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 

Abstract—Decimal 𝑿 × 𝒀 multiplication is a complex operation, 

where intermediate partial products (IPP) are commonly selected 

from a set of pre-computed radix-10 𝑿-multiples. Some works 

require only [𝟎, 𝟓] × 𝑿 via recoding digits of 𝒀 to one-hot 

representation of signed-digits in [−𝟓, 𝟓]. This reduces the 

selection logic at the cost of one extra IPP. Two’s complement 

signed-digit (TCSD) encoding is often used to represent IPPs, 

where dynamic negation (via one XOR per bit of 𝑿-multiples) is 

required for the recoded digits of 𝒀 in [−𝟓, −𝟏]. In this paper, 

despite generation of 17 IPPs, for 16-digit operands, we manage to 

start the partial product reduction (PPR) with 16 IPPs that 

enhances the VLSI regularity. Moreover, we save 75% of negating 

XORs via representing pre-computed multiples by sign-

magnitude signed-digit (SMSD) encoding. For the first level PPR, 

we devise an efficient adder, with two SMSD input numbers, 

whose sum is represented with TCSD encoding. Thereafter, multi-

level TCSD 2:1 reduction leads to two TCSD accumulated partial 

products, which collectively undergo a special early initiated 

conversion scheme to get at the final BCD product. As such, a 

VLSI implementation of 𝟏𝟔 × 𝟏𝟔-digit parallel decimal multiplier 

is synthesized, where evaluations show some performance 

improvement over previous relevant designs. 
 

Index Terms—Radix-10 multiplier, Redundant representation, 

Sign-magnitude signed digits, VLSI design. 

I. INTRODUCTION 

ECIMAL arithmetic hardware is highly demanded for fast 

processing of decimal data in monetary, web based, and 

human interactive applications [1]. Fast radix-10 

multiplication, in particular, can be achieved via parallel partial 

product generation (PPG) and partial product reduction (PPR), 

which is however, highly area consuming in VLSI 

implementations. Therefore, it is desired to lower the silicon 

cost, while keeping the high speed of parallel realization.  

Let 𝒫 = 𝑋 × 𝑌 represent an 𝑛 × 𝑛 decimal multiplication, 

where multiplicand 𝑋, multiplier 𝑌, and product 𝒫 are normal 

radix-10 numbers with digits in [0, 9]. Such digits are 

commonly represented via binary coded decimal (BCD) 

encoding. However, intermediate partial products (IPPs) are 

represented via a diversity of often redundant decimal digit sets 

and encodings (e.g., [0, 10] carry-save [2], [0, 15] overloaded 

decimal [3], [4], [−7, 7] signed digit [5], double 4,2,2,1 [6], and 

[−8, 8] Signed-Digit [7]). 

 

 
  

 

The choice of alternative IPP representations is influential on 

the PPG, which is of particular importance in decimal 

multiplication from two points of view: One is fast and low cost 

generation of IPPs and the other is its impact on representation 

of IPPs, which is influential on PPR efficiency. Straight forward 

PPG via BCD digit by digit multiplication [8], [9] is slow, 

expensive and leads to 𝑛 double-BCD IPPs for 𝑛 × 𝑛 

multiplication (i.e., 2𝑛 BCD numbers to be added). However, 

the work of [10] recodes both the multiplier and multiplicand to 

sign magnitude signed digit (SMSD) representation and uses a 

more efficient 3-bit by 3-bit PPG. Nevertheless, following a 

long standing practice [11], most PPG schemes use pre-

computed multiples of multiplicand 𝑋 (or 𝑋-multiples). Pre-

computation of the complete set {0,1, … 9} × 𝑋, as normal BCD 

numbers, and the subsequent selection is also slow and costly. 

A common remedial technique is to use a smaller less costly set 

that can be achieved via fast carry-free manipulation (e.g., 

{0,1,2,4,5} × 𝑋) at the cost of doubling the count of BCD 

numbers to be added in PPR; that is 𝑛 double-BCD IPPs are 

generated such as 3𝑋 = (2𝑋, 𝑋), 7𝑋 = (5𝑋, 2𝑋), or 9𝑋 =
(5𝑋, 4𝑋). We offer a summary of PPG and PPR characteristics 

of several previous relevant works in the Section II (Table I). 

The recoding of multiplier’s digits, in some relevant works 

[4], [6], and [7], leads to a carry bit besides the 𝑛 recoded digits 

of multiplier, which will generate an extra partial product. This 

is particularly problematic for parallel multiplication with 𝑛 =
16 (i.e., number of significand’s decimal digits according to 

IEEE standard size of single precision radix-10 floating-point 

numbers [12]), where the 17 generated partial products require 

five PPR levels instead of four (i.e., log2 16). Furthermore, they 

dynamically negate positive multiples based on the sign of 

multiplier’s recoded digits. This technique reduces the area and 

delay of logic that selects the X-multiples at the cost of 

conditionally negating the selected multiples, which requires at 

least 4𝑛2 XOR gates for 𝑛 × 𝑛 multiplication.   

In this paper, we aim to take advantage of [−5, 5] SMSD 

recoding of multiplier and dynamic negation of 𝑋-multiples, 

while reducing the number of XOR gates via generating [−6, 6] 
SMSD pre-computed 𝑋-multiples (i.e. just one XOR gate per 4-

bit digit). Other contributions of this paper are highlighted 

below. 

Starting the PPR with 16 partial products: An especial on 

the fly augmentation of two middle SMSD digits, leads to 

reducing the depth of partial product matrix by 1, such that the 

PPR starts with 16 operands right at the end of PPG, with no 

delay penalty for the latter.  
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Special 4-in-1 SMSD adder with TCSD sum: To avoid the 

challenging addition of SMSD IPPs, we design a novel carry-

free adder that represents the sum of two [−6, 6] SMSD 

operands in [−7, 7] two’s complement SD (TCSD) format, 

where one unified adder is utilized for all the four possible sign 

combinations. 

Improved TCSD addition: The rest of the reduction process 

uses special TCSD adders that are actually an improved version 

of the fast TCSD adder of [5]. Such 2:1 reduction promotes the 

VLSI regularity of the PPR circuit, especially for 𝑛 = 16 (i.e., 

the recommended operand size of IEEE 754-2008 [12]). 

Augmenting the final redundant to non-redundant 

conversion with the last PPR level: The last PPR level would 

normally lead to TCSD product, which should be converted to 

BCD. However, to gain more speed and reduce costs, we device 

a special hybrid decimal adder, with two TCSD inputs and a 

BCD output.  

The rest of this work is presented as follows. In Section II, as 

background coverage, we briefly study the previous relevant 

works, and discuss the corresponding IPP encodings and 

reduction cells. Regarding the proposed multiplier, SMSD 

recoding of digits of multiplier 𝑌 and pre-computed X-

multiples, its PPR and final product computation are discussed 

in Section III. Analytical and synthesis results are presented in 

Section IV, where performance comparison with best previous 

works is also provided. We finally conclude in Section V. 

 

II. BACKGROUND 

In this section, we briefly study several previous relevant 

works, via compiling their PPG and PPR characteristics in 

Table I. The column acronyms MR, ME, DN, #OP, PPDS, and 

PPDE stand for multiplier recoding, multiple encoding, 

dynamic negation of IPPs, number of operands to be added (i.e., 

number of originally generated nonredundant decimal numbers, 

or signed digit (SD) partial products), partial product digit set, 

and partial product digit encoding, respectively. In the same 

table, Svoboda [13] refers to the encoding of a digit 𝑑 ∈
[0, 6] ([−6, −0]) by 5-bit binary number 3𝑑(31 − 3𝑑). Some 

other works on decimal multiplication with floating-point 

operands [14-17], specific designs for FPGA (e.g., [18-19]), or 

digit by digit iterative approach (e.g., [9]), are not listed in Table 

I, since they are based on one of the tabulated works, or use 

embedded FPGA components, which are out of the scope of this 

work. 

 

Some more details for those reference works that have been 

reportedly implemented, for 𝑛 = 16, are:  

 [20]: Sequential multipliers, with fast carry-free X-multiple 

generation, where in the process of partial product 

accumulation, the PPDS and PPDE transform from [0, 18] 
to [0, 10] and double-BCD to BCD carry-save (CS), 

respectively.  

 [3]: As above, but the PPDS and PPDE transform to [0, 15] 
and (8,4,2,1), respectively. 

 [21]: Parallel multipliers, with fast carry-free 𝑋-multiple 

generation, where in PPR, the PPDS and PPDE transform 

to [0, 15] and (8,4,2,1), respectively. Number of reduction 

levels is 5. 

 [22]: As above, except that PPDS and PPDE transform to 

[0, 10] and BCD CS, respectively. Number of reduction 

levels is 6. 

