
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—Decimal 𝑿 × 𝒀 multiplication is a complex operation,

where intermediate partial products (IPP) are commonly selected

from a set of pre-computed radix-10 𝑿-multiples. Some works

require only [𝟎, 𝟓] × 𝑿 via recoding digits of 𝒀 to one-hot

representation of signed-digits in [−𝟓, 𝟓]. This reduces the

selection logic at the cost of one extra IPP. Two’s complement

signed-digit (TCSD) encoding is often used to represent IPPs,

where dynamic negation (via one XOR per bit of 𝑿-multiples) is

required for the recoded digits of 𝒀 in [−𝟓, −𝟏]. In this paper,

despite generation of 17 IPPs, for 16-digit operands, we manage to

start the partial product reduction (PPR) with 16 IPPs that

enhances the VLSI regularity. Moreover, we save 75% of negating

XORs via representing pre-computed multiples by sign-

magnitude signed-digit (SMSD) encoding. For the first level PPR,

we devise an efficient adder, with two SMSD input numbers,

whose sum is represented with TCSD encoding. Thereafter, multi-

level TCSD 2:1 reduction leads to two TCSD accumulated partial

products, which collectively undergo a special early initiated

conversion scheme to get at the final BCD product. As such, a

VLSI implementation of 𝟏𝟔 × 𝟏𝟔-digit parallel decimal multiplier

is synthesized, where evaluations show some performance

improvement over previous relevant designs.

Index Terms—Radix-10 multiplier, Redundant representation,

Sign-magnitude signed digits, VLSI design.

I. INTRODUCTION

ECIMAL arithmetic hardware is highly demanded for fast

processing of decimal data in monetary, web based, and

human interactive applications [1]. Fast radix-10

multiplication, in particular, can be achieved via parallel partial

product generation (PPG) and partial product reduction (PPR),

which is however, highly area consuming in VLSI

implementations. Therefore, it is desired to lower the silicon

cost, while keeping the high speed of parallel realization.

Let 𝒫 = 𝑋 × 𝑌 represent an 𝑛 × 𝑛 decimal multiplication,

where multiplicand 𝑋, multiplier 𝑌, and product 𝒫 are normal

radix-10 numbers with digits in [0, 9]. Such digits are

commonly represented via binary coded decimal (BCD)

encoding. However, intermediate partial products (IPPs) are

represented via a diversity of often redundant decimal digit sets

and encodings (e.g., [0, 10] carry-save [2], [0, 15] overloaded

decimal [3], [4], [−7, 7] signed digit [5], double 4,2,2,1 [6], and

[−8, 8] Signed-Digit [7]).

The choice of alternative IPP representations is influential on

the PPG, which is of particular importance in decimal

multiplication from two points of view: One is fast and low cost

generation of IPPs and the other is its impact on representation

of IPPs, which is influential on PPR efficiency. Straight forward

PPG via BCD digit by digit multiplication [8], [9] is slow,

expensive and leads to 𝑛 double-BCD IPPs for 𝑛 × 𝑛

multiplication (i.e., 2𝑛 BCD numbers to be added). However,

the work of [10] recodes both the multiplier and multiplicand to

sign magnitude signed digit (SMSD) representation and uses a

more efficient 3-bit by 3-bit PPG. Nevertheless, following a

long standing practice [11], most PPG schemes use pre-

computed multiples of multiplicand 𝑋 (or 𝑋-multiples). Pre-

computation of the complete set {0,1, … 9} × 𝑋, as normal BCD

numbers, and the subsequent selection is also slow and costly.

A common remedial technique is to use a smaller less costly set

that can be achieved via fast carry-free manipulation (e.g.,

{0,1,2,4,5} × 𝑋) at the cost of doubling the count of BCD

numbers to be added in PPR; that is 𝑛 double-BCD IPPs are

generated such as 3𝑋 = (2𝑋, 𝑋), 7𝑋 = (5𝑋, 2𝑋), or 9𝑋 =
(5𝑋, 4𝑋). We offer a summary of PPG and PPR characteristics

of several previous relevant works in the Section II (Table I).

The recoding of multiplier’s digits, in some relevant works

[4], [6], and [7], leads to a carry bit besides the 𝑛 recoded digits

of multiplier, which will generate an extra partial product. This

is particularly problematic for parallel multiplication with 𝑛 =
16 (i.e., number of significand’s decimal digits according to

IEEE standard size of single precision radix-10 floating-point

numbers [12]), where the 17 generated partial products require

five PPR levels instead of four (i.e., log2 16). Furthermore, they

dynamically negate positive multiples based on the sign of

multiplier’s recoded digits. This technique reduces the area and

delay of logic that selects the X-multiples at the cost of

conditionally negating the selected multiples, which requires at

least 4𝑛2 XOR gates for 𝑛 × 𝑛 multiplication.

