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1) Morphology 
2) Assessment of  (Phase transition, Anisotropy, Non-

Gaussianity, …); 
        Case studies:  PTA, RSD, Density fields, Rough surface, … 
3) Morphological based analysis  

- To put pristine constraints on the Physical parameters;  

- To use for early warning signal for phase transition;

The main goals:
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For more details see:
[1] Mohammad Hossein Jalali and S. M. S. Movahed, "Probing the anisotropy and non-Gaussianity in redshift space through the  
derivative of excursion set moments", arXiv:2308.03086, submitted to The Astrophysical Journal.
[2] H. Masoomy, S. Tajik, and S. M. S. Movahed, "Homology groups of embedded fractional Brownian motion." Physical Review 
E 106.6 (2022): 064115. 
[3] H. Masoomy, B. Askari, M. N. Najafi and S. M. S. Movahed, “Persistent homology of fractional Gaussian noise”, Physical 
Review E, 104.3 (2021):034116.



1) Morphological approaches to examine 
Stochastic fields  

• Geometrical and Topological measures 

• Probabilistic and Perturbation frameworks  

2) Redshift Space (Anisotropy and Non-Gaussianity)

Outline
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A glance at the roadmap (1) 
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A glance at the roadmap (2) 

• Motion invariance
• Additivity
• Conditional Continuity 

M(tB) = M(B) for any t ∈ T ;B ∈ R

M(B1 ∪B2) = M(B1) +M(B2)−M(B1 ∩B2) for any B1, B2 ∈ R

M(Ki) → M(K) Ki → K for Ki,K ∈ K

A := (U,R)

if x, y ∈ U and (x, y) ∈ R

Universe, Equivalence relation
Approximation space

indistinguishable in A.S.

• Robustness
• Analytical or 
semi-analytical 
measures
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A glance at the roadmap (3) 



General features

7

Bardeen, James M., et al. , Astrophysical Journal,  vol. 304, May 1, 1986, p. 15-61.
Vafaei Sadr, A., and SMSM,  NMRAS (2021)
SMSM, B. Javanmardi and R. K. Sheth, MNRAS, (2013)

P

Aϑ(F) ≡ {X|F(X) ≥ ϑ}

Mohammad Hossein Jalali and SMSM, arXiv:2308.03086,

2) Excursion Sets

1) Critical Sets



Minkowski Functionals (scalar)

2D field



Generalization of  Minkowski Functionals 
Minkowski Valuations (MVs)

2.b.2.a.

1.a. 1.b.

Beisbart, Claus, et al. "Vector-and tensor-valued descriptors for spatial patterns." Morphology of Condensed Matter: 
Physics and Geometry of Spatially Complex Systems (2002): 238-260.



Topology vs. Geometry
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Geometry

They are the same picture! They are totally different!

topology

Topological equivalence:
Homeomorphism
(Elastic motion:

stretch, squeeze, twist, bend) 

Geometrical equivalence:
congruence (Rigid motion:

Transformation, Rotation, Reflection)

Arnold, Bradford Henry. Intuitive concepts in elementary topology. Courier Corporation, 2011.

Any congruent spaces are topologically homeomorphic, but its inverse is not necessarily true
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credit: Hossein Maasoumi, M.Sc. Thesis 

To know more visit: 
http://ccg.sbu.ac.ir/tdaw/
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Data types and Conversion methods
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T. Matsubara, APJ 2003; S. Codis et. al., 1305.7402, Christophe Gay et. al., PRD 2012

Probabilistic frameworks and 
Theoretical approach

One-point statistics

Two-point statistics
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Model 2: Scaling anisotropy
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Model 1: correlation length 
anisotropy

M. Ghaseminezad, S.M.S.M. et al., (arXiv:1508.01409)
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Observer 

Figure 5. A wave of amplitude .5(k) in real space (thin line) appears as a wave with 
enhanced amplitude .5 S (k) in redshift space (thick line) because of peculiar velocities 

(arrows). If the wave vector k is along the line of sight, then the amplification factor is 
1 + {3. More generally, a wave that is angled to the line of sight appears amplified in 

redshift space by a factor 1 + {3J.l1, equation (4.35), where J.lk == z.k is the cosine of the 
angle between the wavevector k and the line of sight z. 

do. To guard against 'local bias', it would a reasonable precaution to excise 

at least part of the local region when analysing a galaxy survey. 

