Computational Physics Course

Exercise 3:

- 1- Solve the equation $\frac{dT(t)}{dt} = -k(T(t) T_R)$ for k = constant and k = k(T, t). T_R is the temperature of the reservoir. Plot $\sum_{i=1}^{N} |T(i)_{theory} - T(i)_{numeric}|$ versus h and find the optimum value for h.
- 2- Do the same procedure as the problem 1 for the equation $\frac{dT(t)}{dt} = -k|T(t) T_R|$ and check the behavior of the answer around T_R .
- 3- Solve the equation in problem 1 with the:
 - a) Euler-Cromer method.
 - b) RK F45
- 4- Electric Dipole:

Consider an electric dipole in a uniform electric field. Find the $\theta(t)$ if the initial angular displacement is θ_0 .

5- Simple Pendulum:

Consider a simple pendulum with small initial angular displacement Θ_0 . Solve the equation of motion and find $\Theta(t)$ using Euler and Euler-Cromer method. Check the behavior of your answer from the Euler method for large t.

6- Calculate the derivative of a 1000 number of the data sets of the Exercise 1.