In this paper, we aim to take advantage of [−5, 5] SMSD

recoding of multiplier and dynamic negation of 𝑋-multiples,

while reducing the number of XOR gates via generating [−6, 6]
SMSD pre-computed 𝑋-multiples (i.e. just one XOR gate per 4-

bit digit). Other contributions of this paper are highlighted

below.

Starting the PPR with 16 partial products: An especial on

the fly augmentation of two middle SMSD digits, leads to

reducing the depth of partial product matrix by 1, such that the

PPR starts with 16 operands right at the end of PPG, with no

delay penalty for the latter.

Saeid Gorgin, Ghassem Jaberipur

Sign-Magnitude Encoding for Efficient VLSI

Realization of Decimal Multiplication

D

S. Gorgin is with the Department of Electrical Engineering and Information

Technology, Iranian Research Organization for Science and Technology

(IROST), Tehran 3353-5111, Iran (gorgin@irost.ir).

G. Jaberipur is with the Department of Computer Science and Engineering,

Shahid Beheshti University, Tehran 19839-63113, Iran (jaberipur@sbu.ac.ir)..

The authors are also affiliated with the School of Computer Science, Institute

for Research in Fundamental Sciences (IPM), Tehran, Iran.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Special 4-in-1 SMSD adder with TCSD sum: To avoid the

challenging addition of SMSD IPPs, we design a novel carry-

free adder that represents the sum of two [−6, 6] SMSD

operands in [−7, 7] two’s complement SD (TCSD) format,

where one unified adder is utilized for all the four possible sign

combinations.

Improved TCSD addition: The rest of the reduction process

uses special TCSD adders that are actually an improved version

of the fast TCSD adder of [5]. Such 2:1 reduction promotes the

VLSI regularity of the PPR circuit, especially for 𝑛 = 16 (i.e.,

the recommended operand size of IEEE 754-2008 [12]).

Augmenting the final redundant to non-redundant

conversion with the last PPR level: The last PPR level would

normally lead to TCSD product, which should be converted to

BCD. However, to gain more speed and reduce costs, we device

a special hybrid decimal adder, with two TCSD inputs and a

BCD output.

The rest of this work is presented as follows. In Section II, as

background coverage, we briefly study the previous relevant

works, and discuss the corresponding IPP encodings and

reduction cells. Regarding the proposed multiplier, SMSD

recoding of digits of multiplier 𝑌 and pre-computed X-

multiples, its PPR and final product computation are discussed

in Section III. Analytical and synthesis results are presented in

Section IV, where performance comparison with best previous

works is also provided. We finally conclude in Section V.

II. BACKGROUND

In this section, we briefly study several previous relevant

works, via compiling their PPG and PPR characteristics in

Table I. The column acronyms MR, ME, DN, #OP, PPDS, and

PPDE stand for multiplier recoding, multiple encoding,

dynamic negation of IPPs, number of operands to be added (i.e.,

number of originally generated nonredundant decimal numbers,

or signed digit (SD) partial products), partial product digit set,

and partial product digit encoding, respectively. In the same

table, Svoboda [13] refers to the encoding of a digit 𝑑 ∈
[0, 6] ([−6, −0]) by 5-bit binary number 3𝑑(31 − 3𝑑). Some

other works on decimal multiplication with floating-point

operands [14-17], specific designs for FPGA (e.g., [18-19]), or

digit by digit iterative approach (e.g., [9]), are not listed in Table

I, since they are based on one of the tabulated works, or use

embedded FPGA components, which are out of the scope of this

work.

Some more details for those reference works that have been

reportedly implemented, for 𝑛 = 16, are:

 [20]: Sequential multipliers, with fast carry-free X-multiple

generation, where in the process of partial product

accumulation, the PPDS and PPDE transform from [0, 18]
to [0, 10] and double-BCD to BCD carry-save (CS),

respectively.

 [3]: As above, but the PPDS and PPDE transform to [0, 15]
and (8,4,2,1), respectively.

 [21]: Parallel multipliers, with fast carry-free 𝑋-multiple

generation, where in PPR, the PPDS and PPDE transform

to [0, 15] and (8,4,2,1), respectively. Number of reduction

levels is 5.

 [22]: As above, except that PPDS and PPDE transform to

[0, 10] and BCD CS, respectively. Number of reduction

levels is 6.

 [2]: Parallel multiplier, with fast carry-free 𝑋-multiple

generation, 4:1 and 2:1 multiplexing, where PPDS and

PPDE will later transform to [0, 10] and BCD CS,

respectively. Number of reduction levels is 6.

 [6]: Two schemes are offered in this work, where both use

3:2 reduction and especial “× 2” correction cells.

o Radix-5: Parallel multiplier, fast carry-free X-multiple

generation, 4:1 multiplexing of (±2𝑋, ±𝑋), and 2:1

multiplexing of (10𝑋, 5𝑋). Number of reduction levels

is 8.

o Radix-10: Parallel multiplier, [−5, 5] SMSD recoding of

multiplier, slow carry-propagating 3𝑋 generation, 5:1

multiplexing with dynamic negation. Number of

reduction levels is 6.

 [10]: Sequential multiplier, slow PPG via BCD-to-[−5,5]

SMSD recoding of multiplier’s and multiplicand’s digits,

followed by digit-by-digit multiplication leading to [−6, 6]
PPDS with slow partial product accumulation via Svoboda

adder [13].

 [7]: Parallel multiplier, [−5, 5] SMSD recoding of

multiplier, fast carry-free X-multiple generation via

redundant representation of multiples including 3𝑋, 5:1

multiplexing with dynamic negation. Reduction is

accomplished in two stages. One is 17:8 that includes three

levels of CS adder (CSA) and a 4-bit adder. The other (i.e.,

8:2) uses two levels of (4; 2) compressors and a 5-bit adder.

Both stages conclude with some correction logic.

 [4]: As above, except for reduction, where IPPs are

represented as [0, 15] radix-10 numbers. Binary 4:2, and

3:2 reductions are used with due decimal corrections.

TABLE I

SUMMARY OF PPG AND PPR CHARACTERISTICS.

 Reference MR Pre-computed multiples ME DN #OP PPDS PPDE

1 [11]

None

{0,1, … ,9} × 𝑋

BCD

No
2𝑛

[0, 9] BCD

2 [3], [20], [21] {0,1,2,4,5} × 𝑋

[0, 18]

Double

BCD
3 [22] {0,1,2,5,8,9} × 𝑋

4 [2]

{0, ±1, ±2,5,10} × 𝑋
5 [6] Radix-5 4,2,2,1

Double

4,2,2,1

6 [10]

[−5, 5]

None [−5, 5]

𝑛 + 1

[−6,6] Svoboda

7 [6] Radix-10

{0,1,2,3,4,5} × 𝑋

4,2,2,1

Yes

[0, 9] 4,2,2,1

8 [7] [−8,8] [−8,8] −8,4,2,1,1

9 [4]
[−3,12]
Excess-3

[0, 15] 8,4,2,1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

In [4], [6], and [7] dynamic negation of pre-computed

X-multiples reduces their selection cost at the penalty of one

XOR gate per each bit of the selected positive multiple.

This negation cost is replicated 𝑛 times for parallel 𝑛 × 𝑛

multiplication. Moreover, the 𝑛 inserted 1s for ten’s

complementation in [6], and 𝑛 × (𝑛 + 1) 1s for digit wise 2’s

complementation in [7], have a negative impact on area and

power saving. The same is true for the correction constant, and

more complex recoding due to zero handling, for [0, 15] partial

products in [4]. One way to save these costs, as we do in Section

III, is to generate the signed digit pre-computed X-multiples

with sign magnitude format, so as to reduce the XOR gates to

one per digit (roughly 75% savings in the number of negating

XOR gates) and remove the aforementioned negative impacts.

However, besides slowing down the PPG to some extent (e.g.,

in comparison to radix-5 implementation of [6]), new problems

are introduced in PPR, which is to be explained and solved in

the next section, where we also reduce the depth of IPP matrix

to 𝑛 = 16, effectively prior to termination of PPG.

III. DECIMAL IPPS WITH SIGN-MAGNITUDE REPRESENTATION

OF SIGNED DIGITS

Decimal signed digits in [−α, α] (α ≤ 7) are usually encoded

with minimal 4-bit signed numbers. For example, consider α =
5 in [10] and α = 7 in [23] with sign magnitude and 2’s

complement representations, respectively. The latter is suitable

for basic arithmetic operations, except for negation, which is

best performed on sign magnitude format.

In this section, we propose a decimal multiplication scheme

with the following characteristics that are in the same line as

those of the designs listed in Table I.

 [−5, 5] SMSD recoding of multiplier’s digits

 {0,1,2,3,4,5} × 𝑋 pre-computed multiples

 4-bit [−6, 6] SMSD encoding of pre-computed

multiples

 Dynamic negation of multiples with only one XOR per

digit (i.e., per 4 bits)

 𝑛 (instead of 𝑛 + 1) operands to be added for 𝑛 × 𝑛

multiplication

 Unified SMSD+SMSD⟶TCSD adder for all four input

sign combinations

 [−7, 7] TCSD representation for accumulated partial

products

 Early start of redundant to BCD conversion

 Augmenting last PPR level with final conversion to

BCD

Fig. 1 depicts the general architecture of the proposed 16 ×
16 multiplication 𝒫 = 𝑋 × 𝑌, where details of each building

block will be explained later. In particular, in the top three

blocks, the multiplier’s digits are recoded to 𝑛 one-hot [−5, 5]
SMSDs (i.e., one sign, and 5 magnitude bits), augmented with

a 10𝑛-weighted carry bit. The multiples [0, 5] × 𝑋 are pre-

computed as 𝑛 [−6, 6] SMSDs and a 10𝑛-weighted [−5, 4]
SMSD. Each SMSD contains a sign bit 𝑠 and 3-bit magnitude.

The negative multiples [1, 5] × (−𝑋) are achieved via dynamic

sign inversion of multiples [1, 5] × 𝑋, at the cost of only one

XOR gate per digit.

3.1. Recoding of multiplier’s digits

Original BCD digits of multiplier require [0, 9] × 𝑋 pre-

computed multiples, which include hard multiples {3, 6, 7, 9} ×
𝑋 that unlike {2, 4, 5, 8} × 𝑋 are not derivable without carry

propagation. On the other hand, BCD-to-redundant [−5, 5]
SMSD recoding of multiplier’s digits with dynamic negation of

IPPs reduces the required 𝑋-multiples to [0, 5] × 𝑋 that include

only one hard multiple (i.e., 3𝑋). However, this recoding

produces a carry as the (𝑛 + 1)th digit of multiplier, which

increases the number of IPPs by 1. This is especially not

desirable for 𝑛 = 16 (i.e., the recommended IEEE754-2008

word size for decimal operands [12]). The reason is that it may

increase the number of 2:1 PPR levels by 1, which can be

avoided as will be dealt with in Section 3.3.

The one-hot recoding input/output expressions are given by

Eqn. set 1, where 𝑌𝑖 = 𝑣3𝑣2𝑣1𝑣0, and 𝑌𝑖−1 = 𝑤3𝑤2𝑤1𝑤0

represent two consecutive digits of BCD multiplier, ω indicates

whether 𝑌𝑖−1 ≥ 5, 𝑠𝑣′ is the sign of target code, and 𝑣1
′ -𝑣5

′ are

one-hot signals corresponding to absolute values of recoded

multiplier’s digit 𝑌𝑖
′ (i.e., 1-5), whose decimal weight is equal

to that of 𝑌𝑖. More derivation details can be found in [4], [6],

[7], and [10].

ω = 𝑤3 ∨ 𝑤2(𝑤1 ∨ 𝑤0),

𝑣1
′ = 𝑣2 ∨ 𝑣1(ω ⨁ 𝑣0),

𝑣2
′ = ω𝑣0(𝑣3 ∨ 𝑣2 ∨ 𝑣1 ∨ 𝑣2𝑣1) ∨ ω ∨ 𝑣0(𝑣3 ∨ 𝑣2𝑣1),

𝑣3
′ = 𝑣1(ω ⨁ 𝑣0),

𝑣4
′ = ω ∨ 𝑣0𝑣2 ∨ ω𝑣0(𝑣2⨁𝑣1),

𝑣5
′ = 𝑣2𝑣1(ω ⨁ 𝑣0),

𝑠𝑣′ = 𝑣3ω𝑣0 ∨ 𝑣2(𝑣1 ∨ 𝑣0)

(1)

3.2. Pre-computed multiples

We need to generate {0,1,2,3,4,5} × 𝑋, where 𝑋 is a BCD

multiplicand. The only hard multiple 3𝑋 can be generated in

carry-free manner, if it is represented via a redundant digit set

[5], [7]. Therefore, for uniformity sake in PPR, we generate all

the required multiples in the same signed digit number system.

X

SMSD Multiples Generation

One-Hot Mux-5

One-hot

[-5,5] SD

Recoder

(17 16) Depth reduction

0X1X15X

0Y
15Y

1 ()X u2 ()X d3 ()X t5 ()X p 4 ()X q

Y

16-deep Partial Product

Reduction Tree

Double SD to BCD Convertor

6464

6868686868
sign

16 5 1 16

855

285

32

96

444

44

4

4

Fig. 1. Overall block diagram view of the proposed multiplier.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Let 𝑋𝑖 = 𝑏3𝑏2𝑏1𝑏0 and 𝑋𝑖−1 = 𝑎3𝑎2𝑎1𝑎0 denote two

consecutive BCD digits of 𝑋, 3𝑋𝑖 = 10𝐻𝑖 + 𝐿𝑖, and 3𝑋𝑖−1 =
10𝐻𝑖−1 + 𝐿𝑖−1, where 0 ≤ 3𝑋𝑖 , 3𝑋𝑖−1 ≤ 27, 𝐻𝑖 , 𝐻𝑖−1 ∈
{0, 1, 2}, and 𝐿𝑖 , 𝐿𝑖−1 ∈ [0, 9] (e.g., 𝑋𝑖𝑋𝑖−1 = 59 leads to 𝐻𝑖 =
1, 𝐻𝑖−1 = 2, 𝐿𝑖 = 5, and 𝐿𝑖−1 = 7). In cases that 𝐿𝑖 , 𝐿𝑖−1 ≥ 4

(as in the latter example), we recode the 2-digit BCD number

𝐻𝑖 𝐿𝑖 to 𝐻𝑖
′ 𝐿𝑖

′ , and 𝐻𝑖−1 𝐿𝑖−1 to 𝐻𝑖−1
′ 𝐿𝑖−1

′ based on Eqn. set 2,

which leads to 𝐻𝑖
′, 𝐻𝑖−1

′ ∈ [0, 3] and 𝐿𝑖
′ , 𝐿𝑖−1

′ ∈ [−6, 3].

