3 Θ(η3)(ξ11ξ22 − ξ12

2 )

= G(ν) G + Perturbation parts Non−Gaussian,Anisotropic

T. Matsubara, APJ 2003; S. Codis et. al., 1305.7402

Euler characteristic from Statistics

Intuitive definition 



T. Matsubara, APJ 2003; S. Codis et. al., 1305.7402

Genus from Statistics



1) The Euler Characteristic is something 
which generalises Euler's observation of 
1751 (in fact already noted by Descartes 
in 1639) that on "triangulating" a sphere 
into F regions, E edges and V vertices 
one has V - E + F = 2.	


2) In addition the value of Euler 
characteristic does not depend on how 
tessellation is done	


3) Euler for Sphere is equal to 2 

Euler characteristic from mathematics

Leonhard Euler (1707-1783) 

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Descartes.html


Genus from Gaussian and NG fields 3D

i

G

-5 -4 -3 -2 -1 0 1 2 3 4

-1

-0.5

0

0.5

1

1.5

2

2.5

Gaussian
NG negative
NG plus

G(i)= G
0

(1-i2
)exp(-i2

/2)
N    
P    



Topology of our Universe

The Astrophysical Journal Supplement Series, 212:22 (19pp), 2014 June Kim et al.

Figure 6. Change of the fitting coefficients with the standard deviation of the

matter density field. Here, we use the definitions, α ≡ Aaσ 2
0
,β ≡ Abσ0, γ ≡

Acσ 2
0
, δ ≡ Adσ0.

(A color version of this figure is available in the online journal.)

words, the significant discrepancy between the gravitational

effects found in the simulation and the Matsubara’s prediction is

mainly due to the lack of even functions in the analytic formula.

The rms density fluctuation on RG = 15, 22, and 34 h−1 Mpc

scales is 0.2604, 0.1763, and 0.1080, respectively (see Table 2).

The agreement becomes much better for RG = 100 h−1 Mpc

when σ0 = 0.0243 (see the blue curves in Figure 5).

We overplot the best fit model (smooth curves) in the top

panel of Figure 5 to demonstrate that our model describes the

gravitational evolution much more accurately than Matsubara’s.

Since our simulated genus is different from the analytical

prediction, we take one more step to cross-check the dependence

of the genus on σ0 in Equation (9). We use the HR2 simulation

cube data at four redshifts (z = 2, 1, 0.5, and 0) to measure σ0 and

the genus and fit the genus with Equation (9). The behavior of

the coefficients of the Hermite polynomials is shown in Figure 6.

During the measurement, we use the simplified coefficients

such as α ≡ Aaσ 2
0

and γ ≡ Acσ 2
0
. The figure shows that

the coefficients for H0 and H2 have quadratic dependence on

σ0, validating our fitting model. This means that we need not

only a linear order term in σ0 but also the second-order terms.

Therefore, adding one more term to the perturbation theory up

to the second order in σ0 will produce a significantly better fit

to the simulated data.

4.3. Redshift Space Distortion

In order to quantify the RSD effects on the genus curve, we

compute the genus of the matter and halo density fields in real

and redshift spaces. We again use the smallest possible pixel size

(21603 mesh for matter and 21003 mesh for halos) to minimize

any unwanted systematic effects. In Table 6 in the Appendix,

the genus curves are given as a function of ν.

Matsubara (1996) derived an analytical expression for the

RSD effects on the genus curve in the linear regime as follows:

Gz(ν) = 3
√

3

2

√
C(1 − C)Gr (ν), (10)

Figure 7. Genus curves in redshift (dashed) and real (solid lines) spaces for

matter (top) and halo (bottom panel) density fields at three smoothing scales,

RG = 15 (black), 22 (red), and 34 h−1 Mpc (green). The redshift distortion

reduces the genus amplitude in both matter and halo samples. Halo is less

susceptible to redshift distortion.

(A color version of this figure is available in the online journal.)

where Gz(ν) and Gr (ν) are the genus curves in redshift space

and real space, respectively, and C ≡ C1/C0. According to

Matsubara (1996),

Cj ≡ 1

2

∫
1

−1

dµµ2j
(1 + f b−1µ2

)
2, (11)

where b is the constant bias factor, f ≡ d ln D/d ln a, D is

the growth factor, and a is the cosmic expansion parameter.

This formula suggests that the RSD does not change the shape

of the genus curve but reduces its amplitude. This linear theory

prediction does not agree well with our results on the smoothing

scales we study, as shown below.

In Figure 7, we plotted genus curves in real (solid) and redshift

(dashed lines) spaces. In the top panel, we plotted genus curves

for matter density field at z = 0. As one can see, the genus

amplitude in the high density regions increases slightly more

than in the low density regions. The halo density field shows

a smaller amplitude drop than the matter density field, which

implies that halos, being the massive objects, are less susceptible

to RSD than matter.

With the definition of ∆GRSD ≡ Gz − Gr, we quantify the

effects of RSD and fit the results with the fitting function

∆GRSD(ν) = Ae−ν2/2
[aH0(ν) + bH1(ν) + cH2(ν) + dH3(ν)],

(12)
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ABSTRACT

The large-scale structure of the universe is a useful cosmological probe of primordial non-Gaussianity and the

expansion history of the universe because its topology does not change with time in the linear regime in the

standard paradigm of structure formation. However, when the topology of iso-density contour surfaces is measured

from observational data, many systematic effects are introduced due to the finite size of pixels used to define the

density field, nonlinear gravitational evolution, redshift space distortion, shot noise (discrete sampling), and bias in

the distribution of the density field tracers. We study the various systematic effects on the genus curve to a great

accuracy by using the Horizon Run 2 simulation of a ΛCDM cosmology. We numerically measure the genus curve

from the gravitationally evolved matter and dark matter halo density fields. It is found that all the non-Gaussian

deviations due to systematic effects can be modeled by using a few low-order Hermite polynomials from H0 to H4.

We compare our results with analytic theories whenever possible, and find many new terms in the Hermite series

that are making significant contributions to the non-Gaussian deviations. In particular, it is found that the amplitude

drop of the genus curve due to the nonlinear gravitational evolution can be accurately modeled by two terms, H0

and H2, with both coefficients proportional to σ 2
0
, the mean-square density fluctuation.

Key words: cosmology: observations – large-scale structure of universe – methods: numerical
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1. INTRODUCTION

The topology of the large-scale structure (LSS) of the universe

has long been used as a probe of non-Gaussianity of primordial

density fluctuations (Gott et al. 1986; Matsubara 1994; Park

et al. 2005; Hikage et al. 2006, 2008). It has also recently been

suggested that the LSS topology could be used as a cosmological

invariant which can be used in turn to reconstruct the expansion

history of the universe (Park & Kim 2010; Zunckel et al. 2011;

Wang et al. 2012; Blake et al. 2014; Speare et al. 2013). The

cosmological genus statistic has been the most popular measure

of LSS topology and is used to constrain the primordial non-

Gaussianity (Y.-Y. Choi et al., in preparation), galaxy formation

mechanism, and cosmology (Park et al. 2005; Choi et al. 2010;

Way et al. 2011 among many others).

The genus, as applied in cosmology, quantifies the connectiv-

ity of iso-density or iso-temperature contour surfaces of smooth

matter density or the cosmic microwave temperature field and

is equal to −1/2 times the Euler characteristic of the surface or

equivalently a linear combination of the Betti numbers of the

excursion sets, topological invariants of figures that can be used

to distinguish topological spaces (see Park et al. 2013 for the

relations among the genus, Euler characteristic, and the Betti

numbers in two and three dimensions). The genus is also one of

the parameters characterizing the geometry of figures called the

Minkowski functionals (Mecke et al. 1994; Pratten & Munshi

2012; Hikage et al. 2006, 2008).

In the analysis of the topology of the observed LSS, as in

many other cases, the genus measured directly from the obser-

vational data contains large systematic effects. It is thus critically

important to accurately estimate the systematic effects and sta-

tistical uncertainties in order to draw any sensible conclusions.

An example of extreme care of various systematic effects on the

genus is the work by Choi et al. (2010, 2013), where, in addition

to sophisticated correction for the radial and angular selection

effects in the observational data, a number of mock surveys

performed within a large cosmological simulation mimicking

the actual observation in detail are used to simulate the sys-

tematic effects produced by nonlinear gravitational evolution,

redshift space distortion (RSD), shot noise in the smoothed den-

sity field, bias in the distribution of galaxies with respect to the

underlying matter density field and the finite size of the pixels

used to build the density field. Without taking these effects into

account, one would make completely incorrect conclusions on

the interpretation of the deviation of the measured genus curve

from the Gaussian predictions. Primordial non-Gaussianity can

only be studied through statistical comparison of observations

with the accurately modeled mock survey samples in a simu-

lated universe with well-defined initial conditions. Therefore,

mock survey samples drawn from large-volume cosmological

simulations are an essential element of topology analysis of LSS

that enables one to model all the systematics and to correctly

estimate the statistical uncertainties in the derived cosmological

parameters.

There have been a number of studies that tried to esti-

mate some of these systematic effects individually. The fi-

nite pixel size effects have been analytically studied for the

three-dimensional genus by Hamilton et al. (1986) and the two-

dimensional genus by Melott et al. (1989). Melott et al. (1988)

and Park & Gott (1991) numerically studied the combined ef-

fects of the nonlinear gravitational evolution and galaxy biasing.

An analytic formula for the effects of nonlinear gravitational

evolution has been found by Matsubara (1994, 2003) using

the second-order perturbation theory, which was confirmed by

1

1) Topological consideration is consistent with 
Gaussian field	


2) At median density, topology of our local universe 
is swiss-cheese	


3) At large threshold, the topology belongs to 
meatball  



Minkowski Functionals

1D field

2D field



Minkowski Functionals	

General case



Minkowski functionals



Clustering of Peaks and crossing in 2D stochastic field

To this end we should introduce peaks
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Theoretical approach for clustering (1+2D)	

Number density of Peaks  

• We are interested in investigating local extrema on the 
CMB as one of most famous stochastic field	


• To this end we should evaluate number density of peaks:

Peak-Peak correlation function of CMB map in the presence of cosmic strings 5

To compute number density of extrema of a typical 2D
Gaussian stochastic field, according to notation introduced
by Rice ( Rice 1954) and (Peacock and Heavens 1985), the
multivariate distribution function of 6 variables for a Gaus-
sian process reads as:

p(W⃗) =

√
1

(2π)6detM e−
1
2 (WT .M−1.W) (10)

where M is the covariance matrix of underlying variables.
Therefore number density of extrema for a purely Gaussian
CMB map in the range of [ϑ,ϑ+ dϑ] is n(ϑ)dϑ and is given
by:

n(ϑ) =

∫
p(W⃗|Fi = 0) |detFij | dW⃗ (11)

Above expression can be integrated analytically in the Gaus-
sian case and becomes (Bond and Efstathiou 1987):

n(ϑ) =
1

(2π)3/2γ2
e−ϑ2/2G(Ψ,Ψϑ) (12)

where

G(Ψ,Ψϑ) ≡ (Ψ2ϑ2 −Ψ2)

{
1− 1

2
erfc

[
Ψϑ√

2(1−Ψ2)

]}

+Ψϑ(1−Ψ2)
e
− Ψ2ϑ2

2(1−Ψ2)

√
2π(1−Ψ2)

+
e
− Ψ2ϑ2

3−2Ψ2

√
3− 2Ψ2

{
1− 1

2
erfc

[
Ψϑ√

2(1−Ψ2)(3− 2Ψ2)

]}

(13)

in which erfc(:) stands for complementary error function. Ac-
cording to notation explained in ref. (Bond and Efstathiou
1987) and by using Eqs. (9), the so-called spectral parame-

ters Ψ and γ in Eqs. (12) and (13) are defined by: Ψ ≡ σ2
1

σ0σ2

and γ ≡
√
2σ1
σ2

. The number density of peaks in a 2D Gaus-
sian map as a function of ϑ has been plotted in the upper
panel of Fig. 3 for various values of spectral parameters.
We also compute the number density of our simulated pure
Gaussian CMB map (see next section for more details) and
illustrated in the lower panel of Fig. 3.

The probability of finding two peaks separated by dis-
tance r, ∆P12(r) (Eq. (3)), can be expressed by using joint
probability distribution function (JPDF) , namely (Bardeen
et al. 1986; Lumsden et al. 1989; Heavens and Sheth 1999;
Heavens and Gupta 2001):

∆P12(r) =

∫
p(W⃗(r);F1

i = 0,F2
i = 0)

×
∣∣detF1

ij

∣∣ ∣∣detF2
ij

∣∣ dF1dF2dF1
ijdF2

ij (14)

where W⃗(r) = {W⃗1(r1), W⃗2(r2)}, r = |r1 − r2| and the sub-
script numbers correspond to first and second peaks in cal-
culating TPCF. Finally TPCF of peaks at a given threshold
value, ϑ becomes:

1 + ξ12(r) =
∫
p(W⃗(r);F1

i = 0,F2
i = 0)

∣∣detF1
ij

∣∣ ∣∣detF2
ij

∣∣ dF1dF2dF1
ijdF2

ij

n2(ϑ)∆A1∆A2

(15)

It must point out that the range of integrations are adjusted
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Figure 4. Angular power spectrum of various parts of tempera-
ture fluctuations map. Solid line is given by CAMB software for
the best fit values of ΛCDM based on 7-year WMAP data. Symbol
corresponds to a simulated Gaussian map with resolution equates
to one arc-minute and size 10◦. Long-dashed line indicate the con-
tribution of cosmic strings for a typical value of Gµ = 8× 10−8.

The power-law behavior of cosmic string, ℓ(ℓ+1)Cℓ ∼ ℓ−0.90+0.05
−0.05

is shown by dashdot line. The behavior of finite size of beam and
kinetic Sunyaev-Zel’dovich effects are illustrated by dashed and
dotted lines, respectively. In this plot the typical value of beam
size is FWHM= 20′.

by means of condition of having peaks in a 2D field. In Refs.
Heavens and Sheth (1999); Heavens and Gupta (2001) such
integral has been computed numerically for Gaussian CMB
map for various values of density components at different
levels.

