Logic, Algebra and Computation

Morteza Moniri Department of Mathematics Shahid Beheshti University

> 12 Aban 1394 3 Oct. 2015

CPL: Classical Proposition Logic

• Syntax:

$$\varphi ::= p \mid \perp \mid \neg \varphi \mid \varphi \lor \varphi$$

• Semantics:

True-False

CLP- formulas denote propositions

CPL: Classical Proposition Logic

- Proof system for CLP:
 - Axioms- Deductive rules- Theorem- Deduction $\Gamma \vdash \varphi$
- Model Theory for CLP:
 - Valuations

V: Atoms \rightarrow {T, F} \overline{V} : Formulas \rightarrow {T, F} $\overline{V}(\neg \varphi) \neq \overline{V}(\varphi)$ $\overline{V}(\bot) = F$ $\overline{V}(\varphi \lor \psi) = F$ iff $\overline{V}(\varphi) = \overline{V}(\psi) = F$.

• Semantical consequence relation $\Gamma \vDash \varphi$.

Elementary Algebra as Logic

- Algebraic equations
- Syntax:
 - Terms or formulas in the language

x, y, z,, +, . , -.

- Semantics:
 - Terms as matrices or real numbers together with operations between them.

Programming Languages

- Syntax describes the form of a valid program.
- Semantics describes the meaning of the program or the result of executing that program.

Boolean Algebra

•
$$\mathcal{A} = (A, +, -, 0)$$
 where
a. b = -(-a + -b)
 $1 = -0$

Examples of BA

•
$$2 = (\{0, 1\}, +, -, 0)$$

 $-a = 1 - a$
 $a + b = max (a, b)$

• Power Set Algebra

A a set

$$\mathbf{B}(\mathbf{A}) = (\mathbf{P}(\mathbf{A}), \cup, -, \emptyset)$$

• A Set Algebra is a subalgebra of a Power Set Algebra.

• The set of propositional formulas (Form) can be considered as an Algebra:

$$\mathcal{F}orm = (Form, +, -, \bot)$$
$$-\varphi = \neg \varphi$$
$$\varphi + \psi = \varphi \lor \psi$$

• A valuation can be considered as a homomorphism between algebras:

$$\theta: \mathcal{F}orm \to 2$$

$$\theta(\perp) = 0$$

$$\theta(\neg \phi) = 1 - \theta(\phi)$$

$$\theta(\phi \lor \psi) = \max(\theta(\phi), \theta(\psi))$$

• Theorem:

- 1. $\models \varphi$ iff $\mathbf{2} \models \varphi \approx \top$
- 2. $2 \vDash \varphi \approx \top$ iff $\vDash \varphi \leftrightarrow \psi$
- 3. $\models \varphi \leftrightarrow (\varphi \leftrightarrow \top)$
- An equation s ≈ t is valid in an algebra if for any assignment to the variables occurring in s and t they have the same value (meaning) in the algebra.

Lindenbaum-Tarski Algebra

•
$$\mathcal{L} = (\text{Form}/\equiv, +, -, 0)$$

 $\varphi \equiv \psi \quad \text{iff} \vdash \varphi \leftrightarrow \psi$
 $[\varphi] + [\psi] = [\varphi \lor \psi]$
 $-[\varphi] = [\neg \varphi]$
 $0 = [\bot]$

• Proposition:

1. \mathcal{L} is a Boolean Algebra 2. $\vdash \varphi$ iff $\mathcal{L} \vdash \varphi \approx \top$ *Proof of 2:* (\Rightarrow) Easy. (\Leftarrow) Define e(p)=[p] \Rightarrow e(φ)=[φ] \Rightarrow [φ]=1 \Rightarrow $\vdash \varphi \leftrightarrow \top \Rightarrow \vdash \varphi$.

• Corollary(Algebraic Completeness Theorem): $\vdash \varphi \quad \text{iff} \quad \mathcal{BA} \vDash \varphi \approx \top$ Proof: (\Rightarrow) Induction on the complexity of proofs. (\Leftarrow) $\mathcal{BA} \vDash \varphi \approx \top \Rightarrow$ $\mathcal{L} \vDash \varphi \approx \top \Rightarrow$ $\vdash \varphi$.