Furthermore, we are not at rest in the eMB. What to do about that is 

discussed in §4.3. 

Finally, it is much more straightforward to measure the selection func-

tion Tis (r) in redshift space than in real space. What to do about that is 

discussed in §4.4. 

4.2.1. The Linear Plane-Parallel Redshift Distortion Operator 

In the plane-parallel, or distant observer, limit, the linear distortion oper-

ator (4.23) reduces to (the superscript p denotes plane-parallel) 

{)2 

SP = 1 + (3-V- 2 (4.33) 
{)z2 

where z is distance along the line of sight. In Fourier space, ({)/{)zfV- 2 = 
k;/k2 = J.lk, where J.lk == z.k is the cosine ofthe angle between the wavevec-

tor k and the line of sight z. Thus in Fourier space the plane-parallel dis-

tortion operator reduces to a diagonal operator 

(4.34) 

so that, as illustrated in Figure 5, a Fourier mode 8S (k) in redshift space is 

simply equal to the unredshifted mode 8(k) amplified by a factor 1 + (3J.lk 

(4.35) 
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Without RSD With RSD

Line of sight

RSD: Linear Kaiser effect

Mohammad Hossein Jalali and S. M. S. Movahed, ", arXiv:2308.03086,
Hamilton, A. J. S. 1998, Astrophysics and Space Science Library, Vol. 

231, Linear Redshift Distortions: a Review, ed. D. Hamilton, 185, 
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Without RSD With RSD

Line of sight
Mohammad Hossein Jalali and S. M. S. M., ", arXiv:2308.03086,

FoG effect



Quijote N-body simulation
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N
(s)
cmd(ϑ, x̂)

N
(s)
cmd(ϑ, ŷ)
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Mohammad Hossein Jalali and S. M. S. M., ", arXiv:2308.03086,
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Ncr(ẑ)
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Concluding remarks and Take-Home 
massages

1) Morphologies contain valuable information, particularly in 

the high-precision data era;

2) Reducing the degeneracies via data-based modeling;

3) Put pristine constraints on relevant parameters;
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What the next?
  

1) Construction new measures

2) Beyond Plane-Parallel approximation.

3) Various field (Finding preferred direction) + Moving 

window + Iterative Coarse Graining  

4) Making a pipeline including various measures ranging from 

geometry to topology and utilizing Machine learning

19
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1) Measure-theoretic definition (probability triple)

2) Probabilistic framework definition

Stochastic fields, Stochastic processes, 

Random fields 
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{Ω,F ,P}

f d
: Ω → R

T

T ⊂ R
N

f is a (d +N)−Dimensional Stochastic field

X(t,ω) is stochastic variable

P{X(t1),X(t2), ...,X(tm)}

Probability space (probability triple) is represented by (Ω,F ,P)
Ω is sample space. It contains all possible outcomes
F is event space (σ-algebra)
A probability function (0 ≤ P ≤ 1), assigns a probability to each event in the event space

Just one flip of Fair coin
Ω = {Heads, Tails} ≡ {H,T}
F = {{}, {H}, {T}, {H,T}}
P({}) = 0; P({H}) = 0.5; P({T}) = 0.5; P({H}, {T}) = 1
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Probability space

Example 1:
Just one flip of Fair coin
Ω = {Heads, Tails} ≡ {H,T}
F = {{}, {H}, {T}, {H,T}}
P({}) = 0; P({H}) = 0.5; P({T}) = 0.5; P({H}, {T}) = 1

Example 2:

The fair coin is tossed three times.
Ω = HHH,HHT,HTH,HTT,THH,THT,TTH,TTT

F = 2kΩk = 28 = 256

Probability space (probability triple) is represented by (Ω,F ,P)
Ω is sample space. It contains all possible outcomes
F is event space (σ-algebra)
A probability function (0 ≤ P ≤ 1), assigns a probability to each event in the event space