3 SIMULATION OF MOCK CMB MAP

This section is devoted to map simulation procedure for gen-
erating temperature fluctuation at the last scattering sur-
face (Perivolaropoulos 1993; Movahed and Khosravi 2011).
At first, our code creates pure Gaussian fluctuations corre-
sponding to the standard inflationary model with ΛCDM
components in the flat universe. However, our program can
be easily modified to other cosmological models for this pur-
pose. Secondly, anisotropies produced by straight cosmic
string based on the Kaiser-Stebbins effect are created at dif-
ferent patches from last scattering surface up to now. The
superposition of Gaussian and cosmic strings anisotropies as
well as adding expected instrumental noise and beam effect
are done in the third part of the program. Finally, peak-peak
correlation by using ensemble averages will be calculated.

3.1 Synthesis Gaussian CMB map

For making Gaussian maps, we use ΛCDM model and the
best fit values have been inferred based on the most recent
observations such as WMAP-7, Supernova type Ia (SNIa)
and Sloan Digital Sky Survey (SDSS) with the most familiar
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size Θ2 > Θ1 is simulated and the desired map is considered
to be at the center of this window. In order to compute the
distance between two features(peaks), one chooses the first
one from the inside of the smaller square and the second
one from anywhere in the map. With this method, there is
no boundary effect for distance r ! (Θ2 − Θ1)/2 (Fatemi-
Ghomi et al. 1999). On the other hand to take mentioned
problem into account as well as to reduce the contribution
of noises, other estimators have been introduced (Landy and
Szalay 1993). Two most famous estimators are defined as:

ξN (r) ≡
(
DD
RR

)
NR(NR − 1)
ND(ND − 1)

− 1 (6)

and

ξLS(r) ≡
(
DD
RR

)
NR(NR − 1)
ND(ND − 1)

−
(
DR
RR

)
NR(NR − 1)

NDNR
+ 1

(7)
where ξN is the natural estimator and ξLS introduced by
Landy & Szalay (1993). The ”DD”, ”RR” and ”DR” stand
for the number of pairs in real data set, the number of pairs
in random data and the cross-correlation of pairs in real and
random maps, respectively. In addition NR is the number of
desired features in un-clustered map. To reduce the noise
effect it is recommended to take NR > ND. Throughout this
study we use ξLS(r) as a criterion to determine TPCF.

Up to now we introduced some estimators for determin-
ing TPCF of an arbitrary feature in underlying stochastic
field. Now we focus on the two-point correlation of peaks
above a certain threshold value, ϑ, in the temperature fluc-
tuations at the last scattering surface. We define the tem-
perature fluctuations field by F(r) ≡ [T (r)−⟨T (r)⟩]/⟨T (r)⟩.
For a map with size less than 60◦ we have r : (x, y). Since
we are interested in peaks as features in the CMB map,
we should determine the conditions to have a local max-
imum. To this end, the first derivatives Fi ≡ ∂F

∂xi
should

be zero and the Hessian matrix Fij ≡ ∂2F
∂xi∂xj

(which is

symmetric for our smooth field) must be negative defi-
nite. Based on these conditions, to clarify the location of
peaks we should specify six independent variables, namely:
W⃗ = {F ,Fx,Fy,Fxx,Fxy,Fyy}. In this paper we checked
them numerically to find the position of peaks. To ensure
that our algorithm works well, we compute some statistical
properties for a Gaussian stochastic field and compare them
with analytical predictions.

For a pure Gaussian random field, by definition n-point
correlation functions for even n can be expressed by 2-point
correlation and all odd n are identically zero. The correlation
function in the vicinity of violation of statistical isotropy and
homogeneity in 2D is:

⟨F(r+ u)F(r)⟩ = 1
(2π)2

∫
S(|k|)e−ik·uW (ku)dk (8)

here S(|k|) is so-called spectral density and W (ku) is a typi-
cal window function using for smoothing underlying discrete
field. The moments of underlying random field as well as its
derivatives are:

σ2
0 ≡

〈
F(r)2

〉
=

1
(2π)2

∫
S(|k|)dk

σ2
n ≡

〈(
∂nF(r)
∂xn

)2
〉

=
1

(2π)2

∫
k2nS(|k|)dk (9)

Figure 2. A sample distribution of peaks in a simulated CMB
map. To avoid boundary problem we choose the first peak from
the inside of the smaller square with size Θ1 while the second one
from anywhere in the map with size Θ2.

Figure 3. Left upper panel indicates the normalized number den-
sity of peaks in a typical 2D Gaussian field while the right upper
panel shows the normalized cumulative peaks for the same map
as a function of ϑ for various values of Ψ. The lower panels corre-
spond the same just for our simulated gaussian CMB map (size=
10◦ and resolution is R = 1′) by taking ensemble averages with
Ψ = 0.320±0.020 and γ = (1.050±0.040)×10−3 at 1σ confidence
interval.
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size Θ2 > Θ1 is simulated and the desired map is considered
to be at the center of this window. In order to compute the
distance between two features(peaks), one chooses the first
one from the inside of the smaller square and the second
one from anywhere in the map. With this method, there is
no boundary effect for distance r ! (Θ2 − Θ1)/2 (Fatemi-
Ghomi et al. 1999). On the other hand to take mentioned
problem into account as well as to reduce the contribution
of noises, other estimators have been introduced (Landy and
Szalay 1993). Two most famous estimators are defined as:

ξN (r) ≡
(
DD
RR

)
NR(NR − 1)
ND(ND − 1)

− 1 (6)

and

ξLS(r) ≡
(
DD
RR

)
NR(NR − 1)
ND(ND − 1)

−
(
DR
RR

)
NR(NR − 1)

NDNR
+ 1

(7)
where ξN is the natural estimator and ξLS introduced by
Landy & Szalay (1993). The ”DD”, ”RR” and ”DR” stand
for the number of pairs in real data set, the number of pairs
in random data and the cross-correlation of pairs in real and
random maps, respectively. In addition NR is the number of
desired features in un-clustered map. To reduce the noise
effect it is recommended to take NR > ND. Throughout this
study we use ξLS(r) as a criterion to determine TPCF.

Up to now we introduced some estimators for determin-
ing TPCF of an arbitrary feature in underlying stochastic
field. Now we focus on the two-point correlation of peaks
above a certain threshold value, ϑ, in the temperature fluc-
tuations at the last scattering surface. We define the tem-
perature fluctuations field by F(r) ≡ [T (r)−⟨T (r)⟩]/⟨T (r)⟩.
For a map with size less than 60◦ we have r : (x, y). Since
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Figure 2. A sample distribution of peaks in a simulated CMB
map. To avoid boundary problem we choose the first peak from
the inside of the smaller square with size Θ1 while the second one
from anywhere in the map with size Θ2.

Figure 3. Left upper panel indicates the normalized number den-
sity of peaks in a typical 2D Gaussian field while the right upper
panel shows the normalized cumulative peaks for the same map
as a function of ϑ for various values of Ψ. The lower panels corre-
spond the same just for our simulated gaussian CMB map (size=
10◦ and resolution is R = 1′) by taking ensemble averages with
Ψ = 0.320±0.020 and γ = (1.050±0.040)×10−3 at 1σ confidence
interval.
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size Θ2 > Θ1 is simulated and the desired map is considered
to be at the center of this window. In order to compute the
distance between two features(peaks), one chooses the first
one from the inside of the smaller square and the second
one from anywhere in the map. With this method, there is
no boundary effect for distance r ! (Θ2 − Θ1)/2 (Fatemi-
Ghomi et al. 1999). On the other hand to take mentioned
problem into account as well as to reduce the contribution
of noises, other estimators have been introduced (Landy and
Szalay 1993). Two most famous estimators are defined as:

ξN (r) ≡
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DD
RR

)
NR(NR − 1)
ND(ND − 1)

− 1 (6)
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where ξN is the natural estimator and ξLS introduced by
Landy & Szalay (1993). The ”DD”, ”RR” and ”DR” stand
for the number of pairs in real data set, the number of pairs
in random data and the cross-correlation of pairs in real and
random maps, respectively. In addition NR is the number of
desired features in un-clustered map. To reduce the noise
effect it is recommended to take NR > ND. Throughout this
study we use ξLS(r) as a criterion to determine TPCF.
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To compute number density of extrema of a typical 2D
Gaussian stochastic field, according to notation introduced
by Rice ( Rice 1954) and (Peacock and Heavens 1985), the
multivariate distribution function of 6 variables for a Gaus-
sian process reads as:

p(W⃗) =

√
1

(2π)6detM e−
1
2 (WT .M−1.W) (10)

where M is the covariance matrix of underlying variables.
Therefore number density of extrema for a purely Gaussian
CMB map in the range of [ϑ,ϑ+ dϑ] is n(ϑ)dϑ and is given
by:

n(ϑ) =

∫
p(W⃗|Fi = 0) |detFij | dW⃗ (11)

Above expression can be integrated analytically in the Gaus-
sian case and becomes (Bond and Efstathiou 1987):

n(ϑ) =
1

(2π)3/2γ2
e−ϑ2/2G(Ψ,Ψϑ) (12)

where

G(Ψ,Ψϑ) ≡ (Ψ2ϑ2 −Ψ2)

{
1− 1

2
erfc

[
Ψϑ√

2(1−Ψ2)

]}

+Ψϑ(1−Ψ2)
e
− Ψ2ϑ2

2(1−Ψ2)

√
2π(1−Ψ2)

+
e
− Ψ2ϑ2

3−2Ψ2

√
3− 2Ψ2

{
1− 1

2
erfc

[
Ψϑ√

2(1−Ψ2)(3− 2Ψ2)

]}

(13)

in which erfc(:) stands for complementary error function. Ac-
cording to notation explained in ref. (Bond and Efstathiou
1987) and by using Eqs. (9), the so-called spectral parame-

ters Ψ and γ in Eqs. (12) and (13) are defined by: Ψ ≡ σ2
1

σ0σ2

and γ ≡
√
2σ1
σ2

. The number density of peaks in a 2D Gaus-
sian map as a function of ϑ has been plotted in the upper
panel of Fig. 3 for various values of spectral parameters.
We also compute the number density of our simulated pure
Gaussian CMB map (see next section for more details) and
illustrated in the lower panel of Fig. 3.

The probability of finding two peaks separated by dis-
tance r, ∆P12(r) (Eq. (3)), can be expressed by using joint
probability distribution function (JPDF) , namely (Bardeen
et al. 1986; Lumsden et al. 1989; Heavens and Sheth 1999;
Heavens and Gupta 2001):

∆P12(r) =

∫
p(W⃗(r);F1

i = 0,F2
i = 0)

×
∣∣detF1

ij

∣∣ ∣∣detF2
ij

∣∣ dF1dF2dF1
ijdF2

ij (14)

where W⃗(r) = {W⃗1(r1), W⃗2(r2)}, r = |r1 − r2| and the sub-
script numbers correspond to first and second peaks in cal-
culating TPCF. Finally TPCF of peaks at a given threshold
value, ϑ becomes:

1 + ξ12(r) =
∫
p(W⃗(r);F1

i = 0,F2
i = 0)

∣∣detF1
ij

∣∣ ∣∣detF2
ij

∣∣ dF1dF2dF1
ijdF2
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n2(ϑ)∆A1∆A2

(15)

It must point out that the range of integrations are adjusted
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Figure 4. Angular power spectrum of various parts of tempera-
ture fluctuations map. Solid line is given by CAMB software for
the best fit values of ΛCDM based on 7-year WMAP data. Symbol
corresponds to a simulated Gaussian map with resolution equates
to one arc-minute and size 10◦. Long-dashed line indicate the con-
tribution of cosmic strings for a typical value of Gµ = 8× 10−8.

The power-law behavior of cosmic string, ℓ(ℓ+1)Cℓ ∼ ℓ−0.90+0.05
−0.05

is shown by dashdot line. The behavior of finite size of beam and
kinetic Sunyaev-Zel’dovich effects are illustrated by dashed and
dotted lines, respectively. In this plot the typical value of beam
size is FWHM= 20′.

by means of condition of having peaks in a 2D field. In Refs.
Heavens and Sheth (1999); Heavens and Gupta (2001) such
integral has been computed numerically for Gaussian CMB
map for various values of density components at different
levels.

3 SIMULATION OF MOCK CMB MAP

This section is devoted to map simulation procedure for gen-
erating temperature fluctuation at the last scattering sur-
face (Perivolaropoulos 1993; Movahed and Khosravi 2011).
At first, our code creates pure Gaussian fluctuations corre-
sponding to the standard inflationary model with ΛCDM
components in the flat universe. However, our program can
be easily modified to other cosmological models for this pur-
pose. Secondly, anisotropies produced by straight cosmic
string based on the Kaiser-Stebbins effect are created at dif-
ferent patches from last scattering surface up to now. The
superposition of Gaussian and cosmic strings anisotropies as
well as adding expected instrumental noise and beam effect
are done in the third part of the program. Finally, peak-peak
correlation by using ensemble averages will be calculated.

3.1 Synthesis Gaussian CMB map

For making Gaussian maps, we use ΛCDM model and the
best fit values have been inferred based on the most recent
observations such as WMAP-7, Supernova type Ia (SNIa)
and Sloan Digital Sky Survey (SDSS) with the most familiar
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Figure 11. P-value as a function ofGµ. Upper left panel indicates
the result for Gaussian CMB map. The effect of beam on the
capability of TPCF to detect CS has been shown in upper right
panel. Lower left panel corresponds to P-value for map in the
presence of instrumental noise. The effect of finite beam size and
instrumental noise has been indicated in lower right panel. To
determine each point in this plot we did average on at least 100
ensembles.

and Gµ ! 9.0× 10−8 without and with instrumental noise,
respectively (Fig. 11 and Table 1). The contribution of finite
size of beam caused that tension of minimum observable CS
to be Gµ ! 1.2 × 10−7 at 2σ confidence interval. The finite
beam size of instrument was also considered and illustrated
in the right panels of Fig. 11. As one expected, by increasing
the value of the FWHM, the map will be more smeared and
the capability of detecting the CS embedded in the CMB
map according to clustering method was decreased.