 [2]: Parallel multiplier, with fast carry-free 𝑋-multiple 

generation, 4:1 and 2:1 multiplexing, where PPDS and 

PPDE will later transform to [0, 10] and BCD CS, 

respectively. Number of reduction levels is 6. 

 [6]: Two schemes are offered in this work, where both use 

3:2 reduction and especial “× 2” correction cells. 

o Radix-5: Parallel multiplier, fast carry-free X-multiple 

generation, 4:1 multiplexing of (±2𝑋, ±𝑋), and 2:1 

multiplexing of (10𝑋,  5𝑋). Number of reduction levels 

is 8. 

o Radix-10: Parallel multiplier, [−5, 5] SMSD recoding of 

multiplier, slow carry-propagating 3𝑋 generation, 5:1 

multiplexing with dynamic negation. Number of 

reduction levels is 6. 

 [10]: Sequential multiplier, slow PPG via BCD-to-[−5,5] 

SMSD recoding of multiplier’s and multiplicand’s digits, 

followed by digit-by-digit multiplication leading to [−6, 6] 
PPDS with slow partial product accumulation via Svoboda 

adder [13]. 

 [7]: Parallel multiplier, [−5, 5] SMSD recoding of 

multiplier, fast carry-free X-multiple generation via 

redundant representation of multiples including 3𝑋, 5:1 

multiplexing with dynamic negation. Reduction is 

accomplished in two stages. One is 17:8 that includes three 

levels of CS adder (CSA) and a 4-bit adder. The other (i.e., 

8:2) uses two levels of (4; 2) compressors and a 5-bit adder. 

Both stages conclude with some correction logic. 

 [4]: As above, except for reduction, where IPPs are 

represented as [0, 15] radix-10 numbers. Binary 4:2, and 

3:2 reductions are used with due decimal corrections. 

 

TABLE I 

SUMMARY OF PPG AND PPR CHARACTERISTICS. 

 Reference MR Pre-computed multiples ME DN #OP PPDS PPDE 

1 [11] 

None 

{0,1, … ,9} × 𝑋 

BCD 

No 
2𝑛 

[0, 9] BCD 

2 [3], [20], [21] {0,1,2,4,5} × 𝑋 

[0, 18] 

Double 

BCD 
3 [22] {0,1,2,5,8,9} × 𝑋 

4 [2] 

{0, ±1, ±2,5,10} × 𝑋 
5 [6] Radix-5 4,2,2,1 

Double 

4,2,2,1 

6 [10] 

[−5, 5] 

None [−5, 5] 

𝑛 + 1 

[−6,6] Svoboda 

7 [6] Radix-10 

{0,1,2,3,4,5} × 𝑋 

4,2,2,1 

Yes 

[0, 9] 4,2,2,1 

8 [7] [−8,8] [−8,8] −8,4,2,1,1 

9 [4] 
[−3,12] 
Excess-3 

[0, 15] 8,4,2,1 
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In [4], [6], and [7] dynamic negation of pre-computed 

X-multiples reduces their selection cost at the penalty of one 

XOR gate per each bit of the selected positive multiple. 

This negation cost is replicated 𝑛 times for parallel 𝑛 × 𝑛 

multiplication. Moreover, the 𝑛 inserted 1s for ten’s 

complementation in [6], and 𝑛 × (𝑛 + 1) 1s for digit wise 2’s 

complementation in [7], have a negative impact on area and 

power saving. The same is true for the correction constant, and 

more complex recoding due to zero handling, for [0, 15] partial 

products in [4]. One way to save these costs, as we do in Section 

III, is to generate the signed digit pre-computed X-multiples 

with sign magnitude format, so as to reduce the XOR gates to 

one per digit (roughly 75% savings in the number of negating 

XOR gates) and remove the aforementioned negative impacts. 

However, besides slowing down the PPG to some extent (e.g., 

in comparison to radix-5 implementation of [6]), new problems 

are introduced in PPR, which is to be explained and solved in 

the next section, where we also reduce the depth of IPP matrix 

to 𝑛 = 16, effectively prior to termination of PPG. 

 

III. DECIMAL IPPS WITH SIGN-MAGNITUDE REPRESENTATION 

OF SIGNED DIGITS 

Decimal signed digits in [−α, α] (α ≤ 7) are usually encoded 

with minimal 4-bit signed numbers. For example, consider α =
5 in [10] and α = 7 in [23] with sign magnitude and 2’s 

complement representations, respectively. The latter is suitable 

for basic arithmetic operations, except for negation, which is 

best performed on sign magnitude format.  

In this section, we propose a decimal multiplication scheme 

with the following characteristics that are in the same line as 

those of the designs listed in Table I.  

 [−5, 5] SMSD recoding of multiplier’s digits 

 {0,1,2,3,4,5} × 𝑋 pre-computed multiples 

 4-bit [−6, 6] SMSD encoding of pre-computed 

multiples  

 Dynamic negation of multiples with only one XOR per 

digit (i.e., per 4 bits) 

 𝑛 (instead of 𝑛 + 1) operands to be added for 𝑛 × 𝑛 

multiplication  

 Unified SMSD+SMSD⟶TCSD adder for all four input 

sign combinations  

 [−7, 7] TCSD representation for accumulated partial 

products 

 Early start of redundant to BCD conversion 

 Augmenting last PPR level with final conversion to 

BCD 

Fig. 1 depicts the general architecture of the proposed 16 ×
16 multiplication 𝒫 = 𝑋 × 𝑌, where details of each building 

block will be explained later. In particular, in the top three 

blocks, the multiplier’s digits are recoded to 𝑛 one-hot [−5, 5] 
SMSDs (i.e., one sign, and 5 magnitude bits), augmented with 

a 10𝑛-weighted carry bit. The multiples [0, 5] × 𝑋 are pre-

computed as 𝑛 [−6, 6] SMSDs and a 10𝑛-weighted [−5, 4] 
SMSD. Each SMSD contains a sign bit 𝑠 and 3-bit magnitude. 

The negative multiples [1, 5] × (−𝑋) are achieved via dynamic 

sign inversion of multiples [1, 5] × 𝑋, at the cost of only one 

XOR gate per digit.  

3.1. Recoding of multiplier’s digits 

Original BCD digits of multiplier require [0, 9] × 𝑋 pre-

computed multiples, which include hard multiples {3, 6, 7, 9} ×
𝑋 that unlike {2, 4, 5, 8} × 𝑋 are not derivable without carry 

propagation. On the other hand, BCD-to-redundant [−5, 5] 
SMSD recoding of multiplier’s digits with dynamic negation of 

IPPs reduces the required 𝑋-multiples to [0, 5] × 𝑋 that include 

only one hard multiple (i.e., 3𝑋). However, this recoding 

produces a carry as the (𝑛 + 1)th digit of multiplier, which 

increases the number of IPPs by 1. This is especially not 

desirable for 𝑛 = 16 (i.e., the recommended IEEE754-2008 

word size for decimal operands [12]). The reason is that it may 

increase the number of 2:1 PPR levels by 1, which can be 

avoided as will be dealt with in Section 3.3. 

The one-hot recoding input/output expressions are given by 

Eqn. set 1, where 𝑌𝑖 = 𝑣3𝑣2𝑣1𝑣0, and 𝑌𝑖−1 = 𝑤3𝑤2𝑤1𝑤0 

represent two consecutive digits of BCD multiplier, ω indicates 

whether 𝑌𝑖−1 ≥ 5,  𝑠𝑣′ is the sign of target code, and 𝑣1
′ -𝑣5

′  are 

one-hot signals corresponding to absolute values of recoded 

multiplier’s digit 𝑌𝑖
′ (i.e., 1-5), whose decimal weight is equal 

to that of 𝑌𝑖. More derivation details can be found in [4], [6], 

[7], and [10]. 
 

ω = 𝑤3 ∨ 𝑤2(𝑤1 ∨ 𝑤0), 

𝑣1
′ = 𝑣2 ∨ 𝑣1(ω ⨁ 𝑣0), 

𝑣2
′ = ω𝑣0(𝑣3 ∨ 𝑣2 ∨ 𝑣1 ∨ 𝑣2𝑣1) ∨ ω ∨ 𝑣0(𝑣3 ∨ 𝑣2𝑣1), 

𝑣3
′ = 𝑣1(ω ⨁ 𝑣0), 

𝑣4
′ = ω ∨ 𝑣0𝑣2 ∨ ω𝑣0(𝑣2⨁𝑣1), 

𝑣5
′ = 𝑣2𝑣1(ω ⨁ 𝑣0), 

𝑠𝑣′ = 𝑣3ω𝑣0 ∨ 𝑣2(𝑣1 ∨ 𝑣0)   

(1) 

3.2. Pre-computed multiples 

We need to generate {0,1,2,3,4,5} × 𝑋, where 𝑋 is a BCD 

multiplicand. The only hard multiple 3𝑋 can be generated in 

carry-free manner, if it is represented via a redundant digit set 

[5], [7]. Therefore, for uniformity sake in PPR, we generate all 

the required multiples in the same signed digit number system.  

