Produced by A. Kargaran and M. Bagheri under supervision of Dr. Movahed

Answer to Exercise set 3

1. Part A: We have conditional probability like below:

$$
\begin{array}{lc}
p\left(o n ; t_{n} \mid o f f ; t_{n-1}\right)=A & p\left(o n ; t_{n} \mid o n ; t_{n-1}\right)=C \\
p\left(o f f ; t_{n} \mid o n ; t_{n-1}\right)=B & p\left(o f f ; t_{n} \mid o f f ; t_{n-1}\right)=D
\end{array}
$$

From Bayse theorem we have constrain on above parameter and finally we have transformation matrix, so:

$$
T=\left[\begin{array}{cc}
1-B & A \\
B & 1-A
\end{array}\right]
$$

Now we diagonalize above matrix. Eigenvalues are 1 and $1-A-B$. Use this website to diagonal matrix with parameters. II. After N step diagonal matrix become like this:

$$
T^{N}=\left[\begin{array}{cc}
(1-A-B)^{N} & 0 \\
0 & 1
\end{array}\right]
$$

So your answer is $(1-A-B)^{N}$.
Part B: This data is Markovian because Δ became zero after $\tau=1$, so your plot of $\Delta(\tau)$ should be like this:

[^0]2. We should calculate this integral, result is inverse of normalization constant, so we have:
$$
\int_{-\infty}^{\infty} d^{N} X \exp \left(-\frac{X^{\dagger} \cdot A \cdot X}{2}\right)
$$

If B is diagonalized matrix of A with transformation $A=Q B Q^{T}$ and $A=Q B Q^{-1}$ because $Q^{-1}=Q^{T}$, with change of variable in form $X^{\prime}=Q^{T} X$ we can get:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d^{N} X \exp \left(-\frac{X^{\dagger} \cdot A \cdot X}{2}\right)=\int_{-\infty}^{\infty} d^{N} X^{\prime}\left|\frac{d^{N} X}{d^{N} X^{\prime}}\right| \exp \left(-\frac{X^{\prime \dagger} \cdot B \cdot X^{\prime}}{2}\right) \\
& \int_{-\infty}^{\infty} d^{N} X^{\prime}\left|\frac{d^{N} X}{d^{N} X^{\prime}}\right| \exp \left(-\frac{X^{\prime \dagger} \cdot B \cdot X^{\prime}}{2}\right)=\int_{-\infty}^{\infty} \prod_{i=1}^{N} d X_{i}^{\prime}\left|\frac{d X_{i}}{d X_{i}^{\prime}}\right| \exp \left(-\frac{X_{i}^{\prime 2} B_{i i}}{2}\right) \\
&=\prod_{i=1}^{N} \int_{-\infty}^{\infty} d X_{i}^{\prime 2}\left|\frac{d X_{i}}{d X_{i}^{\prime}}\right| \exp \left(-\frac{X_{i}^{\prime 2} B_{i i}}{2}\right)
\end{aligned}
$$

Finally:

$$
\begin{aligned}
\prod_{i=1}^{N} \int_{-\infty}^{\infty} d X_{i}^{\prime} \exp \left(-\frac{X_{i}^{\prime 2} B_{i i}}{2}\right)^{3} & =\prod_{i=1}^{N}\left[\frac{2 \pi}{B_{i i}}\right]^{1 / 2} \\
& =\left[(2 \pi)^{N} \prod_{i=1}^{N} \frac{1}{B_{i i}}\right]^{1 / 2} \\
& =\left[(2 \pi)^{N} \frac{1}{|B|}\right]^{1 / 2} \\
\int d^{N} X\left[\frac{\operatorname{Det}(B)}{(2 \pi)^{N}}\right]^{1 / 2} \exp & \left(-\frac{X^{\dagger} \cdot A \cdot X}{2}\right)
\end{aligned}
$$

Determinant is invariant constant so we can do this:

$$
\int d^{N} X\left[\frac{D e t(A)}{(2 \pi)^{N}}\right]^{1 / 2} \exp \left(-\frac{X^{\dagger} \cdot A \cdot X}{2}\right)
$$

[^1]
[^0]: 1http://wims.unice.fr/~wims/en_tool~linear~matrix.en.phtml

[^1]: ${ }^{2}$ We have $\operatorname{Det}\left(1 / Q^{T}\right)=\operatorname{Det}(1 / Q)=\operatorname{Det}\left(Q^{-1}\right)=\operatorname{Det}\left(Q^{T}\right)=+1$.
 ${ }^{3}$ This integral is helpful:

 $$
 \int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}}
 $$