The strategy for inferring the existence of CS is as fol-
lows: We compare the computed peak-peak correlation of
the map given directly from observations with that of gen-
erated by simulation with the same resolution which is com-
pletely Gaussian and containing noise and beam contribu-
tion, and then calculate the corresponding p-value. For com-
puted P-value less than 2σ we read corresponding Gµ based
on Figs. 11. In such case we can conservatively express that
if the CS is existed its tension equates to derived Gµ. How-
ever we used just the straight CSs but it must be pointed
out that the contribution of loops due to their size with re-
spect to our resolution are completely ignorable (Movahed
and Khosravi 2011).

Concerning the non-Gaussianity, we examined the num-
ber density of peaks and compared our results with that of
predicted by theoretical approach for pure Gaussian field
(Bond and Efstathiou 1987) (Eq (12)). Fig. 7 showed that
there is no deviation between numerical computation of

number density of peaks for Gaussian+String CMB map
and theoretical calculation based on pure Gaussian field. It
means that just by using n(ϑ) one can not inference the
existence of non-Gaussianity due to straight cosmic strings.
According to Fig. 8 we found that the clustering nature of
peaks for G + S map could be a proper criterion to detect
the footprint of CS as well as the non-Gaussianity imposed
by CS components.

Final remark is that it could be interesting to use more
realistic model for finding more reliable results. In addition
instead of two-point correlation function, the n-point corre-
lation functions can be used for similar purpose.
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Figure 11. P-value as a function ofGµ. Upper left panel indicates
the result for Gaussian CMB map. The effect of beam on the
capability of TPCF to detect CS has been shown in upper right
panel. Lower left panel corresponds to P-value for map in the
presence of instrumental noise. The effect of finite beam size and
instrumental noise has been indicated in lower right panel. To
determine each point in this plot we did average on at least 100
ensembles.

and Gµ ! 9.0× 10−8 without and with instrumental noise,
respectively (Fig. 11 and Table 1). The contribution of finite
size of beam caused that tension of minimum observable CS
to be Gµ ! 1.2 × 10−7 at 2σ confidence interval. The finite
beam size of instrument was also considered and illustrated
in the right panels of Fig. 11. As one expected, by increasing
the value of the FWHM, the map will be more smeared and
the capability of detecting the CS embedded in the CMB
map according to clustering method was decreased.

The strategy for inferring the existence of CS is as fol-
lows: We compare the computed peak-peak correlation of
the map given directly from observations with that of gen-
erated by simulation with the same resolution which is com-
pletely Gaussian and containing noise and beam contribu-
tion, and then calculate the corresponding p-value. For com-
puted P-value less than 2σ we read corresponding Gµ based
on Figs. 11. In such case we can conservatively express that
if the CS is existed its tension equates to derived Gµ. How-
ever we used just the straight CSs but it must be pointed
out that the contribution of loops due to their size with re-
spect to our resolution are completely ignorable (Movahed
and Khosravi 2011).

Concerning the non-Gaussianity, we examined the num-
ber density of peaks and compared our results with that of
predicted by theoretical approach for pure Gaussian field
(Bond and Efstathiou 1987) (Eq (12)). Fig. 7 showed that
there is no deviation between numerical computation of

number density of peaks for Gaussian+String CMB map
and theoretical calculation based on pure Gaussian field. It
means that just by using n(ϑ) one can not inference the
existence of non-Gaussianity due to straight cosmic strings.
According to Fig. 8 we found that the clustering nature of
peaks for G + S map could be a proper criterion to detect
the footprint of CS as well as the non-Gaussianity imposed
by CS components.

Final remark is that it could be interesting to use more
realistic model for finding more reliable results. In addition
instead of two-point correlation function, the n-point corre-
lation functions can be used for similar purpose.
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Figure 2. A sample distribution of peaks in a simulated CMB
map. To avoid boundary problem we choose the first peak from
the inside of the smaller square with size �1 while the second one
from anywhere in the map with size �2.

Figure 3. Left upper panel indicates the normalized number den-
sity of peaks in a typical 2D Gaussian field while the right upper
panel shows the normalized cumulative peaks for the same map
as a function of ⇤ for various values of ⇥. The lower panels corre-
spond the same just for our simulated gaussian CMB map (size=
10⇥ and resolution is R = 1⇤) by taking ensemble averages with
⇥ =0 .320±0.020 and � = (1.050±0.040)�10�3 at 1⇥ confidence
interval.

Landy & Szalay (1993). The ”DD”, ”RR” and ”DR” stand
for the number of pairs in real data set, the number of pairs
in random data and the cross-correlation of pairs in real and
random maps, respectively. In addition NR is the number of
desired features in un-clustered map. To reduce the noise
e⇤ect it is recommended to take NR > ND. Throughout this
study we use ⇥LS(r) as a criterion to determine TPCF.

Up to now we introduced some estimators for determin-
ing TPCF of an arbitrary feature in underlying stochastic
field. Now we focus on the two-point correlation of peaks
above a certain threshold value, ⇧, in the temperature fluc-
tuations at the last scattering surface. We define the tem-
perature fluctuations field by F(r) ⌅ [T (r)�⇧T (r)⌃]/⇧T (r)⌃.
For a map with size less than 60⇥ we have r : (x, y). Since
we are interested in peaks as features in the CMB map,
we should determine the conditions to have a local max-
imum. To this end, the first derivatives Fi ⌅ ⇤F

⇤xi
should

be zero and the Hessian matrix Fij ⌅ ⇤2F
⇤xi⇤xj

(which is

symmetric for our smooth field) must be negative defi-
nite. Based on these conditions, to clarify the location of
peaks we should specify six independent variables, namely:
⌥W = {F ,Fx,Fy,Fxx,Fxy,Fyy}. In this paper we checked
them numerically to find the position of peaks. To ensure
that our algorithm works well, we compute some statistical
properties for a Gaussian stochastic field and compare them
with analytical predictions.

For a pure Gaussian random field, by definition n-point
correlation functions for even n can be expressed by 2-point
correlation and all odd n are identically zero. The correlation
function in the vicinity of violation of statistical isotropy and
homogeneity in 2D is:

⇧F(r+ u)F(r)⌃ = 1
(2⇤)2

�
S(|k|)e�ik·uW (ku)dk (8)

here S(|k|) is so-called spectral density and W (ku) is a typi-
cal window function using for smoothing underlying discrete
field. The moments of underlying random field as well as its
derivatives are:

⌅2
0 ⌅

�
F(r)2

⇥
=

1
(2⇤)2

�
S(|k|)dk

⌅2
n ⌅

⌦⌅
⌃nF(r)
⌃xn

⇧2
↵

=
1

(2⇤)2

�
k2nS(|k|)dk (9)

To compute number density of extrema of a typical 2D
Gaussian stochastic field, according to notation introduced

by Rice ( Rice 1954) and (Peacock and Heavens 1985), the
multivariate distribution function of 6 variables for a Gaus-
sian process reads as:

p( ⌥W) =

✏
1

(2⇤)6detM e�
1
2 (WT .M�1.W) (10)

where M is the covariance matrix of underlying variables,
namelyM = ⇧W⇤W⌃. Therefore number density of extrema
for a purely Gaussian CMB map in the range of [⇧,⇧+ d⇧]
is n(⇧)d⇧ and is given by:

n(⇧) =

�
p( ⌥W|Fi = 0) |detFij | d ⌥W (11)

Above expression can be integrated analytically in the Gaus-
sian case and becomes (Bond and Efstathiou 1987):

n(⇧) =
1

(2⇤)3/2�2
e�⇥2/2G(⇥,⇥⇧) (12)

where

G(⇥,⇥⇧) ⌅ (⇥2⇧2 �⇥2)

�
1� 1

2
erfc

⌃
⇥⇧�

2(1�⇥2)

⌥ 

+⇥⇧(1�⇥2)
e
� �2�2

2(1��2)

�
2⇤(1�⇥2)

+
e
� �2�2

3�2�2

⌥
3� 2⇥2

�
1� 1

2
erfc

⌃
⇥⇧�

2(1�⇥2)(3� 2⇥2)

⌥ 

(13)

in which erfc(:) stands for complementary error function. Ac-
cording to notation explained in ref. (Bond and Efstathiou
1987) and by using Eqs. (9), the so-called spectral parame-

ters ⇥ and � in Eqs. (12) and (13) are defined by: ⇥ ⌅ �2
1

�0�2

and � ⌅
⌥
2�1
�2

. The number density of peaks in a 2D Gaus-
sian map as a function of ⇧ has been plotted in the upper
panel of Fig. 3 for various values of spectral parameters.
We also compute the number density of our simulated pure
Gaussian CMB map (see next section for more details) and
illustrated in the lower panel of Fig. 3.

The probability of finding two peaks separated by dis-
tance r, �P12(r) (Eq. (3)), can be expressed by using joint
probability distribution function (JPDF) , namely (Bardeen
et al. 1986; Lumsden et al. 1989; Heavens and Sheth 1999;
Heavens and Gupta 2001):

�P12(r) =

�
p( ⌥W(r);F1

i = 0,F2
i = 0)

⇥
⇤⇤detF1

ij

⇤⇤ ⇤⇤detF2
ij

⇤⇤ dF1dF2dF1
ijdF2

ij (14)

where ⌥W(r) = { ⌥W1(r1), ⌥W2(r2)}, r = |r1 � r2| and the sub-
script numbers correspond to first and second peaks in cal-
culating TPCF. Finally TPCF of peaks at a given threshold
value, ⇧ becomes:

1 + ⇥12(r) =
�
p( ⌥W(r);F1

i = 0,F2
i = 0llll)

⇤⇤detF1
ij

⇤⇤ ⇤⇤detF2
ij

⇤⇤ dF1dF2dF1
ijdF2

ij

n2(⇧)�A1�A2

(15)

It must point out that the range of integrations are adjusted
by means of condition of having peaks in a 2D field. In Refs.
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Figure 4. Angular power spectrum of various parts of tempera-
ture fluctuations map. Solid line is given by CAMB software for
the best fit values of ΛCDM based on 7-year WMAP data. Symbol
corresponds to a simulated Gaussian map with resolution equates
to one arc-minute and size 10◦. Long-dashed line indicate the con-
tribution of cosmic strings for a typical value of Gµ = 8× 10−8.

The power-law behavior of cosmic string, ℓ(ℓ+1)Cℓ ∼ ℓ−0.90+0.05
−0.05

is shown by dashdot line. The behavior of finite size of beam and
kinetic Sunyaev-Zel’dovich effects are illustrated by dashed and
dotted lines, respectively. In this plot the typical value of beam
size is FWHM= 20′.

by means of condition of having peaks in a 2D field. In Refs.
Heavens and Sheth (1999); Heavens and Gupta (2001) such
integral has been computed numerically for Gaussian CMB
map for various values of density components at different
levels.

3 SIMULATION OF MOCK CMB MAP

This section is devoted to map simulation procedure for gen-
erating temperature fluctuation at the last scattering sur-
face (Perivolaropoulos 1993; Movahed and Khosravi 2011).
At first, our code creates pure Gaussian fluctuations corre-
sponding to the standard inflationary model with ΛCDM
components in the flat universe. However, our program can
be easily modified to other cosmological models for this pur-
pose. Secondly, anisotropies produced by straight cosmic
string based on the Kaiser-Stebbins effect are created at dif-
ferent patches from last scattering surface up to now. The
superposition of Gaussian and cosmic strings anisotropies as
well as adding expected instrumental noise and beam effect
are done in the third part of the program. Finally, peak-peak
correlation by using ensemble averages will be calculated.

3.1 Synthesis Gaussian CMB map

For making Gaussian maps, we use ΛCDM model and the
best fit values have been inferred based on the most recent
observations such as WMAP-7, Supernova type Ia (SNIa)
and Sloan Digital Sky Survey (SDSS) with the most familiar
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The probability of finding two peaks separated by dis-
tance r, ∆P12(r) (Eq. (3)), can be expressed by using joint
probability distribution function (JPDF) , namely (Bardeen
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Figure 4. Angular power spectrum of various parts of tempera-
ture fluctuations map. Solid line is given by CAMB software for
the best fit values of ΛCDM based on 7-year WMAP data. Symbol
corresponds to a simulated Gaussian map with resolution equates
to one arc-minute and size 10◦. Long-dashed line indicate the con-
tribution of cosmic strings for a typical value of Gµ = 8× 10−8.

The power-law behavior of cosmic string, ℓ(ℓ+1)Cℓ ∼ ℓ−0.90+0.05
−0.05

is shown by dashdot line. The behavior of finite size of beam and
kinetic Sunyaev-Zel’dovich effects are illustrated by dashed and
dotted lines, respectively. In this plot the typical value of beam
size is FWHM= 20′.

by means of condition of having peaks in a 2D field. In Refs.
Heavens and Sheth (1999); Heavens and Gupta (2001) such
integral has been computed numerically for Gaussian CMB
map for various values of density components at different
levels.

3 SIMULATION OF MOCK CMB MAP

This section is devoted to map simulation procedure for gen-
erating temperature fluctuation at the last scattering sur-
face (Perivolaropoulos 1993; Movahed and Khosravi 2011).
At first, our code creates pure Gaussian fluctuations corre-
sponding to the standard inflationary model with ΛCDM
components in the flat universe. However, our program can
be easily modified to other cosmological models for this pur-
pose. Secondly, anisotropies produced by straight cosmic
string based on the Kaiser-Stebbins effect are created at dif-
ferent patches from last scattering surface up to now. The
superposition of Gaussian and cosmic strings anisotropies as
well as adding expected instrumental noise and beam effect
are done in the third part of the program. Finally, peak-peak
correlation by using ensemble averages will be calculated.

3.1 Synthesis Gaussian CMB map

For making Gaussian maps, we use ΛCDM model and the
best fit values have been inferred based on the most recent
observations such as WMAP-7, Supernova type Ia (SNIa)
and Sloan Digital Sky Survey (SDSS) with the most familiar

Peak-Peak correlation function of CMB map in the presence of cosmic strings 5

To compute number density of extrema of a typical 2D
Gaussian stochastic field, according to notation introduced
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the best fit values of ΛCDM based on 7-year WMAP data. Symbol
corresponds to a simulated Gaussian map with resolution equates
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tribution of cosmic strings for a typical value of Gµ = 8× 10−8.