X
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Fig. 1.  Overall block diagram view of the proposed multiplier. 
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Let 𝑋𝑖 = 𝑏3𝑏2𝑏1𝑏0 and 𝑋𝑖−1 = 𝑎3𝑎2𝑎1𝑎0 denote two 

consecutive BCD digits of 𝑋, 3𝑋𝑖 = 10𝐻𝑖 + 𝐿𝑖, and 3𝑋𝑖−1 =
10𝐻𝑖−1 + 𝐿𝑖−1, where 0 ≤ 3𝑋𝑖 , 3𝑋𝑖−1 ≤ 27, 𝐻𝑖 , 𝐻𝑖−1 ∈
{0, 1, 2}, and 𝐿𝑖 , 𝐿𝑖−1 ∈ [0, 9] (e.g., 𝑋𝑖𝑋𝑖−1 = 59 leads to 𝐻𝑖 =
1, 𝐻𝑖−1 = 2, 𝐿𝑖 = 5, and 𝐿𝑖−1 = 7). In cases that 𝐿𝑖 , 𝐿𝑖−1 ≥ 4 

(as in the latter example), we recode the 2-digit BCD number 

𝐻𝑖 𝐿𝑖 to 𝐻𝑖
′ 𝐿𝑖

′ , and 𝐻𝑖−1 𝐿𝑖−1 to 𝐻𝑖−1
′  𝐿𝑖−1

′  based on Eqn. set 2, 

which leads to 𝐻𝑖
′, 𝐻𝑖−1

′ ∈ [0, 3] and 𝐿𝑖
′ , 𝐿𝑖−1

′ ∈ [−6, 3].  
 

𝐿𝑖
′ =  𝐿𝑖 − 10, 𝐻𝑖

′  = 𝐻𝑖 + 1, 

𝐿𝑖−1
′ = 𝐿𝑖−1 − 10, 𝐻𝑖−1

′ = 𝐻𝑖−1 + 1  
(2) 

 

For example, the new values per the above example (i.e., 

𝑋𝑖𝑋𝑖−1 = 59) are  𝐻𝑖 = 2, 𝐻𝑖−1 = 3, 𝐿𝑖 = −5, and 𝐿𝑖−1 = −3. 

Fig. 2 depicts the weighted organization of source, 

intermediate, and target digits of the above recoding, where 

𝑇𝑖 = 𝐿𝑖
′ + 𝐻𝑖−1

′ ∈ [−6, 3] + [0, 3] = [−6, 6]. It is easy to verify 

that similar recoding can be applied to other multiples to be 

represented with the same digit set ([−6, 6] SMSD). 

 

The corresponding logical expressions for SMSD multiples 

of the multiplicand 𝑋 (i.e., 1𝑋(𝑢), 2𝑋(𝑑), 3𝑋(𝑡), 4𝑋(𝑞), and 

5𝑋(𝑝)) can be derived in terms of bits of BCD digits 𝑎 (in 

position 𝑖) and 𝑏 (in position 𝑖 − 1). For example, that of 3𝑋(𝑡), 

is given by Eqn. set 3, and the rest can be found in the 

Appendix. Note that such multiples are represented with at most 

one extra digit (i.e., total of 68 bits), since the most significant 

digit of the generated multiple is at most 4 (due to 5 × 9 = 45), 

which remains 4 within the BCD-to-SMSD conversion. 
 

𝑠𝑡 = 𝑎3𝑎2(𝑎1𝑏2𝑏1 ∨ 𝑏1𝑏0) ∨ 𝑏1𝑏0(𝑏2 ∨ 𝑎3𝑎1𝑎0) ∨  

𝑏3(𝑎3 ∨ 𝑏0) ∨ 𝑏2𝑏1𝑏0, 

𝑡2 = 𝑏1𝑏0(𝑏3𝑏2(𝑎3 ∨ 𝑎2) ∨ 𝑎3𝑏2(𝑎2 ∨ 𝑎1𝑎0) ∨ 𝑎2𝑎1𝑏3) ∨  

𝑏2𝑏1𝑏0(𝑎3 ∨ 𝑎2𝑎1 ∨ 𝑎2𝑎0) ∨  

𝑎3𝑏0(𝑏3 ∨ 𝑎2𝑎1𝑏2𝑏1)𝑎3𝑏2𝑏1𝑏0, 

𝑡1 = 𝑏2𝑏1(𝑎2𝑏3(𝑎1 ∨ 𝑎0) ∨ 𝑏1(𝑎2 ∨ 𝑎1) ∨ 𝑎3𝑏1) ∨  

𝑎3 (
𝑎2(𝑏3𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨ 𝑎2𝑎1(𝑏2𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨

𝑎1𝑎0(𝑏3𝑏0 ∨ 𝑏2𝑏1𝑏0)
) ∨  

𝑏2𝑏0(𝑎2(𝑎1 ∨ 𝑎0) ∨ 𝑏1(𝑎2 ∨ 𝑎1)) ∨  

𝑎3𝑏3𝑏0(𝑏2 ∨ 𝑏1) ∨ 𝑎2𝑎1𝑏3𝑏0, 

𝑡0 = 𝑏0(𝑎2(𝑎1 ∨ 𝑎0) ∨ 𝑎3𝑎2𝑎1) ∨ 

𝑏0(𝑎3 ∨ 𝑎2𝑎1 ∨ 𝑎2𝑎1𝑎0) 

(3) 

3.3. Partial product generation 

Fig. 3 depicts the PPG, and the normal organization of IPPs 

of such 𝑛 × (𝑛 + 1) multiplication for 𝑛 = 4. The tick bars 

represent BCD digits of the multiplicand. Depth of the deepest 

column of IPP matrix (i.e., 10𝑛-weighted position) is (𝑛 + 1), 

where all digits belong to [−6, 6], except the top and bottom 

ones (in gray) that belong to [−5, 4] and [−6, 3], respectively. 

We reduce the matrix depth to 𝑛 (e.g., 5 → 4 for 𝑛 = 4, and 

17 → 16 for 𝑛 = 16), with no delay between the termination of 

PPG and start of PPR. Here is how it works: we compute sum 

of the two gray digits (see Fig. 3) independent of (and in parallel 

to) normal PPG, as follows. If 𝑌𝑛−1 ≤ 4, the value of 10𝑛-

weighted carry of recoded multiplier is zero, so the bottom gray 

digit has to be zero. Therefore no addition is required.  

For 𝑌𝑛−1 > 4, let 𝐻 denote the most significant digit of 𝑋𝑛−1 ×
𝑌0

′ (e.g., the top gray digit in Fig. 3) where 𝑋𝑛−1 and 𝑌0
′ 

represent the most significant BCD digit of multiplicand and 

the least significant recoded digit of multiplier, respectively. 

We extract 𝐻 as ten one-hot signals via an 8-input logic (see the 

rightmost box in Fig. 4). 

The least significant BCD digit of multiplicand (i.e., 𝑋0), as 

is illustrated in the rest of Fig. 4, is added to constants in 

[−5, 4]. This leads to the desired sum digit 𝒮 in 10𝑛-weighted 

position (in place of two gray digits of Fig. 3) and a carry bit 𝒸 

to be added to the 10𝑛+1-weighted digit next to bottom gray 

digit to result in 𝒮′ (𝒮 and 𝒮′ are also distinguished by white 

triangles ∆ in Fig. 5 in Section 3.4). This digit, as shown in the 

leftmost part of Fig. 4, is obtained by directly recoding the 10-

weighted digit of multiplicand (i.e., 𝑋1).  

3.4. Partial product reduction 

The overall PPR for 𝑛 = 16 is illustrated by Fig. 5, where a 

bar, triangle, square, and diamond represent a BCD, [−6, 6] 
SMSD, [−7, 7] TCSD, and binary signed digit (BSD), 

respectively. The choice of SMSD representation for the first 

level IPPs, while facilitates the PPG, bears no extra complexity 

for PPR, since all reduction levels use TCSD adders, except for 

the first one that requires a special SMSD+SMSD-to-TCSD 

adder. However, as will be shown at the end of Section 3.4.1 

this adder is not more complex than a simple TCSD adder.  

The red shaded SMSD in Level II of Fig. 5 is directly 

converted to BCD. Similar direct conversions are in order for 

the red shaded digits (TCSDs, however) in the subsequent 

Levels III and IV. 

 

Decimal position 𝒊 + 𝟏 𝒊 𝒊 − 𝟏 

𝑿 [0, 9] 𝑋𝑖+1 𝑋𝑖 𝑋𝑖−1 

𝟑𝑿 
[0, 9]  𝐿𝑖 𝐿𝑖−1 

[0, 2] 𝐻𝑖 𝐻𝑖−1  

𝟑𝑿 
[−6, 3]  𝐿𝑖

′  𝐿𝑖−1
′  

[0, 3] 𝐻𝑖
′ 𝐻𝑖−1

′   

𝟑𝑿 [−6, 6] 𝑇𝑖 

Fig. 2. Two consecutive digits of  𝑋, 3𝑋 (BCD), and 3𝑋 ([−6, 6]SMSD). 

  

0X1X

15X 0Y 

15Y

5Recoder 4 3 2 1 1 2 3 4

1
15 0

10

X Y
H




0

15 4Y 

Mux 2-1

 

 

 

 
Fig. 4.  The required circuit for (17 → 16) depth reduction. 
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Fig. 3.  Normal organization of intermediate partial products. 
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3.4.1) Special 4-in-1 SMSD adder 

A digit slice of the aforementioned SMSD+SMSD-to-

TCSD adder, for four different cases corresponding to all 

possible combinations of the input signs, are depicted by Fig. 6 

(a, b, c, d) in dot-notation representation. The black and white 

dots represent posibits and negabits (a posibit is a normal bit 

whose arithmetic value equals its logical status, and the 

arithmetic value of a negabit with logical status 𝑥 equals 𝑥 − 1 

[24]. The sum of two [−6, 6] SMSD digits (e.g.,  𝑃 = 𝑠𝑝𝑝2𝑝1𝑝0 

and 𝑄 = 𝑠𝑞𝑞2𝑞1𝑞0), and a signed carry-in (e.g., 𝐶𝑖𝑛) is produced 

as one [−7, 7] TCSD digit (e.g., 𝑆 = 𝑠3𝑠2𝑠1𝑠0), and a signed 

carry-out (e.g., 𝐶𝑜𝑢𝑡). This is a 2-stage process. In the stage I, 

the sign bits are applied to the magnitudes, such that a negative 

sign changes the polarity of magnitude posibits to negabits and 

inverts their logical states. Subsequently, in the same stage, the 

bit collection 𝑈 is decomposed, and the bit collection 𝑉 is 

recoded.  In the second stage, however, as will be explained 

shortly, only one 4-bit adder takes care of all the four cases, 

which explains the rationale for designation of the adder. 

 Decomposition of 𝑼: Following the partitioning 

technique of [5], we show that the bit-collection 𝑈 =
(−1)𝑠𝑝(2𝑝2 + 𝑝1) + (−1)𝑠𝑞(2𝑞2), can be decomposed to 

𝑍 and 𝐶𝑜𝑢𝑡 bit collections, such that 2𝑈 = 2𝑍 + 10𝐶𝑜𝑢𝑡. 

Table II contains the details of such decomposition for the 

four possible (𝑠𝑝, 𝑠𝑞) combinations, where it is shown that 

𝐶𝑜𝑢𝑡 ∈ [−1, 1] and 𝑍 can be extracted from 𝑈 values. 

Furthermore, the BSD signed carry 𝐶𝑜𝑢𝑡 is represented as 

a posibit/negabit pair (𝑐𝑜𝑢𝑡
′ , 𝑐𝑜𝑢𝑡

′′ ), and to represent the 𝑍 

values in each case a 3-bit encoding that covers the 

corresponding range is proposed. For example, in case of 

𝑠𝑝 = + and 𝑠𝑞 = −, the arithmetic range of 𝑍(= 4𝑧3 +

2(𝑧2 − 1) + 𝑧1), is [−2, 5]. This range covers that of 𝑍 =
(2𝑈−10𝐶𝑜𝑢𝑡)

2
∈ [−2, 3] (i.e., 𝑍 ∈ {4, 5} never occurs), 

which makes the decomposition valid. The required 

logical expressions for the bits of 𝐶𝑜𝑢𝑡 and 𝑍 that are 

derived via simple 5-input truth tables are presented in 

Eqn. set 4.  
 

𝑐𝑜𝑢𝑡
′ = 𝑠𝑝 ∨ 𝑠𝑞(𝑝2 ∨ 𝑞2), 𝑐𝑜𝑢𝑡

′′ = 𝑠𝑝𝑠𝑞(𝑝2 ∨ 𝑞2)    

𝑧1 = 𝑠𝑝𝑠𝑞  𝑞1 ∨ 𝑠𝑝𝑝1(𝑠𝑞 ∨ 𝑝2 ∨ 𝑞2) ∨ 𝑠𝑞𝑝1(𝑝2 ∨ 𝑞2) ∨ 

𝑝2 ∨ 𝑞2 ∨ 𝑝1 (𝑠𝑝 ∨  𝑠𝑞), 

𝑧2 = 𝑝2𝑞2(𝑠𝑝 ∨ 𝑠𝑞 ∨ 𝑝1) ∨ 𝑝2 ∨ 𝑞2 (𝑠𝑝 𝑝1 ∨ 𝑠𝑝⨁𝑠𝑞) ∨ 

𝑠𝑝𝑠𝑞𝑝1𝑝2⨁𝑞2, 

𝑧3 = 𝑠𝑞𝑝2𝑞2 𝑠𝑝𝑝1 ∨ 𝑠𝑝𝑝2𝑞2𝑠𝑞𝑝1 ∨ 𝑠𝑝 ∨ 𝑠𝑞  𝑝2 ∨ 𝑞2𝑝1  

(4) 

 Recoding of 𝑽 to 𝑽′: The 𝑉 bit collection is described as 

𝑉 = (−1)𝑠𝑝(𝑝0) + (−1)𝑠𝑞(2𝑞1 + 𝑞0), which is to be 

recoded to 𝑉′ bit collection with the same arithmetic 

value. Note that the bit polarities in 𝑉′ are different in the 

four cases of Fig. 6. For example, in Fig. 6b, the arithmetic 

value of 𝑉 equals to −2𝑞1 + 𝑝0 − 𝑞0 ∈ [−3, 1], while that 

of 𝑉′ is 4𝑣2 + 2(𝑣1 − 1) + (𝑣0 − 1) ∈ [−3, 4] that 

covers the original range [−3, 1]. These recodings can be 

done via a circuit that is described by Eqn. set 5 (also 

derived via a 5-input simple truth table).  
 

𝑣0 = 𝑝0⨁𝑞0,  

𝑣1 = (𝑞1⨁𝑞0)𝑠𝑞⨁𝑝0 ∨ (𝑠𝑞⨁𝑝0)𝑠𝑝⨁𝑞1, 

𝑣2 = 𝑠𝑞𝑞1(𝑝0𝑞0 ∨ 𝑠𝑝𝑝0) ∨ 𝑠𝑞𝑞1(𝑝0𝑞0 ∨ 𝑠𝑝𝑝0)  

(5) 

 

0p2p

1z 0v

1p

2q 1q 0q

3z 2z


outc


outc

1v2v

outC

Z
inC

U

V 

1s2s 0s3s


inc


inc

V

0p2p 1p

2q 1q 0q




I

II

III
 

2q 1q 0q

3z 2z

1v2v

Z

U

V 

1z


outc


outc


inc


inc

1s2s 0s3s

outC
inC

0v

0p2p 1p

V



0p2p 1p

2q 1q 0q



 

2p 0p

0v

1p

3z 2z

1v2v
outc


outc

outC

Z
inC

U

V 

1s2s 0s3s


inc


inc

1z

2q 1q 0q

V

 0p2p 1p

2q 1q 0q

 

2p 0p

0v

1p

3z 2z

1v2v
outc


outc

outC

Z
inC

U

V 

1s2s 0s3s


inc


inc

1z

2q 1q 0q

V

 0p2p 1p

2q 1q 0q

 
a) 𝑠𝑝 = +, 𝑠𝑞 = + b) 𝑠𝑝 = +, 𝑠𝑞 = − c) 𝑠𝑝 = −, 𝑠𝑞 = + d) 𝑠𝑝 = −, 𝑠𝑞 = − 

 

Fig. 6. A digit slice of SMSD+SMSD-to-TCSD adder for four sign combinations. 

 

: BCD

:[ 6,6] SMSD

:[ 7,7] TCSD

: BSD

,

Level I

Level II

Level III

Level IV

 

Fig. 5.  The overall view of 16 × 16 digit multiplier. 
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 The 4-in-1 design: Other encodings are also possible for 

𝑍 and 𝑉′ values. For example, an alternative encoding for 

both 𝑍 ∈ [−2, 3] and 𝑉′ ∈ [−3, 1] of Fig. 6b is ○●●∈
[−4, 3] that covers the latter two intervals. However, the 

proposed encodings (see Table II) are so chosen to allow 

for unified treatment of the bit collections that are obtained 

after the decomposition and recoding. That is a simplified 

4-bit adder (see Fig. 7) can take care of all the four cases. 