- Stone Representation Theorem: Any Boolean Algebra is isomorphic to a set algebra.
- *Note:* This theorem shows that we have completeness w.r.t. concrete Boolean Algebras.

Modal Logic

• Syntax:

$$\varphi ::= p | \perp | \neg \phi | \phi \lor \phi | \diamond \phi$$
$$\Box \phi := \neg \diamond \neg \phi$$

 Kripke semantics for modal logic: F = (W, R) frame W a set R a binary relation on W.

- M = (W, R, V) a Kripke model
 - M, w \Vdash p iff w \in V(p)
 - M, w ⊮⊥
 - M, w ⊩ ¬φ iff M, w ⊮ φ
 - M, w $\Vdash \phi \lor \psi$ iff M, w $\Vdash \phi$ or M, w $\Vdash \psi$
 - M, w $\Vdash \Diamond \varphi$ iff $\exists v (Rwv and M, v \Vdash \varphi)$.

• Example of valid formulas: (K) $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$ (Dual) $\Box p \rightarrow \neg \Diamond \neg p$

Normal modal Logic

• A set Λ of modal formulas containing (K) and (Dual) and closed under the following rules

(MP),

(Generalization or Nessesitation) and

(Uniform substitution).

- *Definition*: If $\varphi \in \Lambda$ we say φ is a theorem of Λ and write $\vdash_{\Lambda} \varphi$.
- K= The smallest normal modal logic.
- *Definition:* For a class F of formulas, $\Lambda_{\rm F} = \{\varphi: \varphi \text{ is valid in F}\}.$
- *Definition:* A normal modal logic is sound w.r.t. Λ if $\Lambda \subseteq \Lambda_F$, and complete w.r.t. Λ if $\Lambda_F \subseteq \Lambda$.

• *Definition:* A normal modal logic is complete if it is the logic of some frame F, i.e. $\Lambda = \Lambda_F$.

• Theorem:

- 1. K is the logic of all frames
- 2. $K4 = K + \Diamond \Diamond p \rightarrow p$ is the logic of transitive frames
- 3. $T = K + p \rightarrow \Diamond p$ is the logic of reflexive frames.
- *Fact:* There are modal logics that are not the logic of any Frame, a weak point for Frame-semantics.

Boolean Algebras with operator (BAO)

•
$$\mathbb{A} = (A, +, -, 0, f_{\diamond})$$
 where
 $f_{\diamond} : A \longrightarrow A$
 $f_{\diamond} (0) = 0$
 $f_{\diamond} (x + y) = f_{\diamond}(x) + f_{\diamond}(y)$

• In the definition of assignment

 $\theta: \mathcal{F}orm \longrightarrow \mathbb{A}$ $\theta(\Diamond \varphi) = \mathbf{f}_{\Diamond}(\theta(\varphi))$

Lindenbaum- Tarski Algebra for Modal Logic

• If Λ is normal modal logic, then

$$\mathcal{L}_{\Lambda} = (\text{ Form} / \equiv_{\Lambda}, +, -, 0, f_{\diamond})$$
$$f_{\diamond} ([\varphi]) = [\diamond \varphi]$$

- Proposition: \mathcal{L}_{Λ} is a Boolean Algebra with operator.
- Proposition: $\vdash_{\Lambda} \varphi$ iff $\mathcal{L}_{\Lambda} \vDash_{\Lambda} \varphi \approx \top$.
- Corollary(Algebraic Completeness of Λ) $\vdash_{\Lambda} \varphi$ iff $\mathcal{BAO} \vDash \varphi \approx \top$.

- *Definition(Complex Algebra):* F = (W,R) a frame and X ⊆W
 m_R(X) ^{def} {w ∈ W: Rwx for some x ∈ X}
- *Note:* $V(\Diamond \varphi) = m_R(v(\varphi))$ for any valuation.
- Full Complex Algebra of $F = F^+ = (\mathbb{P}(W), \cup, -, \emptyset, m_R)$.
- A Complex Algebra is a subalgebra of a full complex Algebra.
- Complex Algebras are Concrete Boolean Algebra with Operator.