The power-law behavior of cosmic string, ℓ(ℓ+1)Cℓ ∼ ℓ−0.90+0.05
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is shown by dashdot line. The behavior of finite size of beam and
kinetic Sunyaev-Zel’dovich effects are illustrated by dashed and
dotted lines, respectively. In this plot the typical value of beam
size is FWHM= 20′.
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are done in the third part of the program. Finally, peak-peak
correlation by using ensemble averages will be calculated.
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size Θ2 > Θ1 is simulated and the desired map is considered
to be at the center of this window. In order to compute the
distance between two features(peaks), one chooses the first
one from the inside of the smaller square and the second
one from anywhere in the map. With this method, there is
no boundary effect for distance r ! (Θ2 − Θ1)/2 (Fatemi-
Ghomi et al. 1999). On the other hand to take mentioned
problem into account as well as to reduce the contribution
of noises, other estimators have been introduced (Landy and
Szalay 1993). Two most famous estimators are defined as:

ξN (r) ≡
(
DD
RR

)
NR(NR − 1)
ND(ND − 1)

− 1 (6)

and

ξLS(r) ≡
(
DD
RR

)
NR(NR − 1)
ND(ND − 1)

−
(
DR
RR

)
NR(NR − 1)

NDNR
+ 1

(7)
where ξN is the natural estimator and ξLS introduced by
Landy & Szalay (1993). The ”DD”, ”RR” and ”DR” stand
for the number of pairs in real data set, the number of pairs
in random data and the cross-correlation of pairs in real and
random maps, respectively. In addition NR is the number of
desired features in un-clustered map. To reduce the noise
effect it is recommended to take NR > ND. Throughout this
study we use ξLS(r) as a criterion to determine TPCF.

Up to now we introduced some estimators for determin-
ing TPCF of an arbitrary feature in underlying stochastic
field. Now we focus on the two-point correlation of peaks
above a certain threshold value, ϑ, in the temperature fluc-
tuations at the last scattering surface. We define the tem-
perature fluctuations field by F(r) ≡ [T (r)−⟨T (r)⟩]/⟨T (r)⟩.
For a map with size less than 60◦ we have r : (x, y). Since
we are interested in peaks as features in the CMB map,
we should determine the conditions to have a local max-
imum. To this end, the first derivatives Fi ≡ ∂F

∂xi
should

be zero and the Hessian matrix Fij ≡ ∂2F
∂xi∂xj

(which is

symmetric for our smooth field) must be negative defi-
nite. Based on these conditions, to clarify the location of
peaks we should specify six independent variables, namely:
W⃗ = {F ,Fx,Fy,Fxx,Fxy,Fyy}. In this paper we checked
them numerically to find the position of peaks. To ensure
that our algorithm works well, we compute some statistical
properties for a Gaussian stochastic field and compare them
with analytical predictions.

For a pure Gaussian random field, by definition n-point
correlation functions for even n can be expressed by 2-point
correlation and all odd n are identically zero. The correlation
function in the vicinity of violation of statistical isotropy and
homogeneity in 2D is:

⟨F(r+ u)F(r)⟩ = 1
(2π)2

∫
S(|k|)e−ik·uW (ku)dk (8)

here S(|k|) is so-called spectral density and W (ku) is a typi-
cal window function using for smoothing underlying discrete
field. The moments of underlying random field as well as its
derivatives are:

σ2
0 ≡

〈
F(r)2

〉
=

1
(2π)2

∫
S(|k|)dk

σ2
n ≡

〈(
∂nF(r)
∂xn

)2
〉

=
1

(2π)2

∫
k2nS(|k|)dk (9)

Figure 2. A sample distribution of peaks in a simulated CMB
map. To avoid boundary problem we choose the first peak from
the inside of the smaller square with size Θ1 while the second one
from anywhere in the map with size Θ2.

Figure 3. Left upper panel indicates the normalized number den-
sity of peaks in a typical 2D Gaussian field while the right upper
panel shows the normalized cumulative peaks for the same map
as a function of ϑ for various values of Ψ. The lower panels corre-
spond the same just for our simulated gaussian CMB map (size=
10◦ and resolution is R = 1′) by taking ensemble averages with
Ψ = 0.320±0.020 and γ = (1.050±0.040)×10−3 at 1σ confidence
interval.
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Random fields are ubiquitous phenomena in physics
appearing in areas ranging from turbulence to the land-
scape of string theories. In cosmology, the sky-maps
of the polarized cosmic microwave background (CMB)
radiation—a focal topic of current research—is a prime
example of such 2D random fields. Modern view of the
cosmos, developed primarily through statistical analysis of
these fields, points to a Universe that is statistically homo-
geneous and isotropic with a hierarchy of structures arising
from small Gaussian fluctuations of quantum origin. While
the Gaussian limit provides the fundamental starting point
in the study of random fields [1–3], non-Gaussian features
of the CMB fields are of great interest. Indeed, CMB
inherits a high level of Gaussianity from initial fluctua-
tions, but small non-Gaussian deviations may provide a
unique window into the details of processes in the early
Universe. The search for the best methods to analyze non-
Gaussian random fields is ongoing.

In Ref. [4] the general invariant based formalism for
computing topological and geometrical characteristics of
non-Gaussian fields was presented. The general formulas
for the Euler characteristics to all orders has been derived,
which encompasses the well-known first correction [5] and
which was later confirmed to the next order by [6]. We now
focus on the statistics of the density of extremal points that
follows directly from the formalism of [4]. Extrema counts
is an example of the real space statistical measures that
can be used to detect non-Gaussianity and place the limits
on the cosmological models that give rise to it in a way
complimentary to the spectral techniques (see e.g. [7]).
The goal of this paper is to provide an explicit recipe on
how to use this formalism in practice on idealized 2D
CMB Planck-like data.

I. EXTREMA COUNTS

Extrema counts, especially that of the maxima of the
field, have long application to cosmology (see e.g. [3]);
however, theoretical developments have been mostly

restricted to the Gaussian fields. The statistics of extrema
counts, as well as of the Euler number, requires the knowl-
edge of the one-point joint probability distribution function
(JPDF) Pðx; xi; xijÞ of the field x, its first, xi, and second,
xij, derivatives [8]. Extrema density is an intrinsically
isotropic statistics given by [1,9]

@next
@x

¼
Z

d3xijPðx; xi ¼ 0; xijÞjxijj: (1)

Under the condition of statistical isotropy of the field, the
essential form for the JPDF is therefore given in terms of
the rotation invariants—x itself, the square of the magni-
tude of the gradient q2 $ x21 þ x22, and the two invariants
J1 $ !1 þ !2, J2 $ ð!1 & !2Þ2 of the Hessian matrix xij
(where !i are the eigenvalues of the Hessian). Introducing

" ¼ ðxþ #J1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(where the spectral parameter
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power spectrum), leads to the following JPDF for the
Gaussian 2D field:
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The invariant form for the extrema counts
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then readily recovers the classical results [1,3,9] when the
limits of integration that define the extrema type are
implemented, namely, J1 2 ½&1; 0(, J2 2 ½0; J21( for
maxima, J1 2 ½0;1(, J2 2 ½0; J21( for minima, and
J1 2 ½&1;1(,J2 2 ½J21 ;1( for saddle points.
In [4] we have observed that for non-Gaussian JPDF the

invariant approach immediately suggests a Gram-Charlier
expansion in terms of the orthogonal polynomials defined
by the kernel G2D. Since " , q

2, J1, and J2 are uncorrelated
variables in the Gaussian limit, the resulting expansion is
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then readily recovers the classical results [1,3,9] when the
limits of integration that define the extrema type are
implemented, namely, J1 2 ½&1; 0(, J2 2 ½0; J21( for
maxima, J1 2 ½0;1(, J2 2 ½0; J21( for minima, and
J1 2 ½&1;1(,J2 2 ½J21 ;1( for saddle points.
In [4] we have observed that for non-Gaussian JPDF the

invariant approach immediately suggests a Gram-Charlier
expansion in terms of the orthogonal polynomials defined
by the kernel G2D. Since " , q

2, J1, and J2 are uncorrelated
variables in the Gaussian limit, the resulting expansion is
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Random fields are ubiquitous phenomena in physics
appearing in areas ranging from turbulence to the land-
scape of string theories. In cosmology, the sky-maps
of the polarized cosmic microwave background (CMB)
radiation—a focal topic of current research—is a prime
example of such 2D random fields. Modern view of the
cosmos, developed primarily through statistical analysis of
these fields, points to a Universe that is statistically homo-
geneous and isotropic with a hierarchy of structures arising
from small Gaussian fluctuations of quantum origin. While
the Gaussian limit provides the fundamental starting point
in the study of random fields [1–3], non-Gaussian features
of the CMB fields are of great interest. Indeed, CMB
inherits a high level of Gaussianity from initial fluctua-
tions, but small non-Gaussian deviations may provide a
unique window into the details of processes in the early
Universe. The search for the best methods to analyze non-
Gaussian random fields is ongoing.

In Ref. [4] the general invariant based formalism for
computing topological and geometrical characteristics of
non-Gaussian fields was presented. The general formulas
for the Euler characteristics to all orders has been derived,
which encompasses the well-known first correction [5] and
which was later confirmed to the next order by [6]. We now
focus on the statistics of the density of extremal points that
follows directly from the formalism of [4]. Extrema counts
is an example of the real space statistical measures that
can be used to detect non-Gaussianity and place the limits
on the cosmological models that give rise to it in a way
complimentary to the spectral techniques (see e.g. [7]).
The goal of this paper is to provide an explicit recipe on
how to use this formalism in practice on idealized 2D
CMB Planck-like data.

I. EXTREMA COUNTS

Extrema counts, especially that of the maxima of the
field, have long application to cosmology (see e.g. [3]);
however, theoretical developments have been mostly

restricted to the Gaussian fields. The statistics of extrema
counts, as well as of the Euler number, requires the knowl-
edge of the one-point joint probability distribution function
(JPDF) Pðx; xi; xijÞ of the field x, its first, xi, and second,
xij, derivatives [8]. Extrema density is an intrinsically
isotropic statistics given by [1,9]
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Under the condition of statistical isotropy of the field, the
essential form for the JPDF is therefore given in terms of
the rotation invariants—x itself, the square of the magni-
tude of the gradient q2 $ x21 þ x22, and the two invariants
J1 $ !1 þ !2, J2 $ ð!1 & !2Þ2 of the Hessian matrix xij
(where !i are the eigenvalues of the Hessian). Introducing

" ¼ ðxþ #J1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& #2

p
(where the spectral parameter

# ¼ &hxJ1i characterizes the shape of the underlying
power spectrum), leads to the following JPDF for the
Gaussian 2D field:

G2D ¼ 1

2$
exp

"
& 1

2
"2 & q2 & 1

2
J21 & J2

#
: (2)

The invariant form for the extrema counts

@next
@x

¼
Z dJ1dJ2

8$2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1&#2

p exp
"
&1

2
"2 & 1

2
J21 & J2

#
jJ21 & J2j

then readily recovers the classical results [1,3,9] when the
limits of integration that define the extrema type are
implemented, namely, J1 2 ½&1; 0(, J2 2 ½0; J21( for
maxima, J1 2 ½0;1(, J2 2 ½0; J21( for minima, and
J1 2 ½&1;1(,J2 2 ½J21 ;1( for saddle points.
In [4] we have observed that for non-Gaussian JPDF the

invariant approach immediately suggests a Gram-Charlier
expansion in terms of the orthogonal polynomials defined
by the kernel G2D. Since " , q

2, J1, and J2 are uncorrelated
variables in the Gaussian limit, the resulting expansion is
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for the Euler characteristics to all orders has been derived,
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counts, as well as of the Euler number, requires the knowl-
edge of the one-point joint probability distribution function
(JPDF) Pðx; xi; xijÞ of the field x, its first, xi, and second,
xij, derivatives [8]. Extrema density is an intrinsically
isotropic statistics given by [1,9]
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then readily recovers the classical results [1,3,9] when the
limits of integration that define the extrema type are
implemented, namely, J1 2 ½&1; 0(, J2 2 ½0; J21( for
maxima, J1 2 ½0;1(, J2 2 ½0; J21( for minima, and
J1 2 ½&1;1(,J2 2 ½J21 ;1( for saddle points.
In [4] we have observed that for non-Gaussian JPDF the

invariant approach immediately suggests a Gram-Charlier
expansion in terms of the orthogonal polynomials defined
by the kernel G2D. Since " , q

2, J1, and J2 are uncorrelated
variables in the Gaussian limit, the resulting expansion is
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implemented, namely, J1 2 ½&1; 0(, J2 2 ½0; J21( for
maxima, J1 2 ½0;1(, J2 2 ½0; J21( for minima, and
J1 2 ½&1;1(,J2 2 ½J21 ;1( for saddle points.
In [4] we have observed that for non-Gaussian JPDF the

invariant approach immediately suggests a Gram-Charlier
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where terms are sorted in the order of the field power n andPiþ2jþkþ2l¼n
i;j;k;l¼0 stands for summation over all combinations

of non-negative i, j, k, l such that iþ 2jþ kþ 2l adds to
the order of the expansion term n. Hi are (probabilists’)
Hermite and Lj are Laguerre polynomials.

The Gram-Charlier coefficients, h! iq2jJ1kJ2liGC &
ð%1Þjþlj!l!hHið!ÞLjðq2ÞHkðJ1ÞLlðJ2Þim that appear in the

expansion can be related to the more familiar cumulants of
the field and its derivatives (we use h im for statistical
moments while reserving h i for statistical cumulants),
actually being identical to them for the first three orders
n ¼ 3, 4, 5. See Ref. [10] for lookup tables of the relation-
ship between Gram-Charlier cumulants and statistical
cumulants. As an illustration, one sixth-order nontrivial
cumulant would be hJ31J2!iCG¼ hJ31J2!iþhJ31ihJ2!iþ
3hJ1J2ihJ21!i. It is prudent to stress that the Gram-
Charlier series expansion is distinct from the perturbative
expansions. For instance, while the linear Edgeworth or
fNL expansion match solely to the first-order n ¼ 3 Gram-
Charlier coefficients, quadratic terms require knowledge
of the Gram-Charlier terms to n ¼ 6, while the cubic ones
to n ¼ 9.

Integrals over J1 and J2 for extremal points can be carried
out analytically even for the general expression (3).