𝐿𝑖
′ = 𝐿𝑖 − 10, 𝐻𝑖

′ = 𝐻𝑖 + 1,

𝐿𝑖−1
′ = 𝐿𝑖−1 − 10, 𝐻𝑖−1

′ = 𝐻𝑖−1 + 1
(2)

For example, the new values per the above example (i.e.,

𝑋𝑖𝑋𝑖−1 = 59) are 𝐻𝑖 = 2, 𝐻𝑖−1 = 3, 𝐿𝑖 = −5, and 𝐿𝑖−1 = −3.

Fig. 2 depicts the weighted organization of source,

intermediate, and target digits of the above recoding, where

𝑇𝑖 = 𝐿𝑖
′ + 𝐻𝑖−1

′ ∈ [−6, 3] + [0, 3] = [−6, 6]. It is easy to verify

that similar recoding can be applied to other multiples to be

represented with the same digit set ([−6, 6] SMSD).

The corresponding logical expressions for SMSD multiples

of the multiplicand 𝑋 (i.e., 1𝑋(𝑢), 2𝑋(𝑑), 3𝑋(𝑡), 4𝑋(𝑞), and

5𝑋(𝑝)) can be derived in terms of bits of BCD digits 𝑎 (in

position 𝑖) and 𝑏 (in position 𝑖 − 1). For example, that of 3𝑋(𝑡),

is given by Eqn. set 3, and the rest can be found in the

Appendix. Note that such multiples are represented with at most

one extra digit (i.e., total of 68 bits), since the most significant

digit of the generated multiple is at most 4 (due to 5 × 9 = 45),

which remains 4 within the BCD-to-SMSD conversion.

𝑠𝑡 = 𝑎3𝑎2(𝑎1𝑏2𝑏1 ∨ 𝑏1𝑏0) ∨ 𝑏1𝑏0(𝑏2 ∨ 𝑎3𝑎1𝑎0) ∨

𝑏3(𝑎3 ∨ 𝑏0) ∨ 𝑏2𝑏1𝑏0,

𝑡2 = 𝑏1𝑏0(𝑏3𝑏2(𝑎3 ∨ 𝑎2) ∨ 𝑎3𝑏2(𝑎2 ∨ 𝑎1𝑎0) ∨ 𝑎2𝑎1𝑏3) ∨

𝑏2𝑏1𝑏0(𝑎3 ∨ 𝑎2𝑎1 ∨ 𝑎2𝑎0) ∨

𝑎3𝑏0(𝑏3 ∨ 𝑎2𝑎1𝑏2𝑏1)𝑎3𝑏2𝑏1𝑏0,

𝑡1 = 𝑏2𝑏1(𝑎2𝑏3(𝑎1 ∨ 𝑎0) ∨ 𝑏1(𝑎2 ∨ 𝑎1) ∨ 𝑎3𝑏1) ∨

𝑎3 (
𝑎2(𝑏3𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨ 𝑎2𝑎1(𝑏2𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨

𝑎1𝑎0(𝑏3𝑏0 ∨ 𝑏2𝑏1𝑏0)
) ∨

𝑏2𝑏0(𝑎2(𝑎1 ∨ 𝑎0) ∨ 𝑏1(𝑎2 ∨ 𝑎1)) ∨

𝑎3𝑏3𝑏0(𝑏2 ∨ 𝑏1) ∨ 𝑎2𝑎1𝑏3𝑏0,

𝑡0 = 𝑏0(𝑎2(𝑎1 ∨ 𝑎0) ∨ 𝑎3𝑎2𝑎1) ∨

𝑏0(𝑎3 ∨ 𝑎2𝑎1 ∨ 𝑎2𝑎1𝑎0)

(3)

3.3. Partial product generation

Fig. 3 depicts the PPG, and the normal organization of IPPs

of such 𝑛 × (𝑛 + 1) multiplication for 𝑛 = 4. The tick bars

represent BCD digits of the multiplicand. Depth of the deepest

column of IPP matrix (i.e., 10𝑛-weighted position) is (𝑛 + 1),

where all digits belong to [−6, 6], except the top and bottom

ones (in gray) that belong to [−5, 4] and [−6, 3], respectively.

We reduce the matrix depth to 𝑛 (e.g., 5 → 4 for 𝑛 = 4, and

17 → 16 for 𝑛 = 16), with no delay between the termination of

PPG and start of PPR. Here is how it works: we compute sum

of the two gray digits (see Fig. 3) independent of (and in parallel

to) normal PPG, as follows. If 𝑌𝑛−1 ≤ 4, the value of 10𝑛-

weighted carry of recoded multiplier is zero, so the bottom gray

digit has to be zero. Therefore no addition is required.

For 𝑌𝑛−1 > 4, let 𝐻 denote the most significant digit of 𝑋𝑛−1 ×
𝑌0

′ (e.g., the top gray digit in Fig. 3) where 𝑋𝑛−1 and 𝑌0
′

represent the most significant BCD digit of multiplicand and

the least significant recoded digit of multiplier, respectively.

We extract 𝐻 as ten one-hot signals via an 8-input logic (see the

rightmost box in Fig. 4).

The least significant BCD digit of multiplicand (i.e., 𝑋0), as

is illustrated in the rest of Fig. 4, is added to constants in

[−5, 4]. This leads to the desired sum digit 𝒮 in 10𝑛-weighted

position (in place of two gray digits of Fig. 3) and a carry bit 𝒸

to be added to the 10𝑛+1-weighted digit next to bottom gray

digit to result in 𝒮′ (𝒮 and 𝒮′ are also distinguished by white

triangles ∆ in Fig. 5 in Section 3.4). This digit, as shown in the

leftmost part of Fig. 4, is obtained by directly recoding the 10-

weighted digit of multiplicand (i.e., 𝑋1).

3.4. Partial product reduction

The overall PPR for 𝑛 = 16 is illustrated by Fig. 5, where a

bar, triangle, square, and diamond represent a BCD, [−6, 6]
SMSD, [−7, 7] TCSD, and binary signed digit (BSD),

respectively. The choice of SMSD representation for the first

level IPPs, while facilitates the PPG, bears no extra complexity

for PPR, since all reduction levels use TCSD adders, except for

the first one that requires a special SMSD+SMSD-to-TCSD

adder. However, as will be shown at the end of Section 3.4.1

this adder is not more complex than a simple TCSD adder.

The red shaded SMSD in Level II of Fig. 5 is directly

converted to BCD. Similar direct conversions are in order for

the red shaded digits (TCSDs, however) in the subsequent

Levels III and IV.

Decimal position 𝒊 + 𝟏 𝒊 𝒊 − 𝟏

𝑿 [0, 9] 𝑋𝑖+1 𝑋𝑖 𝑋𝑖−1

𝟑𝑿
[0, 9] 𝐿𝑖 𝐿𝑖−1

[0, 2] 𝐻𝑖 𝐻𝑖−1

𝟑𝑿
[−6, 3] 𝐿𝑖

′ 𝐿𝑖−1
′

[0, 3] 𝐻𝑖
′ 𝐻𝑖−1

′

𝟑𝑿 [−6, 6] 𝑇𝑖

Fig. 2. Two consecutive digits of 𝑋, 3𝑋 (BCD), and 3𝑋 ([−6, 6]SMSD).

0X1X

15X 0Y 

15Y

5Recoder 4 3 2 1 1 2 3 4

1
15 0

10

X Y
H




0

15 4Y 

Mux 2-1

Fig. 4. The required circuit for (17 → 16) depth reduction.

s
s

s

s

s
s
s

s

s

s
s

s
s

s

s
s

s

s
s
s

s

s

s
s

ss

s

s

Fig. 3. Normal organization of intermediate partial products.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

3.4.1) Special 4-in-1 SMSD adder

A digit slice of the aforementioned SMSD+SMSD-to-

TCSD adder, for four different cases corresponding to all

possible combinations of the input signs, are depicted by Fig. 6

(a, b, c, d) in dot-notation representation. The black and white

dots represent posibits and negabits (a posibit is a normal bit

whose arithmetic value equals its logical status, and the

arithmetic value of a negabit with logical status 𝑥 equals 𝑥 − 1

[24]. The sum of two [−6, 6] SMSD digits (e.g., 𝑃 = 𝑠𝑝𝑝2𝑝1𝑝0

and 𝑄 = 𝑠𝑞𝑞2𝑞1𝑞0), and a signed carry-in (e.g., 𝐶𝑖𝑛) is produced

as one [−7, 7] TCSD digit (e.g., 𝑆 = 𝑠3𝑠2𝑠1𝑠0), and a signed

carry-out (e.g., 𝐶𝑜𝑢𝑡). This is a 2-stage process. In the stage I,

the sign bits are applied to the magnitudes, such that a negative

sign changes the polarity of magnitude posibits to negabits and

inverts their logical states. Subsequently, in the same stage, the

bit collection 𝑈 is decomposed, and the bit collection 𝑉 is

recoded. In the second stage, however, as will be explained

shortly, only one 4-bit adder takes care of all the four cases,

which explains the rationale for designation of the adder.

 Decomposition of 𝑼: Following the partitioning

technique of [5], we show that the bit-collection 𝑈 =
(−1)𝑠𝑝(2𝑝2 + 𝑝1) + (−1)𝑠𝑞(2𝑞2), can be decomposed to

𝑍 and 𝐶𝑜𝑢𝑡 bit collections, such that 2𝑈 = 2𝑍 + 10𝐶𝑜𝑢𝑡.

