In the name of God

Department of Physics Shahid Beheshti University

 SELECTED TOPICS COURSE

 SELECTED TOPICS COURSE}

Exercise Set 4

1. Bias definition: The relation between Unweighted TPCF and weighted TPCF can be considered as:

$$
\Psi_{f g}(R)=\mathcal{B}_{f g} C(R)
$$

(a) For Up-crossing feature and according to the theoretical form of un-weighted TPCF, determine \mathcal{B} for $1+1$-D stochastic field.
(b) For Up-crossing feature and according to the theoretical form of un-weighted TPCF, determine \mathcal{B} for $1+2$-D stochastic field.
(c) For cmd feature (introduced by Mohammad Jalali, (Kanafi, MH Jalali, and S. M. S. Movahed. "Probing the Anisotropy and Non-Gaussianity in the Redshift Space through the Conditional Moments of the First Derivative. The Astrophysical Journal 963.1 (2024): 31.)) and according to the theoretical form of un-weighted TPCF, determine \mathcal{B} for $1+2-\mathrm{D}$ stochastic field.
(d) For a sharp clipping feature, we have $f \equiv A \Theta(\alpha-\vartheta)$. Here A is a normalization coefficient. The average value of sharp clipping in a Gaussian random field can be written by:

$$
\langle f(\alpha)\rangle=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} A \Theta(\alpha-\vartheta) e^{-\alpha^{2} / 2} d \alpha
$$

Now, we expand $\Theta(\alpha-\vartheta)$ in terms of Hermite polynomials defined by $H_{n}=e^{x^{2} / 2}(d / d x)^{n} e^{-x^{2} / 2}$ with $\left\langle H_{n}(x) H_{m}(x)\right\rangle \delta_{n m} m$!. Therefore we have

$$
A \Theta(\alpha)=\sum_{k=0}^{\infty} \frac{J_{k}}{k!} H_{k}(\alpha)
$$

Show that

$$
J_{k}=\frac{\vartheta H_{k-1}(\vartheta)}{\vartheta \sqrt{\pi / 2} \exp \left(\vartheta^{2} / 2\right) \operatorname{erfc}(\vartheta / \sqrt{2})}
$$

(e) Show $\lim _{\vartheta \rightarrow \infty} J_{k}=\vartheta^{k}$
(f) Show $\left\langle\Theta(\alpha(r)) \Theta\left(\alpha\left(r^{\prime}\right)\right)\right\rangle=1+\Psi(R)=\sum_{k=0}^{\infty} \frac{J_{k}^{2}}{k!} C_{\alpha \alpha}^{k}(R)$, where $R=\left|r-r^{\prime}\right|$.
(g) For $R \rightarrow \infty$ show $\left\langle\Theta(\alpha(r)) \Theta\left(\alpha\left(r^{\prime}\right)\right)\right\rangle=1+\Psi(R) \sim J_{1}^{2} C_{\alpha \alpha}(R)$. Here $J_{1}=\vartheta^{2}$.
2. According to the expansion of tracer as a function of field, namely $n_{c m d}\left(\vartheta_{e f f}\right)=n_{c m d}\left(\vartheta-\frac{\delta_{b}}{\sigma_{0}}\right)$ and its Tylor expansion, compute the bias factor for $c m d$ measure introduced by Mohammad Jalali, ("The Astrophysical Journal 963.1 (2024): 31.). Here we can consider the δ_{b} plays the role of underlying field.
3. In the Redshift space distortion, the β is very important quantity, according to the $\mathcal{B}_{c m d}$, find the β dependancy of bias factor and according to the Eq. (46) of Mohammad Jalali, (The Astrophysical Journal 963.1 (2024): 31.), compute the relative uncertainty of β for the given error on the bias factor $\left(\sigma_{\mathcal{B}_{\text {cmd }}}\right)$.