This is actually possible via the standard full adders that 

are capable of handling all the 3-bit posibit/negabit 

collections of inputs [24]. Note that the normally required 

leftmost HA is reduced to an OR gate since no carry out is 

expected. 

The aforementioned decomposition and recoding can be 

further justified by close examination of the content of Table II, 

where the range of 𝑃 + 𝑄 determines the possible values for 

𝐶𝑜𝑢𝑡, which always lead to 𝑆 = 2𝑍 + 𝑉′ + 𝐶𝑖𝑛 ∈ [−7, 7], as is 

shown in the rightmost column. 

The (𝑐𝑖𝑛
′ , 𝑐𝑖𝑛

′′ ) pair represents the incoming signed carry 𝐶𝑖𝑛 

from the less significant position. Representations of 𝑍, 𝑉′, and 

𝐶𝑖𝑛 are so determined as to lead to two’s complement 

representation for 𝑆, in all the four cases (see below for more 

explanations, and the following numerical example).  

Example 1 (Fig. 6 by numerical values): Fig. 8 describes a 

numerical example, where two SMSDs 𝑃 = 𝑠𝑝101 (|𝑃| = 5) 

and 𝑄 = 𝑠𝑞100 (|𝑄| = 4) are added. This figure mimics Fig. 6 

with numerical values, where signs (i.e., 𝑠𝑝 and 𝑠𝑞) are 

explicitly shown as was the case in Fig. 6, and negabits are 

inversely encoded as 1−(0−), which represent arithmetic value 

0(−1). The incoming signed carry 𝐶𝑖𝑛 = 0 is represented by 

the posibit 𝑐𝑖𝑛
′ = 0 and inversely encoded negabit 𝑐𝑖𝑛

′′ = 1−. 

Therefore, the FA in position 0 receives two negabits and one 

posibit, and produces a posibit sum 1 and a negabit carry 0−, 

such that 2 × (−1) + 1 = −1, as there was only one 

arithmetically nonzero input 0− (i.e., −1). 

The 4-in-1 adder is slightly more efficient than [−7, 7] TCSD 

adder (i.e., less latency with no area overhead), as can be 

verified by inspecting Eqn. sets 4-5, for the preprocessing logic 

boxes in 4-in-1 adder and that of TCSD adder (i.e., Eqn. set 6 

in Section 3.4.2). 
 

3.4.2) TCSD adder 

The TCSD adder, which is required for the remaining 

(⌈log2 𝑛⌉ − 2) subsequent reduction levels (i.e., Levels II and 

III in Fig. 5), is an improved version of that of [5]. The required 

architecture is the same as in Fig. 7, except for the 

preprocessing boxes, where the required logical expressions are 

described in Eqn. set 6. Also Fig. 9 depicts one digit slice of this 

adder.  

𝑐𝑜𝑢𝑡
′ = 𝑝3 𝑞3, 𝑐𝑜𝑢𝑡

′′ = 𝑝3𝑞3𝑝2𝑞2𝑝1 ∨ 𝑝2 𝑞2(𝑝1 ∨ 𝑝3 𝑞3)  

𝑣0 = 𝑝0⨁𝑞0, 𝑣1 = 𝑞1⨁(𝑝0 ∨ 𝑞0), 𝑣2 = 𝑞1(𝑝0 ∨ 𝑞0),  
𝑧1 = (𝑝2 ∨ 𝑞2)(𝑝3𝑞3 𝑝1 ∨ 𝑝3(𝑞3⨁𝑝1)) ∨ 𝑝3 𝑞3 𝑝2 𝑞2 𝑝1 ∨ 

𝑝3𝑞3𝑝1𝑝2𝑞2, 

𝑧2 = (𝑝2⨁𝑞2)(𝑝3(𝑞3 ∨ 𝑝1) ∨ 𝑞3𝑝1) ∨ 𝑝2𝑞2𝑝1 𝑝3𝑞3 ∨ 

𝑝3 𝑞3 (𝑝2𝑞2 ∨ 𝑝2 𝑞2 𝑝1), 
𝑧3 = 𝑝3 𝑞3 𝑝2 𝑞2 𝑝1 ∨ 𝑝3𝑞3𝑝2𝑞2𝑝1 ∨  

(𝑝3⨁𝑞3)(𝑝2𝑞2𝑝1 ∨ 𝑝2 𝑞2 𝑝1)  

(6) 

1

0 0

01
2Z  

8U 

1V  

1

0

1

1outC 

inC
0

1 0 1

1

1

0 1 1 1

0 0

1V 

I

II

III

1

1 0 1

0 0





 

0 1

01
0Z 

0U 

1V  

0

0

1

0outC 
0

1 0 1

0

1

1 0 0 1

1V 

inC

 1

1 0 1

0 0



0 1 1

 



1

1 0 1

0 0

1

0 1

10
0Z 

0U 

1V   

0

0

1

0outC 

inC
0

0

1

0 1 1 1

0 0
1V  

0 1 0

 



1

1 0 1

0 0

0 1

10
2Z 

8U  

1V   

1

0

1

1outC  

inC
0

0

0

1 0 0 1



1V 
0 0

0

1

1 1

 
a) 𝑠𝑝 = +, 𝑠𝑞 = + b) 𝑠𝑝 = +, 𝑠𝑞 = − c) 𝑠𝑝 = −, 𝑠𝑞 = + d) 𝑠𝑝 = −, 𝑠𝑞 = − 

 

Fig. 8.  Numerical example with |𝑝| = 5 and  |𝑞| = 4.  

 

TABLE II 

VALUE OF 𝑈, 𝑉′, 𝑍, 𝐶𝑜𝑢𝑡, AND FINAL RESULT IN FOUR CASES 𝑠𝑝  𝑠𝑞 = {++, −−, +− , −+}. 

Sub 

Fig. 6 

𝑠𝑝 

𝑠𝑞 
𝑃 + 𝑄 = 2𝑈 + 𝑉 𝑈 𝐶𝑜𝑢𝑡 𝑍 = (2𝑈 − 10𝐶𝑜𝑢𝑡)/2 𝑉′ = 𝑉 2𝑍 + 𝑉′ + 𝐶𝑖𝑛 

a 
+ 

+ 
[0, 12] [0, 5] {0, 1} 

[−3, 2] 
(●○○) 

[0,4] 
(●●○) 

[−7, 7] 
(○●●●) 

b 
+ 

− 
[−6, 6] [−2, 3] 0 

[−2, 3] 
(●○●) 

[−3,1] 
(●○○) 

c 
− 

+ 
[−6, 6] [−3, 2] 0 

[−3, 2] 
(●○○) 

[−1,3] 
(●●○) 

d 
− 

− 
[−12, 0] [−5, 0] {−1, 0} 

[−1, 3] 
(●●○) 

[−4,0] 
(○●○) 

 

qsps 0p1q 0q

FAFAFA

3s


inc


inc

2s
1s 0s

3z 2z 1z2v 1v 0v


outc


outc

2p 1p2q

3 2 1, ,z z z
Preprocessing LogicPreprocessing Logic

2 1 0, ,v v v

 
         Fig. 7.  A digit slice of the 4-in-1 SMSD + SMSD → TCSD adder. 
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These 2:1 TCSD reductions lead to two [−7, 7] TCSD 

accumulated partial products that are summed up with a special 

adder that directly produces the final BCD product, whose 

details are explained in Section 3.5. 

3.5. Final product computation  

Recall that the Level IV of Fig. 5 contains two [−7, 7] TCSD  

IPPs. To get at the final product the straightforward method 

calls for a final 2:1 reduction level that leads to a 2𝑛-TCSD 

product 𝐷2𝑛−1 … 𝐷0. This is then to be converted to the 

equivalent BCD product 𝒫2𝑛−1 … 𝒫0, which could be done via 

the recurrence of Eqn. set 7, where 𝐷𝑖 ∈ [−7, 7], 𝑏𝑖 ∈ [−1, 0], 
and 𝒫𝑖 ∈ [0, 9], for 0 ≤ 𝑖 ≤ 2𝑛 − 1.  

𝑏0 = 0 , 

𝑊𝑖 = 𝐷𝑖 + 𝑏𝑖, (𝑏𝑖+1, 𝒫𝑖) = {
(0, 𝑊𝑖)
(−1,10 + 𝑊𝑖)

 
if  𝑊𝑖 ≥ 0
if  𝑊𝑖 < 0

  
(7) 

To speed up the latter two steps (i.e., 2:1 reduction and 

TCSD-to-BCD conversion), the actual BCD product generation 

of Fig. 5 uses a more efficient method to be described below. 

The final 2:1 reduction level that is required for positions 8 to 

22 and the subsequent TCSD-to-BCD conversion can be 

actually augmented as a TCSD + TCSD addition with BCD 

result, which will be explained in the Section 3.5.2, below. 

However, the product digits for positions 0-7 can be directly 

converted to BCD on the fly as is discussed in Section 3.5.1. 

Finally, the combined reduction and conversion in the 

remaining most significant positions are described in Section 

3.5.3. A similar 3-part final product generation, for binary 

multiplication is undertaken in [25]. 

3.5.1) Positions 0-7 

 Following some previous works on decimal multiplier 

designs (e.g., [22], [6], [7]), we take advantage of different 

arrival times of the product digits for position 0-7 (red-shaded 

in Fig. 5). The least significant product digit is obtained in Level 

I as an SMSD digit, which is directly converted to BCD via Eqn. 

set 7. The next product digit that is available at Level II, as a 

TCSD, is likewise converted. So is the case for TCSDs 𝐷3-𝐷2 

and 𝐷7-𝐷4 that are delivered in Levels III and IV, respectively.  

3.5.2) Positions 8-22 

There are two TCSD digits per positions 8-25. We don’t 

apply another PPR level (i.e., TCSD+TCSD-to-TCSD 

conversion, as in Fig. 9). Instead, we can think of a 

TCSD+TCSD-to-BCD converter that can be realized with the 

help of a parallel prefix adder. However, the reason that we 

discuss the 15 positions 8-22 (distinguished by yellow shading 

in Fig. 5) separately in this section is that they together with the 

borrow-in signal 𝑏8 contribute to a fully utilized 16-bit parallel 

prefix tree.  

A digit slice of the aforementioned converter is illustrated by 

Fig. 10a.  The function of this addition scheme is similar to that 

of Fig. 9, except that the collective value of the eight bits due to 

𝐶𝑖𝑛, 𝑍, and 𝑉′ variables (i.e., 𝑊 = 𝑤4𝑤3𝑤2𝑤1𝑤0 = 4𝑈 + 𝑉 +
𝐶𝑖𝑛 − 10𝐶𝑜𝑢𝑡 = 2𝑍 + 𝑉′ + 𝐶𝑖𝑛) belong to [−9, 7]. Note that 

the decomposition of 4𝑈 to (2𝑍 + 10𝐶𝑜𝑢𝑡), as in Eqn. 8, is 

undertaken such that 𝑍 ∈ [−4, 0] is composed of only negabits. 

Each of these signals can be extracted by separate 4-input 

combinational logic. 
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1z 0v

1p

2q 1q 0q
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1v2v
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U

V 
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3q


outc


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1s2s 0s3s


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
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Fig. 9.  TCSD adder. 
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  a) A digit slice of TCSD+TCSD-to-BCD adder.              b) Architecture for final product generation in positions 8-22. 
 

Fig. 10.  Final conversion in Part 2. 
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𝑐𝑜𝑢𝑡
′ = 𝑝

3
 𝑞

3
(𝑝

2
∨ 𝑞

2
), 𝑐𝑜𝑢𝑡

′′ = 𝑝
3

𝑞
3

𝑝
2

𝑞
2
  

𝑣0 = 𝑝0⨁𝑞0, 𝑣1 = 𝑝1⨁𝑞1⨁(𝑝0 ∨ 𝑞0), 

𝑣2 = 𝑝1𝑞1 ∨ (𝑝1 ∨ 𝑞1)(𝑝0 ∨ 𝑞0),  
𝑧1 = 𝑐′𝑜𝑢𝑡 ∨ 𝑐′′𝑜𝑢𝑡, 𝑧2 = 𝑝3𝑞3𝑝2⨁𝑞2 ∨ 𝑝3𝑞3𝑝2 𝑞2, 

𝑧3 = 𝑝2  ∨ 𝑞2 𝑝2⨁𝑞2 ∨ 𝑝3𝑞3𝑝2𝑞2  

(8) 

 

Since we seek BCD product, we convert 𝑊 digits to BCD 

digits 𝑇, via Eqn. 9, where 𝑤4 is a weighted-16 negabit. The 

−6𝑤4 operation can be replaced by +10𝑤4. However, in case 

of 𝑤4 = 0, a decimal borrow is carried over to the more 

significant decimal position that causes borrow propagation. To 

avoid such slow borrow propagation, we employ a parallel 

prefix borrow generator that uses decimal borrow propagate 

and generate signals π = (𝑊 = 0) and γ = (𝑊 < 0) = 𝑤4, 

respectively. These borrow signals are generated via a 4-level 

Kogge-Stone (KS) [26] parallel prefix network with 15 input 

pairs (π,γ), and borrow-in 𝑏8from Part 1 (i.e., out of position 7). 
 

𝑇 = {
𝑤3𝑤2𝑤1𝑤0

𝑤3𝑤2𝑤1𝑤0 − 6 
if  𝑤4 = 1
if  𝑤4 = 0

= 𝑤3𝑤2𝑤1𝑤0 − 6𝑤4  (9) 

 

To avoid 4-bit borrow propagation within each 𝑇 = 𝑡3𝑡2𝑡1𝑡0 

digit, we also concurrently compute 𝑇′ = 𝑇 − 1, where one of 

𝑇 or 𝑇′ is to be selected by borrow 𝑏𝑖𝑛 that yields the product 

digit 𝒫 = 𝓅3𝓅2𝓅1𝓅0. Fig. 10b depicts the logical blocks that 

correspond to different stages of Fig. 10a.   
 

3.5.3) Positions 23-31  

The π and γ signals for decimal positions 23-25 are produced 

similar to those of Section 3.5.2. Regarding the positions 26-31, 

where there exists only one [−7, 7] TCSD per position, γ is 

equal to the NOT of sign bit of the corresponding TCSD, and π 

can be derived as the NOR of all four bits (sign bit inverted). 

We devise a special 3-level compound KS-like parallel prefix 

network to generate all borrows 𝑏0(𝑏−1) for decimal positions 

24-31 that correspond to the cases where 𝑏23 is 0 (1). Fig. 11 

depicts the required logic, where (Γ, Π) represent the group 

(generate, propagate) signals. These borrows are utilized to 

form two BCD products 𝒫31 … 𝒫24𝒫23 and 𝒫31 … 𝒫24𝒫23 − 1 

corresponding to 𝑏31
0 … 𝑏24

0 𝑏23 and 𝑏31
−1 … 𝑏24

−1𝑏23, respectively, 

where one is selected by 𝑏23. 

Note that, given the one gate-level earlier availability of Π 

signals with respect to companion Γ signals, the special 

diamond node is so designed as to produce 𝑏−1 no later than 𝑏0; 

of course with no delay overhead for the latter. 
 

IV. EVALUATION AND COMPARISONS 

In this section, we provide analytical evaluation of latency of 

the proposed multiplier and those of [2], [21], [22], [6], [7], and 

[4]. These include all the previously reported parallel decimal 

multipliers, except for [27] that only provides synthesis results 

and no sufficient information to enable analytical evaluation. 

However, for more reliable results and fair comparison, we will 

provide, in Section 4.2, the synthesis-based figures of merit for 

all the aforementioned designs. 

4.1. Analytical evaluation 

Tables III-V contain delay measures of PPG, PPR, and final 

product computation (respectively), and their components, of 

the proposed design and those of [2], [21], [22], two of [6], [7] 

(based on the reevaluation in [28]), and the recent work of [4]. 

Also, the corresponding overall delay measures are compiled in 

Table VI.  

We could not actually copy the analytical evaluation results 

of all the reference works, since the work of [2] provides only 

synthesis results. Those of [22] and [6] are in terms of FO4, 

where their underlying FO4 evaluation assumptions are not 

apparently the same and thus could not be followed in the 

evaluation of our design. Therefore, for fair comparisons, we 

preferred to derive the entries in rows 1-7 of Tables III-V 

directly from the design description of the corresponding 

articles, in the same way that we did with our design. These gate 

level evaluations are in terms of Δ𝐺 (i.e., delay of a 2-input 

simple gate), which is easily verifiable. 

23 23γ , π

0

24b

1

24b

  l r

    l l r

1  b

:

24 24γ , π25 25γ , π26 26γ , π27 27γ , π28 28γ , π29 29γ , π
30 30γ , π

0

25b

1

25b

0

26b

1

26b

0
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1

27b
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1
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29b

1

29b

0
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1

30b

0

31b

1
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l

r

r
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  l r

    l l r

Fig. 11.  The 3-level compound KS-like parallel prefix network.   

TABLE III 

LATENCY COMPARISON OF PPG STAGE (Δ𝐺). 

 Reference Components Delay Total Ratio 

1 [2] 

−2𝑋 generation 6 

17 1.42 Mux 4:1 3 

BCD full adder [29] 8 

2 [22] 
8𝑋 generation 4 

7 0.58 
Mux 3:1 3 

3 [21] 
4𝑋 generation: Δg 8 

11 0.92 
Mux 3:1 3 

4 
[6] 

Radix-5 

BCD to 4,2,2,1 

conversion 
1 

8 0.67 
2𝑋 generation 4 

Mux 4:1 3 

5 
[6] 

Radix-10 

3𝑋 generation* 21 

27 2.25 Mux 5:1 4 

Dynamic negation 2 

6 [7] 

3𝑋 generation 7 

13 1.08 Mux 5:1 4 

Negation 2 

7 [4] 

4𝑋 genration 6 

12 1.00 Mux 5:1 4 

Negation 2 

8 Proposed 
4𝑋 genration 8 

12 1.00 
Mux 5:1 4 

   

     *17Δg for 2𝑋 + 𝑋 (16-digit BCD parallel prefix adder), and 4Δg for 2𝑋 generation 
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The 12 Δ𝐺 PPG critical delay path of our multiplier travels 

through 4𝑋 generation circuit, which takes 8 Δ𝐺 (see Eqn. set 

A3, in the Appendix), and crosses the 5:1 one-hot multiplexor 

(see Fig. 1) with 4 Δ𝐺 latency. The required dynamic negation 

is not within the critical delay path, since logical expressions 

for sign bits take at most 10 Δ𝐺 (see Appendix A) to complete. 

Also the latency of (17→16) depth reduction logic (see Fig. 4) 

that operates in parallel with general PPG (see Fig. 1) is 12 Δ𝐺. 

The 35 Δ𝐺 PPR delay of the proposed multiplier equals the 

sum of latencies of following components: 11 Δ𝐺 (See Eqn. set 

4 and 5) for first level of Fig.5 that reduces 16 SMSD IPPs to 8 

TCSD IPPs, and 2 × 12 Δ𝐺 (See Eqn. set 6) for the next two 

levels. 

Regarding the 21Δ𝐺 latency of the final stage of the proposed 

multiplier, recall Section 3.5, where BCD product computation 

takes 4Δ𝐺 for Eqn. set 8, 7Δ𝐺 for decimal propagate signal π, 

8 Δ𝐺 for the 4-level Kogge-Stone parallel prefix tree, and 2Δ𝐺 

for selecting 𝑠𝑢𝑚 or 𝑠𝑢𝑚 − 1. 

As is evident from the complied ratios in Table VI, the 

proposed multiplier operates at least 9% faster than those of all 

the previous relevant works. In particular, our PPR latency is 

the least 10Δ𝐺 and 15Δ𝐺 less than the fastest previous 

multipliers in [22], and [4], respectively. Since it takes only 

three levels of fast 2:1 reduction, as it effectively starts with 16 

partial products down to 2 partial products, which undergo the 

conversion to BCD without being reduced to the final redundant 

partial product. The latter augmentation is at the cost of 4Δ𝐺 

prolongation in generating the final BCD product, but saves 

12Δ𝐺 delay of double-TCSD-to TCSD reduction. 

 

TABLE IV 

LATENCY COMPARISON OF PPR STAGE (Δ𝐺). 

 Reference Components Delay  Total Ratio 

1 [2] 
Six reduction levels with BCD full 

adder of [29] 
6 × 8 48 1.37 

2 [22] 

Six reduction levels with BCD full 

adder of [29] 
6 × 8 

50 1.43 

Mux 2:1 2 

3 [21] 
Two levels simplified OODS adder 2 × 10 

56 1.6 
Three levels OODS adder 3 × 12 

4 [6] Radix-5 

(8:4) counter 6 

51 1.46 
Five levels full adder 3 + 4 + 3 + 3 + 3 

Five correction “× 2” cells 5 × 5 

4,2,2,1 to 5,4,2,1 conversion 4 

5 [6] Radix-10 

(9:4) counter 7 

39 1.11 
Four levels full adder 3 + 4 + 3 + 3 

Three correction “× 2” cells 3 × 5 

4,2,2,1 to 5,4,2,1 conversion 4 

6 [7] 

L1 

(5; 2) Compressor 8 

22 + 26 1.37 

4-bit carry look ahead adder 5 

XOR 2 

Transfer logic 7 

L2 

2 × (4; 2) Compressor 2 × 6 

4-bit carry look ahead adder 5 

XOR 2 

Transfer logic 7 

7 [4] 

14-bit counter 23 

45 1.29 × 2 correction 10 

Block A 12 

8 Proposed 
SMSD to TCSD adder 11 

35 1.00 
Two levels TCSD adder 2 × 12 

 

 

 

TABLE V 

LATENCY COMPARISON OF FINAL ADDITION STAGE (Δ𝐺). 

 Reference Components Delay Total Ratio 

1 [2] 

Decimal 𝑃 & 𝐺 generation 3 

15 0.71 32-digit parallel prefix tree 5 × 2 

Mux 2:1 2 

2 [22] 

Binary 𝑃 & 𝐺 generation 1 

17 0.81 104-bit parallel prefix tree 7 × 2 

Mux 2:1 2 

3 [21] 

4-bit 𝑃 & 𝐺 generation 2 

14 0.67 32-digit parallel prefix tree 5 × 2 

Mux 2:1 2 

4 
[6] 

Radix-5 

Binary 𝑃 & 𝐺 generation 1 

17 0.81 128-bit parallel prefix tree 7 × 2 

Mux 2:1 2 

5 
[6] 

Radix-10 

Binary 𝑃 & 𝐺 generation 1 

17 0.81 128-bit parallel prefix tree 7 × 2 

Mux 2:1 2 

6 [7] 

Decimal 𝑃 & 𝐺 generation 7 

25 1.19 

Generation of 𝐶16 6 

Generation of 𝐶32 8 

Final conditional constant 

adder 
4 

7 [4] 

Binary 𝑃 & 𝐺 generation 1 

17 0.81 128-bit parallel prefix tree 7 × 2 

Mux 2:1 2 

8 Proposed 

Preprocessing logic (Eqn. 
Set 8) 

4 

21 1.00 decimal propagate signal π 7 

4-level parallel prefix tree 4 × 2 

Mux 2:1 2 

 

 

 

TABLE VI 

OVERALL LATENCY COMPARISON OF EIGHT DESIGNS (Δ𝐺). 

 
Reference PPG PPR BCD product Total Ratio 

 

1 [2] 17 48 15 80 1.18 

2 [22] 7 50 17 74 1.09 

3 [21] 11 56 14 81 1.19 

4 [6]-R5 8 51 17 76 1.12 

5 [6]-R10 27 39 17 83 1.22 

6 [7] 13 48 25 86 1.26 

7 [4] 12 45 17 74 1.09 

8 Proposed 12 35 21 68 1.00 
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The gate level evaluations of competitive designs are 

generally accepted only as rough estimates and actual 

realizations may lead to reordering of performance figures of 

the designs under consideration. This will be duly examined 

below.  
 

4.2. Synthesis-based results and comparisons 

Comparison of synthesis-based performance measures is best 

accomplished when all designs are synthesized with the same 

technology files under the same working conditions. Therefore, 

we have used typical TSMC 130nm technology by Synopsis 

Design Compiler to synthesize all designs, except that of [27], 

for which sufficient details are not available. However, since 

latency of the work of [27] is compared therein with that of [2], 

as 2.51 ns versus 2.65 ns, we have scaled our synthesis results 

for the latter based on the improvement ratio 
2.51

2.65
= 0.95 to get 

at reliable measures for performance of the former. These 

designs have been verified for correctness via sufficiently large 

random test vectors as well as manually generated vectors for 

corner cases. Figs. 12 and 13 show the results for area 

consumption and power dissipation with time constraints from 

the minimum that could be met, by the proposed design (i.e., 

indeed the least among all), up to 10 ns by 0.2 ns steps. 

Regarding the work of [27], the minimum time constraint that 

it could meet, would be 5% less than that of [2] (i.e., 5ns), which 

can be obtained as 5 × 0.95 = 4.75 ns, while that of the 

proposed design is 4.4 ns. 

Inspecting Fig. 12 shows that the proposed design can 

perform with latency as low as 4.4 ns, while the next lower time 

constraint is 4.8 ns, which is due to [4], with almost the same 

area consumption (actually 1.5% more than the proposed 

design) on the same 4.8 ns time point. Therefore, the synthesis 

based 8.3% latency improvement of the proposed design 

confirms the 8.1% less latency that is experienced based on 

analytical evaluations (i.e., 68 Δ𝐺 versus 74 Δ𝐺). At the 4.8 ns 

point (in Fig. 13), power dissipation of [4] is 10% more than 

that of the proposed design. The resulted improvements, 

primarily seems to be due to the saved XOR gates in the 

proposed PPG architecture. Moreover, the reduced depth of 16 

for the partial product matrix and the used redundant adders for 

PPR have considerably contributed in area and power savings. 