Different types of critical points can be evaluated sepa-
rately by restraining the integration domain in the
J1 % J2 plane to ensure the appropriate signs for the
eigenvalues.
The effect of the non-Gaussian cubic correction on the

total number of the extrema of different types is given by
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where we have restored (see note [11]) the dimensional
scaling with R' ¼ #1=#2, the characteristic separation
scale between extrema. The total number of saddles, as
well as of all the extremal points, nmax þ nmin þ nsad, are
preserved in the first-order (the latter following for the
former, as topological considerations imply nmax % nsad þ
nmin ¼ const), but the symmetry between the minima and
the maxima is broken.
The differential number counts with respect to the

excursion threshold $ are given by
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where K1, K2, K3 are polynomials with coefficients expressed in terms of the cumulants. Here we give explicit expressions

for the first non-Gaussian order, while the next order can be found at [10].

The term K1ð$;%Þ has a special role determining the Euler number &ð$Þ via @&=@$ ¼ @=@$ðnmax þ nmin % nsadÞ ¼ffiffiffiffiffiffiffiffiffi
2="

p
R%2
' expð%$2=2ÞK1ð$;%Þ. As such, its full expansion has been given in [4], Eq. (7), and confirmed to the second order

in [6]. To the leading non-Gaussian order
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Introducing scaled Hermite polynomials H(
n ð$;#Þ & #(nHnð$=#Þ, the polynomial K2ð$;%Þ, the only one

that determines the distribution of saddle points, can be written as
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The remaining term K3ð#;"Þ is the most complicated one. It is expressed as the expansion in Hþ
n ð#;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" "2

p
Þ:

K3 ¼
ð1" "2Þ

2ð2!Þ3=2ð3" 2"2Þ3
"
"ð3" 2"2Þ3Hþ

1

#
#;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" "2

q $
þ

#
1

2
"3ð1þ "2 " 26"4 þ 28"6 " 8"8Þhx3i

" "4ð26" 28"2 þ 8"4Þhx2J1iþ "ð1" "2Þð1þ 2"2Þð3" 2"2Þ2hxq2i" "ð24" 26"2 þ 8"4ÞhxJ21i

þ "ð15" 23"2 þ 8"4ÞhxJ2iþ 4ð1" "2Þð3" 2"2Þ2hq2J1i"ð 10" 12"2 þ 4"4ÞhJ31iþ 6ð1" "2Þð2" "2ÞhJ1J2i
$

" 1

6
ð"ð27þ 36"2 " 224"4 þ 192"6 " 48"8Þhx3iþ ð108" 324"2 þ 216"4 " 48"6Þhx2J1i

þ 6"ð3" 2"2Þ3hxq2i" 36"hxJ21i" 18"hxJ2i" 8"2hJ31i" 12"2hJ1J2iÞHþ
2

#
#;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" "2

q $%
: (9)

Equations (5) and (6) (together with the next order ex-
pansion available online) are the main theoretical result of
this paper.

II. IMPLEMENTATION

Evaluating these estimators requires computing the cu-
mulants appearing in Eqs. (7)–(9). In non-Gaussian models
where the field is represented by the functional of a
Gaussian field this may be possible directly, while in
general, as shown in [6], such cumulants can be found as
weighted marginals of the underlying bispectrum (to third
order), trispectrum (to fourth order), etc. On a sphere, the
high-order marginals are particularly cumbersome and
time consuming to compute, as they also involve the con-
tractions of n" j Wigner symbols. Here we suggest a
different route, based on the assumption that scientists
interested in fitting extrema counts to non-Gaussian maps
are typically in a position to generate realizations of such
maps. In that case, it becomes relatively straightforward to
draw samples of such maps, and estimate the correspond-
ing cumulants. The HEALPIX [12] library provides in fact a
direct estimate of the derivatives of such maps up to second
order, which is all that is required to compute the cumu-
lants of the JPDF.

As an illustration, let us generate sets of parameterized
non-Gaussian maps using the package SKY-NG-SIM [13]
of HEALPIX. In this so-called harmonic model, the
PDF of the pixel temperature T is given by
expð"T2=2$2

0Þj
Pn

i¼0 %iCiHiðT=$0Þj2, where Ci are nor-
malization constants. In this paper, we use NSIDE=2048,
‘max ¼ 4096, n ¼ 2, $0 ¼ 1 and vary %1 and %2. We
also consider the second option of SKY-NG-SIM, which
produces non-Gaussian field as even power, & of unit
variance zero mean Gaussian fields. For each set
of maps, we compute its derivatives, and arithmetically

average the corresponding cumulants, using a code,
MAP2CUM, relying on the HEALPIX routine ALM2MAP_DER.
Invariant variables J1 and J2 on a sphere are defined via the
mixed tensor of covariant derivatives J1 ¼ x;i

;i and J2 ¼
J21 " 4jx;i;jj. The differential counts are then evaluated for

a range of threshold, # 2 ½"5; 5'. For each of these maps,
the number of extrema is computed by the procedure
MAP2EXT that implements the following algorithm: for
every pixel a segment of quadratic surface is fit in the
tangent plane based on the temperature values at the pixel
of origin and its HEALPIX neighbors. The position of the
extremum of this quadratic, its height, and its Hessian are
computed. The extremum is counted into the tally of the
type determined by its Hessian if its position falls within
the original pixel. Several additional checks are performed
to preclude registering extrema in the neighboring pixels
and minimize missing extrema due to jumps in the fit
parameters as region shifts to the next pixel. Masks are
treated by not considering pixels next to the mask bound-
ary. Pixel-pixel noise covariance can be included while
doing the local fit. On noise-free maps the procedure
performs with better than 1% accuracy when the map is
smoothed with a Gaussian filter with FWHM exceeding six
pixels. Both MAP2CUM and MAP2EXT are available upon
request. Figure 1 illustrates the very good agreement be-
tween the theoretical expectation of the differential number
counts and the low-frequency # dependency of the mea-
sured ones for both the harmonic and the power-law
models.
We have also successfully explored an alternative nu-

merical procedure based on Monte Carlo (see e.g. [11])
evaluation of the integral (1) over the distribution function.
This procedure is likely to be more practical for expansion
beyond the fourth order for 2D topological invariants.
Starting from Eq. (3), we reexpress both the polynomials
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The remaining term K3ð#;"Þ is the most complicated one. It is expressed as the expansion in Hþ
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Equations (5) and (6) (together with the next order ex-
pansion available online) are the main theoretical result of
this paper.

II. IMPLEMENTATION

Evaluating these estimators requires computing the cu-
mulants appearing in Eqs. (7)–(9). In non-Gaussian models
where the field is represented by the functional of a
Gaussian field this may be possible directly, while in
general, as shown in [6], such cumulants can be found as
weighted marginals of the underlying bispectrum (to third
order), trispectrum (to fourth order), etc. On a sphere, the
high-order marginals are particularly cumbersome and
time consuming to compute, as they also involve the con-
tractions of n" j Wigner symbols. Here we suggest a
different route, based on the assumption that scientists
interested in fitting extrema counts to non-Gaussian maps
are typically in a position to generate realizations of such
maps. In that case, it becomes relatively straightforward to
draw samples of such maps, and estimate the correspond-
ing cumulants. The HEALPIX [12] library provides in fact a
direct estimate of the derivatives of such maps up to second
order, which is all that is required to compute the cumu-
lants of the JPDF.

As an illustration, let us generate sets of parameterized
non-Gaussian maps using the package SKY-NG-SIM [13]
of HEALPIX. In this so-called harmonic model, the
PDF of the pixel temperature T is given by
expð"T2=2$2

0Þj
Pn

i¼0 %iCiHiðT=$0Þj2, where Ci are nor-
malization constants. In this paper, we use NSIDE=2048,
‘max ¼ 4096, n ¼ 2, $0 ¼ 1 and vary %1 and %2. We
also consider the second option of SKY-NG-SIM, which
produces non-Gaussian field as even power, & of unit
variance zero mean Gaussian fields. For each set
of maps, we compute its derivatives, and arithmetically

average the corresponding cumulants, using a code,
MAP2CUM, relying on the HEALPIX routine ALM2MAP_DER.
Invariant variables J1 and J2 on a sphere are defined via the
mixed tensor of covariant derivatives J1 ¼ x;i

;i and J2 ¼
J21 " 4jx;i;jj. The differential counts are then evaluated for

a range of threshold, # 2 ½"5; 5'. For each of these maps,
the number of extrema is computed by the procedure
MAP2EXT that implements the following algorithm: for
every pixel a segment of quadratic surface is fit in the
tangent plane based on the temperature values at the pixel
of origin and its HEALPIX neighbors. The position of the
extremum of this quadratic, its height, and its Hessian are
computed. The extremum is counted into the tally of the
type determined by its Hessian if its position falls within
the original pixel. Several additional checks are performed
to preclude registering extrema in the neighboring pixels
and minimize missing extrema due to jumps in the fit
parameters as region shifts to the next pixel. Masks are
treated by not considering pixels next to the mask bound-
ary. Pixel-pixel noise covariance can be included while
doing the local fit. On noise-free maps the procedure
performs with better than 1% accuracy when the map is
smoothed with a Gaussian filter with FWHM exceeding six
pixels. Both MAP2CUM and MAP2EXT are available upon
request. Figure 1 illustrates the very good agreement be-
tween the theoretical expectation of the differential number
counts and the low-frequency # dependency of the mea-
sured ones for both the harmonic and the power-law
models.
We have also successfully explored an alternative nu-

merical procedure based on Monte Carlo (see e.g. [11])
evaluation of the integral (1) over the distribution function.
This procedure is likely to be more practical for expansion
beyond the fourth order for 2D topological invariants.
Starting from Eq. (3), we reexpress both the polynomials
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where terms are sorted in the order of the field power n andPiþ2jþkþ2l¼n
i;j;k;l¼0 stands for summation over all combinations

of non-negative i, j, k, l such that iþ 2jþ kþ 2l adds to
the order of the expansion term n. Hi are (probabilists’)
Hermite and Lj are Laguerre polynomials.

The Gram-Charlier coefficients, h! iq2jJ1kJ2liGC &
ð%1Þjþlj!l!hHið!ÞLjðq2ÞHkðJ1ÞLlðJ2Þim that appear in the
expansion can be related to the more familiar cumulants of
the field and its derivatives (we use h im for statistical
moments while reserving h i for statistical cumulants),
actually being identical to them for the first three orders
n ¼ 3, 4, 5. See Ref. [10] for lookup tables of the relation-
ship between Gram-Charlier cumulants and statistical
cumulants. As an illustration, one sixth-order nontrivial
cumulant would be hJ31J2!iCG¼ hJ31J2!iþhJ31ihJ2!iþ
3hJ1J2ihJ21!i. It is prudent to stress that the Gram-
Charlier series expansion is distinct from the perturbative
expansions. For instance, while the linear Edgeworth or
fNL expansion match solely to the first-order n ¼ 3 Gram-
Charlier coefficients, quadratic terms require knowledge
of the Gram-Charlier terms to n ¼ 6, while the cubic ones
to n ¼ 9.

Integrals over J1 and J2 for extremal points can be carried
out analytically even for the general expression (3).

Different types of critical points can be evaluated sepa-
rately by restraining the integration domain in the
J1 % J2 plane to ensure the appropriate signs for the
eigenvalues.
The effect of the non-Gaussian cubic correction on the

total number of the extrema of different types is given by
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where we have restored (see note [11]) the dimensional
scaling with R' ¼ #1=#2, the characteristic separation
scale between extrema. The total number of saddles, as
well as of all the extremal points, nmax þ nmin þ nsad, are
preserved in the first-order (the latter following for the
former, as topological considerations imply nmax % nsad þ
nmin ¼ const), but the symmetry between the minima and
the maxima is broken.
The differential number counts with respect to the

excursion threshold $ are given by
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where K1, K2, K3 are polynomials with coefficients expressed in terms of the cumulants. Here we give explicit expressions
for the first non-Gaussian order, while the next order can be found at [10].

The term K1ð$;%Þ has a special role determining the Euler number &ð$Þ via @&=@$ ¼ @=@$ðnmax þ nmin % nsadÞ ¼ffiffiffiffiffiffiffiffiffi
2="

p
R%2
' expð%$2=2ÞK1ð$;%Þ. As such, its full expansion has been given in [4], Eq. (7), and confirmed to the second order

in [6]. To the leading non-Gaussian order
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Introducing scaled Hermite polynomials H(
n ð$;#Þ & #(nHnð$=#Þ, the polynomial K2ð$;%Þ, the only one

that determines the distribution of saddle points, can be written as
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The remaining term K3ð#;"Þ is the most complicated one. It is expressed as the expansion in Hþ
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Equations (5) and (6) (together with the next order ex-
pansion available online) are the main theoretical result of
this paper.

II. IMPLEMENTATION

Evaluating these estimators requires computing the cu-
mulants appearing in Eqs. (7)–(9). In non-Gaussian models
where the field is represented by the functional of a
Gaussian field this may be possible directly, while in
general, as shown in [6], such cumulants can be found as
weighted marginals of the underlying bispectrum (to third
order), trispectrum (to fourth order), etc. On a sphere, the
high-order marginals are particularly cumbersome and
time consuming to compute, as they also involve the con-
tractions of n" j Wigner symbols. Here we suggest a
different route, based on the assumption that scientists
interested in fitting extrema counts to non-Gaussian maps
are typically in a position to generate realizations of such
maps. In that case, it becomes relatively straightforward to
draw samples of such maps, and estimate the correspond-
ing cumulants. The HEALPIX [12] library provides in fact a
direct estimate of the derivatives of such maps up to second
order, which is all that is required to compute the cumu-
lants of the JPDF.