- Theorem (Jonsson- Tarski): Every BAO is isomorphic to a Complex Algebra.
- This theorem is a generalization of Ston's representation theorem to the new context of Modal Logic.

Applications of Modal Logic in TCS

- Temporal logic
 - □ → Always true
 - ◊ ----> Sometime true
- Temporal logic can be used to express properties of a transition system.
- Indeed, a transition system can be considered as certain Kripke model. In each state, some propositions are true.

- Extra temporal operators can be used.
 - Linear- time operators:
 - Xp : p holds true next time
 - Fp : p holds true sometime in the future
 - Gp : p holds true globally in the future
 - PUq : p holds true until q holds true
 - Path quantifiers:
 - A : for every path
 - E : there exists a path

• Model checking: To check whether a real system interpreted as a transition system satisfies certain good condition.

Epistemic Logic

- $\square_{a} \varphi$: Agent a knows φ
- $\mathbf{E}\boldsymbol{\varphi}$: Everyone knows $\boldsymbol{\varphi}$
- $C\varphi$: Everyone knows φ and everyone knows that everyone knows φ and ...
- Epistemic logic is used in AI and Game theory.

Dynamic Logic

- DL is a formal system for reasoning about programs.
- A correctness specification is a formal description (in the language of DL) of how the program is supposed to behave.
- A given program is correct if its behavior fulfills the specification.

- Some expressions of DL:
 - $[\alpha](\varphi \land \psi) \leftrightarrow [\alpha]\varphi \land [\alpha]\psi$

After each execution of program α , $\varphi \wedge \psi$ is true iff after each execution of α , φ and ψ is true.

- [α; β] φ ↔ [α] [β]φ
 Where [α; β] is sequentional composition
- $\alpha \cup \beta$ nondeterministic choice
- α^* iteration
- φ ? test

IPL: Intuitionistic Propositional Logic

- IPL is obtained from CPL by omitting PEM: $\phi \lor \neg \phi$
- Semantics: Kripke Model- Heyting Algebra
- **BHK**-interpretation of IPL is a basis for λ -Calculus.
 - *Example:* a proof of $\varphi \rightarrow \psi$ is a construction(function) which maps each proof of φ to a proof of ψ .

• Term $\lambda x^{A} x$ λx^{A} . λy^{B} . x • Type $A \rightarrow A$ $A \rightarrow (B \rightarrow A)$ • Some Typing rules $\Gamma \vdash M: A \rightarrow B$ $\Gamma \vdash N: A$ $\Gamma \vdash MN:B$ • Corresponding Natural Deduction rule in IPL $\Gamma \vdash A \rightarrow B \qquad \Gamma \vdash A$ $\Gamma \vdash B$

Correspondence

Logic Intuitionistic Logic Formulas Proofs Simplifications Programming λ-Calculus Types Terms Reduction

Fuzzy Logic

- PC(*)
 - * a t-norm
 - \Rightarrow_* : the implication related to *
- Language: p

• Valuations:

$$V: \text{Atoms} \to [0, 1]$$

$$\overline{V}: \text{Formulas} \to [0, 1]$$

$$\overline{V}(\varphi \& \psi) = \overline{V}(\varphi) * \overline{V}(\psi)$$

$$\overline{V}(\varphi \to \psi) = \overline{V}(\varphi) \Rightarrow_* \overline{V}(\psi)$$

$$\overline{V}(\neg \varphi) = (-)_* (\varphi) = \overline{V}(\varphi) \Rightarrow_* \mathbf{0}$$

$$\overline{V}(\varphi \land \psi) = \min (\overline{V}(\varphi), \overline{V}(\psi))$$

$$\overline{V}(\varphi \lor \psi) = \max (\overline{V}(\varphi), \overline{V}(\psi)).$$

- φ is a tautology of PC(*) if for every valuation V in PC(*), V(φ)=1.
- BL: Basic Logic introduced by Hajek
- BL-Algebra: the algebraic semantics for BL
- *Theorem:* BL is sound and complete w.r.t. BL-algebras.
- *Theorem:* BL is the logic of t-norms (providing concrete BL-algebras).

Thank you for your attention