In the name of God

Department of Physics Shahid Beheshti University COMPUTATIONAL PHYSICS

Exercise Set 7

(Date Due: 1397/02/16)

1. Compute Temperature profile for position and time for a rod.
2. Solve Laplace's equation $\left(\nabla^{2} \Phi(x, y)=0\right)$ numerically for a 2 D area with 300×300 pixels. Suppose that $\Phi(0, y)=y^{2}, \Phi(x, 0)=x, \Phi(L, y)=0$ and $\Phi(x, L)=1$ (relaxation method or finite difference method)
3. Solve the following integration numerically:

$$
\left\langle v_{z}^{2}\right\rangle=\int_{-\infty}^{+\infty} d v_{x} \int_{-\infty}^{+\infty} d v_{y} \int_{-\infty}^{+\infty} d v_{z} v_{z}^{2} p_{v}(\vec{v})
$$

here $p_{v}(\vec{v})=\left(\frac{\beta m}{2 \pi}\right)^{3 / 2} \exp \left(-\frac{\beta m \vec{v}^{2}}{2}\right)$. You can imagine any values for free parameters.
4. Using Euler and RF4 methods, solve following initial value problem:

$$
y^{\prime \prime}(t)+a y^{\prime}(t)+\omega^{2} y(t)=\cos \left(\omega_{1} t\right)
$$

with $y(0)=A, y^{\prime}(0)=0$ and take any arbitrary values for other free parameters.
5. Linear Boundary value problem: Suppose numerically $y^{\prime \prime}(t)+2 y^{\prime}(t)+y(t)=0$ with $y(0)=1$ and $y(1)=3$ and compare it with exact solution.
(For more details see (secondDE.pdf).
http://www.stewartcalculus.com/data/CALCULUS Concepts and Contexts 4th edition/upfiles/3c32ndOrderLinearEqnsStu.pdf (I have uploaded it in my webpage entitled secondDE.pdf)

Good luck, Movahed