As an illustration, let us generate sets of parameterized
non-Gaussian maps using the package SKY-NG-SIM [13]
of HEALPIX. In this so-called harmonic model, the
PDF of the pixel temperature T is given by
expð"T2=2$2

0Þj
Pn

i¼0 %iCiHiðT=$0Þj2, where Ci are nor-
malization constants. In this paper, we use NSIDE=2048,
‘max ¼ 4096, n ¼ 2, $0 ¼ 1 and vary %1 and %2. We
also consider the second option of SKY-NG-SIM, which
produces non-Gaussian field as even power, & of unit
variance zero mean Gaussian fields. For each set
of maps, we compute its derivatives, and arithmetically

average the corresponding cumulants, using a code,
MAP2CUM, relying on the HEALPIX routine ALM2MAP_DER.
Invariant variables J1 and J2 on a sphere are defined via the
mixed tensor of covariant derivatives J1 ¼ x;i

;i and J2 ¼
J21 " 4jx;i;jj. The differential counts are then evaluated for

a range of threshold, # 2 ½"5; 5'. For each of these maps,
the number of extrema is computed by the procedure
MAP2EXT that implements the following algorithm: for
every pixel a segment of quadratic surface is fit in the
tangent plane based on the temperature values at the pixel
of origin and its HEALPIX neighbors. The position of the
extremum of this quadratic, its height, and its Hessian are
computed. The extremum is counted into the tally of the
type determined by its Hessian if its position falls within
the original pixel. Several additional checks are performed
to preclude registering extrema in the neighboring pixels
and minimize missing extrema due to jumps in the fit
parameters as region shifts to the next pixel. Masks are
treated by not considering pixels next to the mask bound-
ary. Pixel-pixel noise covariance can be included while
doing the local fit. On noise-free maps the procedure
performs with better than 1% accuracy when the map is
smoothed with a Gaussian filter with FWHM exceeding six
pixels. Both MAP2CUM and MAP2EXT are available upon
request. Figure 1 illustrates the very good agreement be-
tween the theoretical expectation of the differential number
counts and the low-frequency # dependency of the mea-
sured ones for both the harmonic and the power-law
models.
We have also successfully explored an alternative nu-

merical procedure based on Monte Carlo (see e.g. [11])
evaluation of the integral (1) over the distribution function.
This procedure is likely to be more practical for expansion
beyond the fourth order for 2D topological invariants.
Starting from Eq. (3), we reexpress both the polynomials
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where terms are sorted in the order of the field power n andPiþ2jþkþ2l¼n
i;j;k;l¼0 stands for summation over all combinations

of non-negative i, j, k, l such that iþ 2jþ kþ 2l adds to
the order of the expansion term n. Hi are (probabilists’)
Hermite and Lj are Laguerre polynomials.

The Gram-Charlier coefficients, h! iq2jJ1kJ2liGC &
ð%1Þjþlj!l!hHið!ÞLjðq2ÞHkðJ1ÞLlðJ2Þim that appear in the
expansion can be related to the more familiar cumulants of
the field and its derivatives (we use h im for statistical
moments while reserving h i for statistical cumulants),
actually being identical to them for the first three orders
n ¼ 3, 4, 5. See Ref. [10] for lookup tables of the relation-
ship between Gram-Charlier cumulants and statistical
cumulants. As an illustration, one sixth-order nontrivial
cumulant would be hJ31J2!iCG¼ hJ31J2!iþhJ31ihJ2!iþ
3hJ1J2ihJ21!i. It is prudent to stress that the Gram-
Charlier series expansion is distinct from the perturbative
expansions. For instance, while the linear Edgeworth or
fNL expansion match solely to the first-order n ¼ 3 Gram-
Charlier coefficients, quadratic terms require knowledge
of the Gram-Charlier terms to n ¼ 6, while the cubic ones
to n ¼ 9.

Integrals over J1 and J2 for extremal points can be carried
out analytically even for the general expression (3).

Different types of critical points can be evaluated sepa-
rately by restraining the integration domain in the
J1 % J2 plane to ensure the appropriate signs for the
eigenvalues.
The effect of the non-Gaussian cubic correction on the

total number of the extrema of different types is given by
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where we have restored (see note [11]) the dimensional
scaling with R' ¼ #1=#2, the characteristic separation
scale between extrema. The total number of saddles, as
well as of all the extremal points, nmax þ nmin þ nsad, are
preserved in the first-order (the latter following for the
former, as topological considerations imply nmax % nsad þ
nmin ¼ const), but the symmetry between the minima and
the maxima is broken.
The differential number counts with respect to the

excursion threshold $ are given by
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where K1, K2, K3 are polynomials with coefficients expressed in terms of the cumulants. Here we give explicit expressions
for the first non-Gaussian order, while the next order can be found at [10].

The term K1ð$;%Þ has a special role determining the Euler number &ð$Þ via @&=@$ ¼ @=@$ðnmax þ nmin % nsadÞ ¼ffiffiffiffiffiffiffiffiffi
2="

p
R%2
' expð%$2=2ÞK1ð$;%Þ. As such, its full expansion has been given in [4], Eq. (7), and confirmed to the second order

in [6]. To the leading non-Gaussian order
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Introducing scaled Hermite polynomials H(
n ð$;#Þ & #(nHnð$=#Þ, the polynomial K2ð$;%Þ, the only one

that determines the distribution of saddle points, can be written as
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Random fields are ubiquitous phenomena in physics
appearing in areas ranging from turbulence to the land-
scape of string theories. In cosmology, the sky-maps
of the polarized cosmic microwave background (CMB)
radiation—a focal topic of current research—is a prime
example of such 2D random fields. Modern view of the
cosmos, developed primarily through statistical analysis of
these fields, points to a Universe that is statistically homo-
geneous and isotropic with a hierarchy of structures arising
from small Gaussian fluctuations of quantum origin. While
the Gaussian limit provides the fundamental starting point
in the study of random fields [1–3], non-Gaussian features
of the CMB fields are of great interest. Indeed, CMB
inherits a high level of Gaussianity from initial fluctua-
tions, but small non-Gaussian deviations may provide a
unique window into the details of processes in the early
Universe. The search for the best methods to analyze non-
Gaussian random fields is ongoing.

In Ref. [4] the general invariant based formalism for
computing topological and geometrical characteristics of
non-Gaussian fields was presented. The general formulas
for the Euler characteristics to all orders has been derived,
which encompasses the well-known first correction [5] and
which was later confirmed to the next order by [6]. We now
focus on the statistics of the density of extremal points that
follows directly from the formalism of [4]. Extrema counts
is an example of the real space statistical measures that
can be used to detect non-Gaussianity and place the limits
on the cosmological models that give rise to it in a way
complimentary to the spectral techniques (see e.g. [7]).
The goal of this paper is to provide an explicit recipe on
how to use this formalism in practice on idealized 2D
CMB Planck-like data.

I. EXTREMA COUNTS

Extrema counts, especially that of the maxima of the
field, have long application to cosmology (see e.g. [3]);
however, theoretical developments have been mostly

restricted to the Gaussian fields. The statistics of extrema
counts, as well as of the Euler number, requires the knowl-
edge of the one-point joint probability distribution function
(JPDF) Pðx; xi; xijÞ of the field x, its first, xi, and second,
xij, derivatives [8]. Extrema density is an intrinsically
isotropic statistics given by [1,9]
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Under the condition of statistical isotropy of the field, the
essential form for the JPDF is therefore given in terms of
the rotation invariants—x itself, the square of the magni-
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then readily recovers the classical results [1,3,9] when the
limits of integration that define the extrema type are
implemented, namely, J1 2 ½&1; 0(, J2 2 ½0; J21( for
maxima, J1 2 ½0;1(, J2 2 ½0; J21( for minima, and
J1 2 ½&1;1(,J2 2 ½J21 ;1( for saddle points.
In [4] we have observed that for non-Gaussian JPDF the

invariant approach immediately suggests a Gram-Charlier
expansion in terms of the orthogonal polynomials defined
by the kernel G2D. Since " , q

2, J1, and J2 are uncorrelated
variables in the Gaussian limit, the resulting expansion is
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in J1, J2, ! , and q2 and G2D in terms of the six field
variables, ðx; xi; xijÞ. It is then straightforward to draw large
sets of random number triplets x11, x22, x12 satisfying
the Gaussian marginal distribution G"ðx11; x12; x22jx ¼
"; x1 ¼ x2 ¼ 0Þ. The integrand then consists of the correc-
tion to the JPDF in Eq. (3) times jJ21 $ J2j=4. Each triplet
element constitutes a Hessian matrix and is sorted to
contribute to either minima, saddle, or maxima count based
on the signs of its eigenvalues. The sum of the integrand
over all triplets yields a Monte Carlo estimate of @next=@".

We note that all of the presented analysis allows
for straightforward generalization to 3D (notably the
Monte Carlo method), as shown in [14], to describe the
large scale distribution (LSS) of matter. Indeed in this
context, the gravitational instability that nonlinearly maps

the initial Gaussian inhomogeneities in matter density into
the LSS induces strong non-Gaussian features culminating
in the formation of collapsed, self-gravitating objects such
as galaxies and clusters of galaxies.
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FIG. 1. (Top) Predicted (solid line) number of maxima (right), saddle (middle), and minima (left) in !" ¼ 0:25 bins as a function of
the threshold, ", on top of the measured count from a single realization full-sky NSIDE=2048 HEALPIX map (histogram). The temperature
field is smoothed with the Gaussian filter of 10 arcmin FWHM, resulting in R% & 5:5arcmin & 3 pixels. The dashed line corresponds
to the Gaussian prediction. The left panel corresponds to the harmonic oscillator model of non-Gaussianity with #1 ¼ 0:6, #2 ¼ 0:6
(for which hx3i ¼$ 0:07), while the right panel corresponds to the power-law non-Gaussianity with $ ¼ 2 (for which hx3i ¼ 0:1).
(Bottom) Departure from Gaussianity for the two models as predicted (solid line) and measured (dashed line) for maxima (light grey),
minima (dark grey), and saddle points (grey). Note that the corrections of Eqs. (5) and (6) (solid line) give a very accurate match to the
low-frequency " behavior of the measured PDF. As is seen, different models of non-Gaussianity can be distinguished by their effects
on extrema.
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Random fields are ubiquitous phenomena in physics
appearing in areas ranging from turbulence to the land-
scape of string theories. In cosmology, the sky-maps
of the polarized cosmic microwave background (CMB)
radiation—a focal topic of current research—is a prime
example of such 2D random fields. Modern view of the
cosmos, developed primarily through statistical analysis of
these fields, points to a Universe that is statistically homo-
geneous and isotropic with a hierarchy of structures arising
from small Gaussian fluctuations of quantum origin. While
the Gaussian limit provides the fundamental starting point
in the study of random fields [1–3], non-Gaussian features
of the CMB fields are of great interest. Indeed, CMB
inherits a high level of Gaussianity from initial fluctua-
tions, but small non-Gaussian deviations may provide a
unique window into the details of processes in the early
Universe. The search for the best methods to analyze non-
Gaussian random fields is ongoing.

In Ref. [4] the general invariant based formalism for
computing topological and geometrical characteristics of
non-Gaussian fields was presented. The general formulas
for the Euler characteristics to all orders has been derived,
which encompasses the well-known first correction [5] and
which was later confirmed to the next order by [6]. We now
focus on the statistics of the density of extremal points that
follows directly from the formalism of [4]. Extrema counts
is an example of the real space statistical measures that
can be used to detect non-Gaussianity and place the limits
on the cosmological models that give rise to it in a way
complimentary to the spectral techniques (see e.g. [7]).
The goal of this paper is to provide an explicit recipe on
how to use this formalism in practice on idealized 2D
CMB Planck-like data.

I. EXTREMA COUNTS

Extrema counts, especially that of the maxima of the
field, have long application to cosmology (see e.g. [3]);
however, theoretical developments have been mostly

restricted to the Gaussian fields. The statistics of extrema
counts, as well as of the Euler number, requires the knowl-
edge of the one-point joint probability distribution function
(JPDF) Pðx; xi; xijÞ of the field x, its first, xi, and second,
xij, derivatives [8]. Extrema density is an intrinsically
isotropic statistics given by [1,9]
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then readily recovers the classical results [1,3,9] when the
limits of integration that define the extrema type are
implemented, namely, J1 2 ½&1; 0(, J2 2 ½0; J21( for
maxima, J1 2 ½0;1(, J2 2 ½0; J21( for minima, and
J1 2 ½&1;1(,J2 2 ½J21 ;1( for saddle points.
In [4] we have observed that for non-Gaussian JPDF the

invariant approach immediately suggests a Gram-Charlier
expansion in terms of the orthogonal polynomials defined
by the kernel G2D. Since " , q

2, J1, and J2 are uncorrelated
variables in the Gaussian limit, the resulting expansion is
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size Θ2 > Θ1 is simulated and the desired map is considered
to be at the center of this window. In order to compute the
distance between two features(peaks), one chooses the first
one from the inside of the smaller square and the second
one from anywhere in the map. With this method, there is
no boundary effect for distance r ! (Θ2 − Θ1)/2 (Fatemi-
Ghomi et al. 1999). On the other hand to take mentioned
problem into account as well as to reduce the contribution
of noises, other estimators have been introduced (Landy and
Szalay 1993). Two most famous estimators are defined as:

ξN (r) ≡
(
DD
RR

)
NR(NR − 1)
ND(ND − 1)

− 1 (6)

and

ξLS(r) ≡
(
DD
RR

)
NR(NR − 1)
ND(ND − 1)

−
(
DR
RR

)
NR(NR − 1)

NDNR
+ 1

(7)
where ξN is the natural estimator and ξLS introduced by
Landy & Szalay (1993). The ”DD”, ”RR” and ”DR” stand
for the number of pairs in real data set, the number of pairs
in random data and the cross-correlation of pairs in real and
random maps, respectively. In addition NR is the number of
desired features in un-clustered map. To reduce the noise
effect it is recommended to take NR > ND. Throughout this
study we use ξLS(r) as a criterion to determine TPCF.

Up to now we introduced some estimators for determin-
ing TPCF of an arbitrary feature in underlying stochastic
field. Now we focus on the two-point correlation of peaks
above a certain threshold value, ϑ, in the temperature fluc-
tuations at the last scattering surface. We define the tem-
perature fluctuations field by F(r) ≡ [T (r)−⟨T (r)⟩]/⟨T (r)⟩.
For a map with size less than 60◦ we have r : (x, y). Since
we are interested in peaks as features in the CMB map,
we should determine the conditions to have a local max-
imum. To this end, the first derivatives Fi ≡ ∂F

∂xi
should

be zero and the Hessian matrix Fij ≡ ∂2F
∂xi∂xj

(which is

symmetric for our smooth field) must be negative defi-
nite. Based on these conditions, to clarify the location of
peaks we should specify six independent variables, namely:
W⃗ = {F ,Fx,Fy,Fxx,Fxy,Fyy}. In this paper we checked
them numerically to find the position of peaks. To ensure
that our algorithm works well, we compute some statistical
properties for a Gaussian stochastic field and compare them
with analytical predictions.

