In the name of God

Department of Physics Shahid Beheshti University

SELECTED TOPICS COURSE

Exercise Set 4

1. Bias definition: The relation between Unweighted TPCF and weighted TPCF can be considered as:

$$\Psi_{fg}(R) = \mathcal{B}_{fg}C(R)$$

- (a) For Up-crossing feature and according to the theoretical form of un-weighted TPCF, determine \mathcal{B} for 1+1-D stochastic field.
- (b) For Up-crossing feature and according to the theoretical form of un-weighted TPCF, determine \mathcal{B} for 1+2-D stochastic field.
- (c) For cmd feature (introduced by Mohammad Jalali, (Kanafi, MH Jalali, and S. M. S. Movahed. "Probing the Anisotropy and Non-Gaussianity in the Redshift Space through the Conditional Moments of the First Derivative. The Astrophysical Journal 963.1 (2024): 31.)) and according to the theoretical form of un-weighted TPCF, determine B for 1+2-D stochastic field.
- (d) For a sharp clipping feature, we have $f \equiv A\Theta(\alpha \vartheta)$. Here A is a normalization coefficient. The average value of sharp clipping in a Gaussian random field can be written by:

$$\langle f(\alpha) \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} A\Theta(\alpha - \vartheta) e^{-\alpha^2/2} d\alpha$$

Now, we expand $\Theta(\alpha - \vartheta)$ in terms of Hermite polynomials defined by $H_n = e^{x^2/2} (d/dx)^n e^{-x^2/2}$ with $\langle H_n(x) H_m(x) \rangle \delta_{nm} m!$. Therefore we have

$$A\Theta(\alpha) = \sum_{k=0}^{\infty} \frac{J_k}{k!} H_k(\alpha)$$

Show that

$$J_k = \frac{\vartheta H_{k-1}(\vartheta)}{\vartheta \sqrt{\pi/2} \exp(\vartheta^2/2) \mathrm{erfc}(\vartheta/\sqrt{2})}$$

- (e) Show $\lim_{\vartheta \to \infty} J_k = \vartheta^k$
- (f) Show $\langle \Theta(\alpha(r))\Theta(\alpha(r'))\rangle = 1 + \Psi(R) = \sum_{k=0}^{\infty} \frac{J_k^2}{k!} C_{\alpha\alpha}^k(R)$, where R = |r r'|.
- (g) For $R \to \infty$ show $\langle \Theta(\alpha(r))\Theta(\alpha(r')) \rangle = 1 + \Psi(R) \sim J_1^2 C_{\alpha\alpha}(R)$. Here $J_1 = \vartheta^2$.
- 2. According to the expansion of tracer as a function of field, namely $n_{cmd}(\vartheta_{eff}) = n_{cmd}(\vartheta \frac{\delta_b}{\sigma_0})$ and its Tylor expansion, compute the bias factor for *cmd* measure introduced by Mohammad Jalali, ("The Astrophysical Journal 963.1 (2024): 31.). Here we can consider the δ_b plays the role of underlying field.
- **3.** In the Redshift space distortion, the β is very important quantity, according to the \mathcal{B}_{cmd} , find the β dependancy of bias factor and according to the Eq. (46) of Mohammad Jalali, (The Astrophysical Journal
 963.1 (2024): 31.), compute the relative uncertainty of β for the given error on the bias factor ($\sigma_{\mathcal{B}_{cmd}}$).