Sapousenls

Morphological properties of Random fields

Seyed Mohammad Sadegh Movahed

 smovahed.irDepartment of Physics, Shahid Beheshti University
School of Astronomy, Institute for Research in Fundamental Sciences (IPM)
Computational Cosmology Group (CCG-SBU)
23 December 2023, Research method course

COMPLEXLAB

The main goals:

1) Morphology
 2) Assessment of (Phase transition, Anisotropy, NonGaussianity, ...);
 Case studies: PTA, RSD, Density fields, Rough surface, ...
 3) Morphological based analysis
 - To put pristine constraints on the Physical parameters;
 - To use for early warning signal for phase transition;

For more details see:
[I] Mohammad Hossein Jalali and S. M. S. Movahed, "Probing the anisotropy and non-Gaussianity in redshift space through the derivative of excursion set moments", arXiv:2308.03086, submitted to The Astrophysical Journal.
[2] H. Masoomy, S. Tajik, and S. M. S. Movahed, "Homology groups of embedded fractional Brownian motion." Physical Review E 106.6 (2022): 064II5.
[3] H. Masoomy, B.Askari, M. N. Najafi and S. M. S. Movahed, "Persistent homology of fractional Gaussian noise", Physical Review E, I04.3 (202I):034II6.

Outline

1) Morphological approaches to examine Stochastic fields

- Geometrical and Topological measures
- Probabilistic and Perturbation frameworks

2) Redshift Space (Anisotropy and Non-Gaussianity)

A glance at the roadmap (1)

Underlying Theories

My road map: Morphology

 Simulations ${ }^{+}$
Data Analysis methods

Observational data sets

Data type

A glance at the roadmap (2)

Rough Set Theory

Underlying Theories

Hadwiger's Theorem

My road map: Morphology

Simulations

Observational data sets

Data type

- Motion invariance
- Additivity
$M(t B)=M(B) \quad$ for any $\quad t \in T ; B \in \mathcal{R}$
$M\left(B_{1} \cup B_{2}\right)=M\left(B_{1}\right)+M\left(B_{2}\right)-M\left(B_{1} \cap B_{2}\right) \quad$ for any $\quad B_{1}, B_{2} \in \mathcal{R}$
- Conditional Continuity ${ }_{M}\left(K_{i}\right) \rightarrow M(K) \quad K_{i} \rightarrow K \quad$ for $\quad K_{i}, K \in \mathcal{K}$

A glance at the roadmap (3)

I) Critical Sets General features

$$
\mathcal{A}_{\vartheta}(\mathcal{F}) \equiv\{X \mid \mathcal{F}(X) \geq \vartheta\}
$$

2) Excursion Sets

Mohammad Hossein Jalali and SMSM, arXiv:2308.03086,

Minkowski Functionals (scalar)
2D field

$$
\begin{aligned}
V_{0}(\nu) & =\int_{Q} d A=\langle\theta(\alpha-\nu)\rangle \\
V_{1}(\nu) & =\frac{1}{4} \int_{\partial Q} d l=\frac{\pi}{8}\left\langle\delta_{D}(\alpha-\nu) \mid \eta_{1},\right\rangle \sim N_{1}(\nu) \\
V_{2}(\nu) & =\frac{1}{2 \pi} \int_{\partial Q} k d l=-1 / 2\left\langle\delta_{D}(\alpha-\nu) \delta_{D}(\eta)\right| \eta_{1}\left|\xi_{11}\right\rangle
\end{aligned}
$$

Generalization of Minkowski Functionals Minkowski Valuations (MVs)

Beisbart, Claus, et al. "Vector-and tensor-valued descriptors for spatial patterns." Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems (2002): 238-260.

Topology vs. Geometry

Topological equivalence:
Homeomorphism (Elastic motion: stretch, squeeze, twist, bend)

III

Geometrical equivalence:
congruence (Rigid motion:
Transformation, Rotation, Reflection)

Any congruent spaces are topologically homeomorphic, but its inverse is not necessarily true Arnold, Bradford Henry. Intuitive concepts in elementary topology. Courier Corporation, 2011.

Data types and Conversion methods

credit: Hossein Maasoumi, M.Sc. Thesis
To know more visit:
http://ccg.sbu.ac.ir/tdaw/

Probabilistic frameworks and Theoretical approach

One-point statistics

$$
\begin{aligned}
\langle f\rangle & =\langle\text { Conditions correspond to feature }\rangle \\
& =\langle f\rangle_{\text {Gaussian }}+\text { Perturbative Parts }\left.\right|_{N G+\text { Anisotropy }}
\end{aligned}
$$

Two-point statistics

$$
\begin{array}{r}
\left\langle f\left(r_{1}\right) g\left(r_{2}\right)\right\rangle=\int d A_{1} d A_{2} P\left(A_{1}, A_{2}\right) f\left(r_{1}\right) g\left(r_{2}\right) \\
P\left(\vec{A}_{1}, \vec{A}_{2}\right)=\left[\frac{1}{2 \pi^{N} \operatorname{Det}(K)}\right]^{1 / 2} \exp \left(-\frac{A_{1}^{+} \cdot K^{-1} \cdot A_{2}}{2}\right)
\end{array}
$$