For a pure Gaussian random field, by definition n-point
correlation functions for even n can be expressed by 2-point
correlation and all odd n are identically zero. The correlation
function in the vicinity of violation of statistical isotropy and
homogeneity in 2D is:

⟨F(r+ u)F(r)⟩ = 1
(2π)2

∫
S(|k|)e−ik·uW (ku)dk (8)

here S(|k|) is so-called spectral density and W (ku) is a typi-
cal window function using for smoothing underlying discrete
field. The moments of underlying random field as well as its
derivatives are:

σ2
0 ≡

〈
F(r)2

〉
=

1
(2π)2

∫
S(|k|)dk

σ2
n ≡

〈(
∂nF(r)
∂xn

)2
〉

=
1

(2π)2

∫
k2nS(|k|)dk (9)

Figure 2. A sample distribution of peaks in a simulated CMB
map. To avoid boundary problem we choose the first peak from
the inside of the smaller square with size Θ1 while the second one
from anywhere in the map with size Θ2.

Figure 3. Left upper panel indicates the normalized number den-
sity of peaks in a typical 2D Gaussian field while the right upper
panel shows the normalized cumulative peaks for the same map
as a function of ϑ for various values of Ψ. The lower panels corre-
spond the same just for our simulated gaussian CMB map (size=
10◦ and resolution is R = 1′) by taking ensemble averages with
Ψ = 0.320±0.020 and γ = (1.050±0.040)×10−3 at 1σ confidence
interval.

Number 
density of 

peaks
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Figure 7. Density of peaks as a function of threshold level for
simulated pure Gaussian CMB map and accumulated by cosmic
string component have been illustrated in this plot. Upper left:
Gµ = 2× 10−8. Upper right: Gµ = 1× 10−7. Middle left: Gµ =
8×10−7. In the middle right panel the Gaussian+String simulated
map has been replaced by a simulated Gaussian map that posses
the power spectrum like a Gaussian+String simulated map with
Gµ = 8 × 10−7. The lower panels indicate the residue between
theoretical prediction of number density and that of directly given
by simulation.

of extrema alone is not sufficient, nevertheless it is able to
pick up the footprints of CS for almost Gµ ! 5× 10−7.

This inference could be justified regarding Fig. 8. The
morphology of Gaussian+String map is completely different
from a Gaussian map that contains the same power spec-
trum as Gaussian+String map, in addition the role of su-
perimposed CS in the second map is similar to noise. Sub-
sequently one can expect that the clustering method to be
much more powerful than n(ϑ) and also can be used as a
benchmark for tracking non-Gaussianity. It is interesting to
point out that, recently, Pogosyan et.al. determined theoret-
ical formula for computing the number density of extrema on
weakly non-Gaussian 2-Dimensional field. They showed that
various non-Gaussianity could be distinguished by means of
n(ϑ) (Pogosyan et al. 2011). While here our results demon-
strated that, at least non-Gaussianity due to straight CS is
not detected by direct calculating n(ϑ). Indeed the effect
of CS components on the CMB map according to extrema
counts view is the same as noise irrespective to nature of its
probability density function.

For different values of Gµ with various values of map
size and finite Beam size we have generated ensembles of
100 maps or even more. To check the effect of finite size

Figure 8. Left panel corresponds to a Gaussian+String with
Gµ = 8 × 10−7. Right panel illustrates a Gaussian map with
size 5◦ × 5◦ and resolution equates to R = 1′. Blue dots show the
position of peaks above ϑ = 0.5σ0. One should emphasize that
these two map have same power spectrum. It is clear that the
morphology of these two map are completely different.

Figure 9. Two-Point Correlation Function of peaks for simulated
CMB map. Top panel shows the results for pure Gaussian map as
well as Gaussian+Beam for FWHM equates to 4′ and 10′ at ϑ =
1σ0. Lower panel corresponds to peak-peak correlation function
for Gaussian+Beam with FWHM of beam is 4′ for various values
of ϑ. The map size is 10◦ with resolution R = 1′.

of simulated map and evaluation the reliability of numeri-
cal results, we increased the number of ensemble members
and the size of maps. We use Eq. (7) to compute TPCF for
various maps with size 10 degree and resolution 1 arcmin
(600 × 600 pixels). Fig. 9 indicates the results for Gaus-
sian CMB map. Upper panel of this figures corresponds to
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Figure 3. Abundance of density of peaks as a function of peak
threshold level for pure Gaussian maps and upon adding a cos-
mic string component. Upper left: Gµ = 2 × 10−8. Upper right:
Gµ = 1× 10−7. Middle left: Gµ = 8× 10−7. Results for a Gaus-
sian map (Gaussian-(GS)) having the same power spectrum as
the Gaussian+String map has also been indicated in this panel.
Middle right: for Gµ = 8 × 10−7 with beam effect. The lower
panels show the difference between theoretical Gaussian field pre-
diction for the number density of peak and what measured in the
simulated maps.

with Γ = FWHM/
√
8 ln 2 (Bond & Efstathiou 1987; Heav-

ens & Sheth 1999).
Finally, we add a model for the noise:

F(i, j) ≡ F(G+S)B(i, j) +F(N)(i, j), (4)

where the final noise term is white, i.e., it has
⟨F(N)(r1)F(N)(r2)⟩ ∼ δDirac(r1− r2), with the noise in pixel
(i, j) being a zero-mean Gaussian number with rms σnoise.
Figure 2 illustrates various components and steps in our map
making process.

2.3 Peak counts in mock maps

We have checked that the number density of peaks we iden-
tify in the Gaussian maps agrees with that expected from
theory. When the peak height is expressed in units of the
rms temperature, ϑ = ∆T/T , this prediction depends only
on the shape of the power spectrum Cℓ (Bond & Efstathiou
1987). Since CS modify Cℓ at high ℓ, it is interesting to ask

if the peak counts predicted by C(G+S)
ℓ provide a good de-

scription of the peak abundances in the G + S maps, even
though the maps themselves are not Gaussian. If not, then

peak counts alone allow one to distinguish between a purely
Gaussian model and one with an additional component.

Figure 3 shows that, for Gµ ! 10−7 (top panels), the
peak counts in G and G+S are almost indistinguishable. For
larger values of Gµ, the peak counts are noticably different
from one another (middle left panel), with the distribution
being shifted to smaller mean values when CS are present.
However, the measurements are each well described by
Gaussian peaks theory (Bond & Efstathiou 1987) with their

respective power spectra (C(G)
ℓ for the circles, and C(G+S)

ℓ

for the triangles), even though theG+S maps themselves are
not Gaussian. Thus, given only the observedCℓ and the peak
counts, it will not be possible to determine if there is a CS
component in the maps. Beam smearing makes the counts
indistinguishable upto even larger values Gµ ! 8 × 10−7

(middle right panel of Figure 3). In addition, to make more
obvious, we have added ∆n(ϑ) ≡ ncom.(ϑ)− nthe.(ϑ) in the
lower panel of Figure 3. Where ”com.” refers to numerical
result and ”the.” corresponds to theoretical prediction.

Recently, Pogosyan et al. (2011) derived expressions for
the number density of extrema in weakly non-Gaussian 2-
Dimensional fields. They showed that various non-Gaussian
models could be distinguished by means of n(ϑ). Our anal-
ysis demonstrates that, at least for the non-Gaussianity due
to straight CSs, this does not work.

2.4 Two-point statistics

Although we have demonstrated that peak counts in our
G + S maps are consistent with those in a Gaussian field
having the same Cℓ, direct inspection of the maps themselves
(top panel of Figure 4) shows that they have quite different
morphologies. The CS component seems to add small scale
random noise on top of the original Gaussian CMB signal.
We turn therefore to the use of two-point peak statistics for
distinguising between the two maps.

To this end, we measure the TPCF of peaks in our
Gaussian maps, ourG+S maps, and our Gaussian-GS maps.
For each value of Gµ, map size, resolution scale and beam
size, we have generated ensembles of ∼ 100 maps. Lower
panel of Figure 4 and Figure 5 show results from averag-
ing over 100 realizations of maps with Θ = 10◦ map at
R = 1′ and ϑ > 1σ0. There are obvious differences between
the TPCF in the G and G + S maps, with the latter hav-
ing substantially more signal on small scales. Although the
beam erases some of this (Figures 4 and 5), a residual effect
remains. This signal is rather different from that measured
in a Gaussian field which has the same Cℓ (what we called
Gaussian-GS previously). So we conclude that this is indeed
a promising method for identifying the CS component in the
maps.

The lower panel of Figure 4 shows explicitly that, al-
though the peak counts were unable to distinguish between
GSB and Gaussian-GSB maps (Figure 3), the TPCF on
scales θ " 12′ can. Figure 5 shows that the ability to dis-
criminate depends on Gµ and the beam size FWHM.

4 M. Sadegh Movahed, B. Javanmardi & Ravi K. Sheth

Figure 3. Abundance of density of peaks as a function of peak
threshold level for pure Gaussian maps and upon adding a cos-
mic string component. Upper left: Gµ = 2 × 10−8. Upper right:
Gµ = 1× 10−7. Middle left: Gµ = 8× 10−7. Results for a Gaus-
sian map (Gaussian-(GS)) having the same power spectrum as
the Gaussian+String map has also been indicated in this panel.
Middle right: for Gµ = 8 × 10−7 with beam effect. The lower
panels show the difference between theoretical Gaussian field pre-
diction for the number density of peak and what measured in the
simulated maps.

with Γ = FWHM/
√
8 ln 2 (Bond & Efstathiou 1987; Heav-

ens & Sheth 1999).
Finally, we add a model for the noise:

F(i, j) ≡ F(G+S)B(i, j) +F(N)(i, j), (4)

where the final noise term is white, i.e., it has
⟨F(N)(r1)F(N)(r2)⟩ ∼ δDirac(r1− r2), with the noise in pixel
(i, j) being a zero-mean Gaussian number with rms σnoise.
Figure 2 illustrates various components and steps in our map
making process.

2.3 Peak counts in mock maps

We have checked that the number density of peaks we iden-
tify in the Gaussian maps agrees with that expected from
theory. When the peak height is expressed in units of the
rms temperature, ϑ = ∆T/T , this prediction depends only
on the shape of the power spectrum Cℓ (Bond & Efstathiou
1987). Since CS modify Cℓ at high ℓ, it is interesting to ask

if the peak counts predicted by C(G+S)
ℓ provide a good de-

scription of the peak abundances in the G + S maps, even
though the maps themselves are not Gaussian. If not, then

peak counts alone allow one to distinguish between a purely
Gaussian model and one with an additional component.

Figure 3 shows that, for Gµ ! 10−7 (top panels), the
peak counts in G and G+S are almost indistinguishable. For
larger values of Gµ, the peak counts are noticably different
from one another (middle left panel), with the distribution
being shifted to smaller mean values when CS are present.
However, the measurements are each well described by
Gaussian peaks theory (Bond & Efstathiou 1987) with their

respective power spectra (C(G)
ℓ for the circles, and C(G+S)

ℓ

for the triangles), even though theG+S maps themselves are
not Gaussian. Thus, given only the observedCℓ and the peak
counts, it will not be possible to determine if there is a CS
component in the maps. Beam smearing makes the counts
indistinguishable upto even larger values Gµ ! 8 × 10−7

(middle right panel of Figure 3). In addition, to make more
obvious, we have added ∆n(ϑ) ≡ ncom.(ϑ)− nthe.(ϑ) in the
lower panel of Figure 3. Where ”com.” refers to numerical
result and ”the.” corresponds to theoretical prediction.

Recently, Pogosyan et al. (2011) derived expressions for
the number density of extrema in weakly non-Gaussian 2-
Dimensional fields. They showed that various non-Gaussian
models could be distinguished by means of n(ϑ). Our anal-
ysis demonstrates that, at least for the non-Gaussianity due
to straight CSs, this does not work.

2.4 Two-point statistics

Although we have demonstrated that peak counts in our
G + S maps are consistent with those in a Gaussian field
having the same Cℓ, direct inspection of the maps themselves
(top panel of Figure 4) shows that they have quite different
morphologies. The CS component seems to add small scale
random noise on top of the original Gaussian CMB signal.
We turn therefore to the use of two-point peak statistics for
distinguising between the two maps.

To this end, we measure the TPCF of peaks in our
Gaussian maps, ourG+S maps, and our Gaussian-GS maps.
For each value of Gµ, map size, resolution scale and beam
size, we have generated ensembles of ∼ 100 maps. Lower
panel of Figure 4 and Figure 5 show results from averag-
ing over 100 realizations of maps with Θ = 10◦ map at
R = 1′ and ϑ > 1σ0. There are obvious differences between
the TPCF in the G and G + S maps, with the latter hav-
ing substantially more signal on small scales. Although the
beam erases some of this (Figures 4 and 5), a residual effect
remains. This signal is rather different from that measured
in a Gaussian field which has the same Cℓ (what we called
Gaussian-GS previously). So we conclude that this is indeed
a promising method for identifying the CS component in the
maps.

The lower panel of Figure 4 shows explicitly that, al-
though the peak counts were unable to distinguish between
GSB and Gaussian-GSB maps (Figure 3), the TPCF on
scales θ " 12′ can. Figure 5 shows that the ability to dis-
criminate depends on Gµ and the beam size FWHM.
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Figure 7. Density of peaks as a function of threshold level for
simulated pure Gaussian CMB map and accumulated by cosmic
string component have been illustrated in this plot. Upper left:
Gµ = 2× 10−8. Upper right: Gµ = 1× 10−7. Middle left: Gµ =
8×10−7. In the middle right panel the Gaussian+String simulated
map has been replaced by a simulated Gaussian map that posses
the power spectrum like a Gaussian+String simulated map with
Gµ = 8 × 10−7. The lower panels indicate the residue between
theoretical prediction of number density and that of directly given
by simulation.

of extrema alone is not sufficient, nevertheless it is able to
pick up the footprints of CS for almost Gµ ! 5× 10−7.