 
V. CONCLUSION  

We propose a parallel 16 × 16 radix-10 BCD multiplier, 

where 17 partial products are generated with [−6, 6] sign-

magnitude signed digit (SMSD) representation. Some 

innovations of this work and use of previous techniques, as 

listed below, has led to marginal 1.5% less area consumption, 

and 10% less power dissipation, on 4.8 ns latency, with respect 

to the fastest previous work due to [4]. The least possible delay 

for the latter is 4.8 ns, while the proposed design leads the 

synthesis tool to meet 4.4 ns time constraint (i.e., 9% faster). In 

other words, the advantage is that the proposed design can 

operate in 9% higher frequency and dissipate up to 13% less 

power, with no claim in area improvement. 

 

 
Fig. 13.  Comparison of power dissipation. 

 

80

130

180

230

280

4
.4

0

4
.6

0

4
.8

0

5
.0

0

5
.2

0

5
.4

0

5
.6

0

5
.8

0

6
.0

0

6
.2

0

6
.4

0

6
.6

0

6
.8

0

7
.0

0

7
.2

0

7
.4

0

7
.6

0

7
.8

0

8
.0

0

8
.2

0

8
.4

0

8
.6

0

8
.8

0

9
.0

0

9
.2

0

9
.4

0

9
.6

0

9
.8

0

1
0

.0
0

[2] [22] [21] [6] [7] [4] Proposed

 
Fig. 12.  Comparison of area consumption.  
 

 

Fig. 13.  Comparison of power dissipation. 

 

125000

175000

225000

275000

325000

375000

425000

4
.4

0

4
.6

0

4
.8

0

5
.0

0

5
.2

0

5
.4

0

5
.6

0

5
.8

0

6
.0

0

6
.2

0

6
.4

0

6
.6

0

6
.8

0

7
.0

0

7
.2

0

7
.4

0

7
.6

0

7
.8

0

8
.0

0

8
.2

0

8
.4

0

8
.6

0

8
.8

0

9
.0

0

9
.2

0

9
.4

0

9
.6

0

9
.8

0

1
0

.0
0

[2] [22] [21] [6] [7] [4] Proposed
μm2 

mW 

ns 

ns 

ns 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

11 

 Sign magnitude signed digit representation: The 

exclusively employed SMSD representation of partial 

products saves more than 850 XOR gates (≈ 75%) in 

comparison to other 16 × 16 decimal multipliers with 

dynamic negation of partial products.  
 

 On the fly depth reduction: Two SMSD digits of the sole 

deepest column of partial product matrix are reduced to 

one, in parallel with PPG that leads the VLSI-regular 2:1 

PPR to start with 16 partial products. 
 

 4-in-1 SMSD-to-TCSD adder: This is the most novel 

contribution of the present work. The reason is that sign-

magnitude addition conceptually entails separate 

consideration of four sign combinations. To avoid the 

corresponding inefficiency, the first-level reduction is 

undertaken via eight especial SMSD adders. However, 

enforcing the SMSD signs via polarity of magnitudes has 

led to a unified 4-in-1 adder logic, which is no more 

complex than a simple TCSD adder. 
 

 Early initiation of redundant-to-BCD conversion: To 

take advantage of early signal arrivals, conversion of the 

four least significant digits to BCD starts in the middle of 

PPR. A parallel prefix compound Kogge-Stone adder 

produces BCD sum and sum −1 for the nine most 

significant digits. 
 

 Parallel prefix carry select addition: A special parallel 

prefix decimal carry select adder adds up the middle 

TCSD digits and produces BCD sum digits and a borrow 

that selects one of the two BCD sums of the most 

significant part.  
 

Future research in the line of this work can include similar 

sequential multiplication scheme, and use of this multiplier in 

decimal floating-point units. Also, manufacturing perspective 

of parallel decimal multipliers may be considered as 

strengthened due to smaller size and lower power of such 

improved designs. 

 

APPENDIX 

The logical equations for the bits of multiples {1, 2, 4, 5} of 

the multiplicand 𝑋 are presented in Eqn. sets A1 to A4, 

respectively. These equations are derived in the similar way to 

that 3𝑋, which was described in Section 3.2. 
 

𝑠𝑢 = 𝑏2 ∨ 𝑏3(𝑏0 ∨ 𝑎3𝑎2) 

𝑢2 = 𝑏2𝑏1𝑏0(𝑎3 ∨ 𝑎2) ∨ 𝑏2(𝑏1 ∨ 𝑎3𝑎2𝑏0) 

𝑢1 = 𝑎3𝑎2(𝑏3𝑏0 ∨ 𝑏1𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨ 

(𝑎3 ∨ 𝑎2)(𝑏2𝑏1 ∨ 𝑏3𝑏2𝑏1𝑏0) ∨ 𝑏2𝑏1𝑏0 

𝑢0 = 𝑏0(𝑎3 ∨ 𝑎2) ∨ 𝑎3𝑎2𝑏0  

(A1) 

 

𝑠𝑑 = 𝑎3(𝑏3 ∨ 𝑏2𝑏1𝑏0) ∨ 𝑏2𝑏1 ∨ 𝑏3𝑏0 

𝑑2 = 𝑎3𝑎2𝑎1(𝑏2𝑏1 ∨ 𝑏3𝑏0) ∨ 𝑏1𝑏0(𝑏2 ∨ 𝑎3) ∨ 

𝑏0(𝑏2𝑏1 ∨ 𝑎3𝑏3𝑏2𝑏1) 

𝑑1 = 𝑎3𝑎2𝑎1(𝑏1𝑏0 ∨ 𝑏2𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨ 

𝑎3(𝑏1𝑏0 ∨ 𝑏2𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨ 

(𝑎2 ∨ 𝑎1)(𝑏3𝑏0 ∨ 𝑏3𝑏2𝑏0) ∨ 𝑎3𝑏2𝑏1𝑏0 

𝑑0 = 𝑎2 ∨ 𝑎1  

(A2) 

𝑠𝑞 = 𝑎3𝑎2𝑏1(𝑏2 ∨ 𝑏0) ∨ 𝑏2𝑏0(𝑎3 ∨ 𝑎0 ∨ 𝑏1) ∨ 

𝑏0(𝑏3(𝑎3 ∨ 𝑎0) ∨ 𝑏3𝑏2𝑏1) 

𝑞2 = 𝑎3𝑎2𝑎1𝑎0(𝑏2𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨ 𝑎3𝑎0𝑏1(𝑏2𝑏0 ∨ 𝑏2𝑏0) ∨ 

𝑎3𝑎2𝑎1(𝑏2𝑏1𝑏0 ∨ 𝑏3𝑏2𝑏1𝑏0) ∨ 

(𝑎3 ∨ 𝑎2)(𝑏3𝑏0 ∨ 𝑏2𝑏1𝑏0) 

𝑞1 = 𝑏3𝑏1𝑏0(𝑎3𝑎0 ∨ 𝑎3𝑏2 ∨ 𝑎2𝑎1) ∨ 

𝑏2𝑏1𝑏0(𝑎2𝑎1 ∨ 𝑎3𝑎1𝑎0) ∨ 

𝑎3𝑎2(𝑎1𝑎0(𝑏1 ∨ 𝑏3𝑏2𝑏0) ∨ 𝑏3(𝑎0 ∨ 𝑏0) ∨ 𝑏2𝑏1𝑏0) ∨ 

𝑎2 (𝑎1(𝑏2𝑏1 ∨ 𝑏3𝑏0) ∨ 𝑏0(𝑏3𝑏2𝑏1 ∨ 𝑎1𝑏2𝑏1)) ∨ 

𝑎2𝑏3(𝑎1 ∨ 𝑎0𝑏0) ∨ 𝑎3(𝑏1(𝑎0 ∨ 𝑏2𝑏0) ∨ 𝑎0𝑏3𝑏2𝑏1) 

𝑞0 = 𝑎1 ∨ 𝑎3𝑎0 ∨ 𝑎3𝑎2𝑎0  

(A3) 

  

𝑠𝑝 = 𝑏0(𝑎3 ∨ 𝑎1) 

𝑝2 = 𝑎3𝑎2𝑏0(𝑎1 ∨ 𝑎0) ∨ 𝑏0(𝑎3 ∨ 𝑎2𝑎1𝑎0) 
𝑝1 = 𝑎2⨁𝑎1𝑎0,  
𝑝0 = 𝑎1⨁𝑎0⨁𝑏0  

(A4) 
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