Table II contains the details of such decomposition for the

four possible (𝑠𝑝, 𝑠𝑞) combinations, where it is shown that

𝐶𝑜𝑢𝑡 ∈ [−1, 1] and 𝑍 can be extracted from 𝑈 values.

Furthermore, the BSD signed carry 𝐶𝑜𝑢𝑡 is represented as

a posibit/negabit pair (𝑐𝑜𝑢𝑡
′ , 𝑐𝑜𝑢𝑡

′′), and to represent the 𝑍

values in each case a 3-bit encoding that covers the

corresponding range is proposed. For example, in case of

𝑠𝑝 = + and 𝑠𝑞 = −, the arithmetic range of 𝑍(= 4𝑧3 +

2(𝑧2 − 1) + 𝑧1), is [−2, 5]. This range covers that of 𝑍 =
(2𝑈−10𝐶𝑜𝑢𝑡)

2
∈ [−2, 3] (i.e., 𝑍 ∈ {4, 5} never occurs),

which makes the decomposition valid. The required

logical expressions for the bits of 𝐶𝑜𝑢𝑡 and 𝑍 that are

derived via simple 5-input truth tables are presented in

Eqn. set 4.

𝑐𝑜𝑢𝑡
′ = 𝑠𝑝 ∨ 𝑠𝑞(𝑝2 ∨ 𝑞2), 𝑐𝑜𝑢𝑡

′′ = 𝑠𝑝𝑠𝑞(𝑝2 ∨ 𝑞2)

𝑧1 = 𝑠𝑝𝑠𝑞 𝑞1 ∨ 𝑠𝑝𝑝1(𝑠𝑞 ∨ 𝑝2 ∨ 𝑞2) ∨ 𝑠𝑞𝑝1(𝑝2 ∨ 𝑞2) ∨

𝑝2 ∨ 𝑞2 ∨ 𝑝1 (𝑠𝑝 ∨ 𝑠𝑞),

𝑧2 = 𝑝2𝑞2(𝑠𝑝 ∨ 𝑠𝑞 ∨ 𝑝1) ∨ 𝑝2 ∨ 𝑞2 (𝑠𝑝 𝑝1 ∨ 𝑠𝑝⨁𝑠𝑞) ∨

𝑠𝑝𝑠𝑞𝑝1𝑝2⨁𝑞2,

𝑧3 = 𝑠𝑞𝑝2𝑞2 𝑠𝑝𝑝1 ∨ 𝑠𝑝𝑝2𝑞2𝑠𝑞𝑝1 ∨ 𝑠𝑝 ∨ 𝑠𝑞 𝑝2 ∨ 𝑞2𝑝1

(4)

 Recoding of 𝑽 to 𝑽′: The 𝑉 bit collection is described as

𝑉 = (−1)𝑠𝑝(𝑝0) + (−1)𝑠𝑞(2𝑞1 + 𝑞0), which is to be

recoded to 𝑉′ bit collection with the same arithmetic

value. Note that the bit polarities in 𝑉′ are different in the

four cases of Fig. 6. For example, in Fig. 6b, the arithmetic

value of 𝑉 equals to −2𝑞1 + 𝑝0 − 𝑞0 ∈ [−3, 1], while that

of 𝑉′ is 4𝑣2 + 2(𝑣1 − 1) + (𝑣0 − 1) ∈ [−3, 4] that

covers the original range [−3, 1]. These recodings can be

done via a circuit that is described by Eqn. set 5 (also

derived via a 5-input simple truth table).

𝑣0 = 𝑝0⨁𝑞0,

𝑣1 = (𝑞1⨁𝑞0)𝑠𝑞⨁𝑝0 ∨ (𝑠𝑞⨁𝑝0)𝑠𝑝⨁𝑞1,

𝑣2 = 𝑠𝑞𝑞1(𝑝0𝑞0 ∨ 𝑠𝑝𝑝0) ∨ 𝑠𝑞𝑞1(𝑝0𝑞0 ∨ 𝑠𝑝𝑝0)

(5)

0p2p

1z 0v

1p

2q 1q 0q

3z 2z


outc


outc

1v2v

outC

Z
inC

U

V 

1s2s 0s3s


inc


inc

V

0p2p 1p

2q 1q 0q




I

II

III

2q 1q 0q

3z 2z

1v2v

Z

U

V 

1z


outc


outc


inc


inc

1s2s 0s3s

outC
inC

0v

0p2p 1p

V



0p2p 1p

2q 1q 0q



2p 0p

0v

1p

3z 2z

1v2v
outc


outc

outC

Z
inC

U

V 

1s2s 0s3s


inc


inc

1z

2q 1q 0q

V

 0p2p 1p

2q 1q 0q

2p 0p

0v

1p

3z 2z

1v2v
outc


outc

outC

Z
inC

U

V 

1s2s 0s3s


inc


inc

1z

2q 1q 0q

V

 0p2p 1p

2q 1q 0q

a) 𝑠𝑝 = +, 𝑠𝑞 = + b) 𝑠𝑝 = +, 𝑠𝑞 = − c) 𝑠𝑝 = −, 𝑠𝑞 = + d) 𝑠𝑝 = −, 𝑠𝑞 = −

Fig. 6. A digit slice of SMSD+SMSD-to-TCSD adder for four sign combinations.