This inference could be justified regarding Fig. 8. The
morphology of Gaussian+String map is completely different
from a Gaussian map that contains the same power spec-
trum as Gaussian+String map, in addition the role of su-
perimposed CS in the second map is similar to noise. Sub-
sequently one can expect that the clustering method to be
much more powerful than n(ϑ) and also can be used as a
benchmark for tracking non-Gaussianity. It is interesting to
point out that, recently, Pogosyan et.al. determined theoret-
ical formula for computing the number density of extrema on
weakly non-Gaussian 2-Dimensional field. They showed that
various non-Gaussianity could be distinguished by means of
n(ϑ) (Pogosyan et al. 2011). While here our results demon-
strated that, at least non-Gaussianity due to straight CS is
not detected by direct calculating n(ϑ). Indeed the effect
of CS components on the CMB map according to extrema
counts view is the same as noise irrespective to nature of its
probability density function.

For different values of Gµ with various values of map
size and finite Beam size we have generated ensembles of
100 maps or even more. To check the effect of finite size

Figure 8. Left panel corresponds to a Gaussian+String with
Gµ = 8 × 10−7. Right panel illustrates a Gaussian map with
size 5◦ × 5◦ and resolution equates to R = 1′. Blue dots show the
position of peaks above ϑ = 0.5σ0. One should emphasize that
these two map have same power spectrum. It is clear that the
morphology of these two map are completely different.

Figure 9. Two-Point Correlation Function of peaks for simulated
CMB map. Top panel shows the results for pure Gaussian map as
well as Gaussian+Beam for FWHM equates to 4′ and 10′ at ϑ =
1σ0. Lower panel corresponds to peak-peak correlation function
for Gaussian+Beam with FWHM of beam is 4′ for various values
of ϑ. The map size is 10◦ with resolution R = 1′.

of simulated map and evaluation the reliability of numeri-
cal results, we increased the number of ensemble members
and the size of maps. We use Eq. (7) to compute TPCF for
various maps with size 10 degree and resolution 1 arcmin
(600 × 600 pixels). Fig. 9 indicates the results for Gaus-
sian CMB map. Upper panel of this figures corresponds to
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Figure 1. A sketch for calculating two-point correlation of a
typical feature on a 2-Dimensional stochastic field. The filled cir-
cular symbols show the position of local maxima above a given
threshold value, ϑ. Two concentric circles have just been drawn
to show that in practice how the clustering of peaks is computed
(see text).

The number density of local extrema will be discussed
in section 2. In section 3 the simulation of a CMB map
using the most recent observation based on WMAP 7-year
mission+ Supernova type Ia + Large scale structures +
Baryonic acoustic oscillation will be explained. CMB map
making containing straight cosmic strings by means of
Kaiser-Stebbins phenomenon will be introduced in this
section. Section 4 will be devoted to our analysis and
discussion. Summary, conclusion and strategy of detecting
cosmic strings based on future surveys will be given in
section 5.

2 PEAK-PEAK CORRELATION FUNCTION

Generally, many systems on the nature behave in a stochas-
tic way. Therefore, to explore their relevant properties, we
have to rely on robust methods in statistical approaches. To
this end, there are many criteria proposed to discriminate
various stochastic fields from statistical point of view as well
as to quantify their nature.

The so-called two-point correlation function (TPCF) is
one of the powerful methods in statistical analysis of a de-
sired stochastic field. This method actually provides reliable
inference about clustering and excess probability of finding
typical features in the underlying stochastic field. Conse-
quently it became one of the most advantageous statistical
tools in cosmology and astronomy.

This quantity has been introduced in various references
from different approaches, so several estimators have been
provided (Peacock and Heavens 1985; Bardeen et al. 1986;
Peebles 1980; Bond and Efstathiou 1987; Lumsden et al.
1989; Davis and Peebles 1983; Hamilton 1993; Szapudi and

Szalay 1998; Hewett 1982; Landy and Szalay 1993; Fatemi-
Ghomi et al. 1999). This tool is also able to examine the
Non-Gaussianity of CMB (Tojeiro et al. 2006; Larson and
Wandelt 2005). Generally, estimators of TPCF is divided
in two main categories (Kerscher et al. 2000): I) estimators
based on counting pairs and II) geometric edge correction
approach. The central definition corresponding to the first
category which is used to define TPCF is as follows:

PDR(r) ≡
∑

ri∈D

∑

rj∈R

Φr(ri, rj) (1)

where ”D” means points coming from original data set. ”R”
stands for field in which the underlying features have been
distributed in completely random way with the same physi-
cal properties with respect to original one. Φr(ri, rj) ≡ [r !√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 < r+∆r]. In the case
of statistical isotropy and homogeneity violation, one should
write PDR(ri, rj). So the probability not only depends on
length scale of separation, r, but also on ri and rj as well. It
has been shown that all TPCF estimators give almost sim-
ilar results in small length scales and are encountered with
boundary effects at large scales (Kerscher et al. 2000). Here
to make it more obvious and for the sake of clarity, we are
going to present the mathematical frame work of TPCF and
then apply it to local maxima (peaks) of cosmic microwave
background fluctuations as a 2-Dimensional stochastic field.
According to probability of finding pair of desired features,
dP (r) in the underlaying field and that of in uniform or so-
called an un-clustered field distribution, dPR, one can define
TPCF as (Peacock and Heavens 1985):

dP (r) = [1 + ξ(r)]dPR (2)

In order to examine a 2-Dimensional feature space, consider
∆A to be an infinitesimal area element, consequently the
probability of finding a feature in this area is supposed to
be O(∆A). So we assume that the probability of finding a
feature (e.g. peak) in ∆A is ∆P = n∆A where n is the
surface number density of features. In addition ∆P12 is the
probability of finding a feature in ∆A1 and another in ∆A2

at a certain separation r and is written by:

∆P12(r) = n2∆A1∆A2[1 + ξ12(r)] (3)

If they are not spatially correlated, therefore ξ12(r) becomes
zero for all locations and separations. Therefore the mathe-
matical form of TPCF can be written as:

ξ(r) =
1

NpairsPR(r)

ND∑

i=1

ND∑

j>i

δDirac (r − |ri − rj |)− 1 (4)

where ND is the total number of features in underlying
stochastic field, Npairs is the total number of pairs. We note
that ri, i ∈ [1, ND] is the position of features and the double
summation over the Dirac delta here gives the number of
pairs Npairs(r) with separation r. Eq. (4) becomes:

ξ(r) =
Npairs(r)
nCrdr

− 1 (5)

where Cr is the circumference of the boundary of Ar and
dr is the bin size (see Fig. 1 to make more sense). Above
estimator is encountered with boundary effect in finite size
sample. One way to resolve the boundary effect problem is as
follows: one should use an extended window (see Fig. 2). To
this end, for each given map size, Θ1, an extended map with
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• Excess probability of finding a peak at a given distance 
from another relative to the probability for a uniform 
distribution of peaks (Peacock & Heavens and Peebles):

r

 

ΔP12 (r) = nΔA1 × nΔA2 × (1+ ξ(r))
ΔP12 (r) = npairΔA(r) × (1+ ξ(r))

npair =
M (M −1)

2A
∼

M
2

n

ξ(r) =
N pairs

npair 2πrΔr
−1
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Figure 4. Upper panel: Comparison of a Gaussian+String map
(left) with a pure Gaussian map which has the same total power
spectrum (right); blue dots show peaks above ϑ = 0.5σ0. In both
cases, Gµ = 8 × 10−7, the resolution R = 1′ and the map size
shown is 5◦ × 5◦. The morphology of these two maps is quite
different. Lower panels: TPCF of ϑ = 1.0σ0 peaks in these maps
and differences between them.

2.5 Quantitative limits

To quantify this we first compute the Student’s t-test based
on:

t(θ) =
ξ(⋄)(θ)− ξ(⊗)(θ)√
σ2
(⋄)(θ) + σ2

(⊗)(θ)
(5)

where ξ(θ) is the TPCF and σ(θ) is the mean standard de-
viation of each term in the numerator. The symbols ⋄ and
⊗ correspond to the G + S and G measurements and to
(G+S)B and (G)B with beam effect. For each θ, the corre-
sponding P-value, p(θ), are calculated. Degrees of freedom
based on the t-distribution function are 2Nsim − 2, where
Nsim is the number of simulated maps.

We then define χ2 ≡ −2
∑

ln p(θ). The final P-value
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Figure 5. Two-point correlation function of peaks above ϑ = 1σ0

for different values of Gµ. Here FWHM is 4′. ∆ξ(θ) corresponds
to difference between TPCF of various cases indicated in plots.

related to χ2 is calculated based on chi-square distribution
function with 2(θmax − θmin)/∆θ − 2 degrees of freedom.
Fig. 6 shows this P-value as a function of Gµ for various
maps with Θ = 10◦. We have drawn lines at p = 0.0027,
and 0.0455, since these correspond to 3σ and 2σ significance
levels. This shows that the TPCF can detect CS at 95%CL
provided Gµ ! 1.2 × 10−8 in maps without instrumental
noise. If noise is present, with rms σnoise = 10µK, then this
limit increases to Gµ ! 9.0 × 10−8. Including beam smear-
ing further degrades our limits: the minimum detectable CS
becomes Gµ ! 1.6× 10−7 at 2σ confidence interval. Table 1
summarizes our results.

3 CONCLUSION

If they exist, cosmic strings are expected to leave an imprint
in the CMB. We argued that although such strings may alter
the power spectrum (Figure 1) and the statistics of hot and
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Figure 7. Density of peaks as a function of threshold level for
simulated pure Gaussian CMB map and accumulated by cosmic
string component have been illustrated in this plot. Upper left:
Gµ = 2× 10−8. Upper right: Gµ = 1× 10−7. Middle left: Gµ =
8×10−7. In the middle right panel the Gaussian+String simulated
map has been replaced by a simulated Gaussian map that posses
the power spectrum like a Gaussian+String simulated map with
Gµ = 8 × 10−7. The lower panels indicate the residue between
theoretical prediction of number density and that of directly given
by simulation.

of extrema alone is not sufficient, nevertheless it is able to
pick up the footprints of CS for almost Gµ ! 5× 10−7.

This inference could be justified regarding Fig. 8. The
morphology of Gaussian+String map is completely different
from a Gaussian map that contains the same power spec-
trum as Gaussian+String map, in addition the role of su-
perimposed CS in the second map is similar to noise. Sub-
sequently one can expect that the clustering method to be
much more powerful than n(ϑ) and also can be used as a
benchmark for tracking non-Gaussianity. It is interesting to
point out that, recently, Pogosyan et.al. determined theoret-
ical formula for computing the number density of extrema on
weakly non-Gaussian 2-Dimensional field. They showed that
various non-Gaussianity could be distinguished by means of
n(ϑ) (Pogosyan et al. 2011). While here our results demon-
strated that, at least non-Gaussianity due to straight CS is
not detected by direct calculating n(ϑ). Indeed the effect
of CS components on the CMB map according to extrema
counts view is the same as noise irrespective to nature of its
probability density function.

For different values of Gµ with various values of map
size and finite Beam size we have generated ensembles of
100 maps or even more. To check the effect of finite size

Figure 8. Left panel corresponds to a Gaussian+String with
Gµ = 8 × 10−7. Right panel illustrates a Gaussian map with
size 5◦ × 5◦ and resolution equates to R = 1′. Blue dots show the
position of peaks above ϑ = 0.5σ0. One should emphasize that
these two map have same power spectrum. It is clear that the
morphology of these two map are completely different.

Figure 9. Two-Point Correlation Function of peaks for simulated
CMB map. Top panel shows the results for pure Gaussian map as
well as Gaussian+Beam for FWHM equates to 4′ and 10′ at ϑ =
1σ0. Lower panel corresponds to peak-peak correlation function
for Gaussian+Beam with FWHM of beam is 4′ for various values
of ϑ. The map size is 10◦ with resolution R = 1′.

of simulated map and evaluation the reliability of numeri-
cal results, we increased the number of ensemble members
and the size of maps. We use Eq. (7) to compute TPCF for
various maps with size 10 degree and resolution 1 arcmin
(600 × 600 pixels). Fig. 9 indicates the results for Gaus-
sian CMB map. Upper panel of this figures corresponds to
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theoretical prediction of number density and that of directly given
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from a Gaussian map that contains the same power spec-
trum as Gaussian+String map, in addition the role of su-
perimposed CS in the second map is similar to noise. Sub-
sequently one can expect that the clustering method to be
much more powerful than n(ϑ) and also can be used as a
benchmark for tracking non-Gaussianity. It is interesting to
point out that, recently, Pogosyan et.al. determined theoret-
ical formula for computing the number density of extrema on
weakly non-Gaussian 2-Dimensional field. They showed that
various non-Gaussianity could be distinguished by means of
n(ϑ) (Pogosyan et al. 2011). While here our results demon-
strated that, at least non-Gaussianity due to straight CS is
not detected by direct calculating n(ϑ). Indeed the effect
of CS components on the CMB map according to extrema
counts view is the same as noise irrespective to nature of its
probability density function.

For different values of Gµ with various values of map
size and finite Beam size we have generated ensembles of
100 maps or even more. To check the effect of finite size

Figure 8. Left panel corresponds to a Gaussian+String with
Gµ = 8 × 10−7. Right panel illustrates a Gaussian map with
size 5◦ × 5◦ and resolution equates to R = 1′. Blue dots show the
position of peaks above ϑ = 0.5σ0. One should emphasize that
these two map have same power spectrum. It is clear that the
morphology of these two map are completely different.

Figure 9. Two-Point Correlation Function of peaks for simulated
CMB map. Top panel shows the results for pure Gaussian map as
well as Gaussian+Beam for FWHM equates to 4′ and 10′ at ϑ =
1σ0. Lower panel corresponds to peak-peak correlation function
for Gaussian+Beam with FWHM of beam is 4′ for various values
of ϑ. The map size is 10◦ with resolution R = 1′.

of simulated map and evaluation the reliability of numeri-
cal results, we increased the number of ensemble members
and the size of maps. We use Eq. (7) to compute TPCF for
various maps with size 10 degree and resolution 1 arcmin
(600 × 600 pixels). Fig. 9 indicates the results for Gaus-
sian CMB map. Upper panel of this figures corresponds to
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Summary 
1) Motivation regarding to Stochastic field	

!

2) Perturbative expansion	

!

3) Theoretical calculation of various features, e.g. extrema	

!

4) Clustering and correlation function (Non-Gaussianity 
and Anisotropy)
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