Produced by A. Kargaran and M. Bagheri under supervision of Dr. Movahed

Answer to Exercise set 2

1.Part A: We have:

$$
\begin{aligned}
\bar{p}(E) & =\int d v^{\prime} \frac{1}{\left|\frac{d g}{d v}\right|_{v=v^{\prime}}} \delta_{D}\left(v-v^{\prime}\right) p\left(v^{\prime}\right) \\
& =p(v)\left|\frac{d g}{d v}\right|_{v=v^{\prime}}^{-1} \\
& =p\left(g^{-1}(E)\right)\left|\frac{d g}{d v}\right|_{v=g^{-1}(E)}^{-1} \\
\bar{p}(E) & =p\left(\sqrt{\frac{2 E}{m}}\right) \frac{1}{\sqrt{(2 m E)}} \\
& \propto \frac{1}{\sqrt{(2 m E)}} e^{-E / k T} .
\end{aligned}
$$

v and -v have same energy so we should multiply above equation in two, so:

$$
\bar{p}(E) \propto \frac{2}{\sqrt{(2 m E)}} e^{-E / k T} .
$$

Part B: For oscillator equation of motion is $x=A \cos (\omega t)$, t is function of x in form $t=(1 / \omega) \cos ^{-1}(x / A)$. We see this oscillator in T seconds so we can guss that $p(t)=1 / T$. With this equations we can get:

$$
\left|\frac{d g}{d t}\right|_{t=g^{-1}(x)}=A \omega \sin \left(\cos ^{-1}\left(\frac{y}{A}\right)\right)
$$

SO:

$$
\begin{aligned}
p(x) & =p(t)\left|\frac{d g}{d t}\right|_{t=g^{-1}(x)}^{-1} \\
& =\frac{1}{T} \frac{1}{A \omega} \frac{1}{\sin \left(\cos ^{-1}\left(\frac{y}{A}\right)\right)} \\
& =\frac{1}{T \omega} \frac{1}{\sqrt{A^{2}-x^{2}}}
\end{aligned}
$$

x and -x have same PDF so we should multiply it by two, we have:

$$
p(x)=\frac{2}{T \omega} \frac{1}{\sqrt{A^{2}-x^{2}}}
$$

2. You should get something like below:

