In the name of God

Department of Physics Shahid Beheshti University

COMPUTATIONAL PHYSICS

Exercise Set 7

(Date Due: 1397/02/16)

- 1. Compute Temperature profile for position and time for a rod.
- **2.** Solve Laplace's equation $(\nabla^2 \Phi(x, y) = 0)$ numerically for a 2D area with 300×300 pixels. Suppose that $\Phi(0, y) = y^2$, $\Phi(x, 0) = x$, $\Phi(L, y) = 0$ and $\Phi(x, L) = 1$ (relaxation method or finite difference method)
- **3.** Solve the following integration numerically:

$$\langle v_z^2 \rangle = \int_{-\infty}^{+\infty} dv_x \int_{-\infty}^{+\infty} dv_y \int_{-\infty}^{+\infty} dv_z v_z^2 p_v(\vec{v})$$

here $p_v(\vec{v}) = \left(\frac{\beta m}{2\pi}\right)^{3/2} \exp\left(-\frac{\beta m \vec{v}^2}{2}\right)$. You can imagine any values for free parameters.

4. Using Euler and RF4 methods, solve following initial value problem:

$$y''(t) + ay'(t) + \omega^2 y(t) = \cos(\omega_1 t)$$

with y(0) = A, y'(0) = 0 and take any arbitrary values for other free parameters.

5. Linear Boundary value problem: Suppose numerically y''(t) + 2y'(t) + y(t) = 0 with y(0) = 1 and y(1) = 3 and compare it with exact solution.

(For more details see (secondDE.pdf).

http://www.stewartcalculus.com/data/CALCULUS Concepts and Contexts 4th edition/upfiles/3c3-2ndOrderLinearEqnsStu.pdf (I have uploaded it in my webpage entitled secondDE.pdf)

Good luck, Movahed