Proposed measure

Model I: correlation length anisotropy

$$
S^{(2-D)}(\mathbf{k})=\frac{4 \pi \gamma \sigma_{0}^{2} k_{c}^{2 \gamma} \xi_{u} \xi_{w}}{\left[k_{c}^{2}+\xi_{u}^{2} k_{u}^{2}+\xi_{w}^{2} k_{w}^{2}\right]^{\gamma+1}}
$$

Model 2: Scaling anisotropy

$$
S^{(2-D)}(\mathbf{k})=\frac{4 \pi \sigma_{0}^{2} k_{c}^{2\left(\gamma_{u}+\gamma_{w}\right)} \xi_{u} \xi_{w} \frac{\Gamma\left(\frac{1}{2}+\gamma_{u}\right)}{\Gamma\left(\gamma_{u}\right)} \frac{\Gamma\left(\frac{1}{2}+\gamma_{w}\right)}{\Gamma\left(\gamma_{w}\right)}}{\left[k_{c}^{2}+\xi_{u}^{2} k_{u}^{2}\right]^{\gamma_{u}+1 / 2}\left[k_{c}^{2}+\xi_{w}^{2} k_{w}^{2}\right]^{\gamma_{w}+1 / 2}}
$$

RSD: Linear Kaiser effect

Without RSD

Line of sight

With RSD

FoG effect

Without RSD
With RSD

Line of sight

Quijote N-body simulation

Concluding remarks and Take-Home massages

I) Morphologies contain valuable information, particularly in the high-precision data era;
2) Reducing the degeneracies via data-based modeling;
3) Put pristine constraints on relevant parameters;

What the next?

I) Construction new measures
2) Beyond Plane-Parallel approximation.
3) Various field (Finding preferred direction) + Moving window + Iterative Coarse Graining
4) Making a pipeline including various measures ranging from geometry to topology and utilizing Machine learning
 معرفى مغاهيم روش Nudge Elastic Band و كاربر دهاى آن در فيزيك

 مدلهای فيزيكى

كار كرو
حامد بخشيان
بيمان صاحبسرا

S 1

cher
vin
（40
مانا

Eric
 http：／／／ccg．sbu．ac．ir回寝 5

Stochastic fields, Stochastic processes, Random fields

I) Measure-theoretic definition (probability triple)

Probability space (probability triple) is represented by $(\Omega, \mathscr{F}, \mathbb{P})$
Ω is sample space. It contains all possible outcomes
\mathscr{F} is event space (σ-algebra)
A probability function $(0 \leq \mathbb{P} \leq 1)$, assigns a probability to each event in the event space

$$
\{\Omega, \mathscr{F}, \mathbb{P}\}
$$

Just one flip of Fair coin
$\Omega=\{$ Heads, Tails $\} \equiv\{\mathbf{H}, \mathbf{T}\}$
$\mathscr{F}=\{\{ \},\{\mathbf{H}\},\{\mathbf{T}\},\{\mathbf{H}, \mathbf{T}\}\}$
$\mathbb{P}(\})=0 ; \mathbb{P}(\{\mathbf{H}\})=0.5 ; \mathbb{P}(\{\mathbf{T}\})=0.5 ; \mathbb{P}(\{\mathbf{H}\},\{\mathbf{T}\})=1$

$$
f^{d}: \Omega \rightarrow \mathbb{R}^{T}
$$

$$
T \subset \mathbb{R}^{N}
$$

f is a $(d+N)$ - Dimensional Stochastic field

2) Probabilistic framework definition

$X(t, \omega)$ is stochastic variable

$$
\mathbb{P}\left\{X\left(t_{1}\right),{ }_{21}\left(t_{2}\right), \ldots, X\left(t_{m}\right)\right\}
$$

Probability space

Probability space (probability triple) is represented by $(\Omega, \mathscr{F}, \mathbb{P})$
Ω is sample space. It contains all possible outcomes
\mathscr{F} is event space (σ-algebra)
A probability function $(0 \leq \mathbb{P} \leq 1)$, assigns a probability to each event in the event space

Example 1:

Just one flip of Fair coin
$\Omega=\{$ Heads, Tails $\} \equiv\{\mathbf{H}, \mathbf{T}\}$
$\mathscr{F}=\{\{ \},\{\mathbf{H}\},\{\mathbf{T}\},\{\mathbf{H}, \mathbf{T}\}\}$
$\mathbb{P}(\})=0 ; \mathbb{P}(\{\mathbf{H}\})=0.5 ; \mathbb{P}(\{\mathbf{T}\})=0.5 ; \mathbb{P}(\{\mathbf{H}\},\{\mathbf{T}\})=1$

Example 2:

The fair coin is tossed three times.
$\Omega=$ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
$\mathscr{F}=2^{\|\Omega\|}=2^{8}=256$