: BCD

:[6,6] SMSD

:[7,7] TCSD

: BSD

,

Level I

Level II

Level III

Level IV

Fig. 5. The overall view of 16 × 16 digit multiplier.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

 The 4-in-1 design: Other encodings are also possible for

𝑍 and 𝑉′ values. For example, an alternative encoding for

both 𝑍 ∈ [−2, 3] and 𝑉′ ∈ [−3, 1] of Fig. 6b is ○●●∈
[−4, 3] that covers the latter two intervals. However, the

proposed encodings (see Table II) are so chosen to allow

for unified treatment of the bit collections that are obtained

after the decomposition and recoding. That is a simplified

4-bit adder (see Fig. 7) can take care of all the four cases.

This is actually possible via the standard full adders that

are capable of handling all the 3-bit posibit/negabit

collections of inputs [24]. Note that the normally required

leftmost HA is reduced to an OR gate since no carry out is

expected.

The aforementioned decomposition and recoding can be

further justified by close examination of the content of Table II,

where the range of 𝑃 + 𝑄 determines the possible values for

𝐶𝑜𝑢𝑡, which always lead to 𝑆 = 2𝑍 + 𝑉′ + 𝐶𝑖𝑛 ∈ [−7, 7], as is

shown in the rightmost column.

The (𝑐𝑖𝑛
′ , 𝑐𝑖𝑛

′′) pair represents the incoming signed carry 𝐶𝑖𝑛

from the less significant position. Representations of 𝑍, 𝑉′, and

𝐶𝑖𝑛 are so determined as to lead to two’s complement

representation for 𝑆, in all the four cases (see below for more

explanations, and the following numerical example).

Example 1 (Fig. 6 by numerical values): Fig. 8 describes a

numerical example, where two SMSDs 𝑃 = 𝑠𝑝101 (|𝑃| = 5)

and 𝑄 = 𝑠𝑞100 (|𝑄| = 4) are added. This figure mimics Fig. 6

with numerical values, where signs (i.e., 𝑠𝑝 and 𝑠𝑞) are

explicitly shown as was the case in Fig. 6, and negabits are

inversely encoded as 1−(0−), which represent arithmetic value

0(−1). The incoming signed carry 𝐶𝑖𝑛 = 0 is represented by

the posibit 𝑐𝑖𝑛
′ = 0 and inversely encoded negabit 𝑐𝑖𝑛

′′ = 1−.

Therefore, the FA in position 0 receives two negabits and one

posibit, and produces a posibit sum 1 and a negabit carry 0−,

such that 2 × (−1) + 1 = −1, as there was only one

arithmetically nonzero input 0− (i.e., −1).

The 4-in-1 adder is slightly more efficient than [−7, 7] TCSD

adder (i.e., less latency with no area overhead), as can be

verified by inspecting Eqn. sets 4-5, for the preprocessing logic

boxes in 4-in-1 adder and that of TCSD adder (i.e., Eqn. set 6

in Section 3.4.2).

3.4.2) TCSD adder

The TCSD adder, which is required for the remaining

(⌈log2 𝑛⌉ − 2) subsequent reduction levels (i.e., Levels II and

III in Fig. 5), is an improved version of that of [5]. The required

architecture is the same as in Fig. 7, except for the

preprocessing boxes, where the required logical expressions are

described in Eqn. set 6. Also Fig. 9 depicts one digit slice of this

adder.

𝑐𝑜𝑢𝑡
′ = 𝑝3 𝑞3, 𝑐𝑜𝑢𝑡

′′ = 𝑝3𝑞3𝑝2𝑞2𝑝1 ∨ 𝑝2 𝑞2(𝑝1 ∨ 𝑝3 𝑞3)

𝑣0 = 𝑝0⨁𝑞0, 𝑣1 = 𝑞1⨁(𝑝0 ∨ 𝑞0), 𝑣2 = 𝑞1(𝑝0 ∨ 𝑞0),
𝑧1 = (𝑝2 ∨ 𝑞2)(𝑝3𝑞3 𝑝1 ∨ 𝑝3(𝑞3⨁𝑝1)) ∨ 𝑝3 𝑞3 𝑝2 𝑞2 𝑝1 ∨

𝑝3𝑞3𝑝1𝑝2𝑞2,

𝑧2 = (𝑝2⨁𝑞2)(𝑝3(𝑞3 ∨ 𝑝1) ∨ 𝑞3𝑝1) ∨ 𝑝2𝑞2𝑝1 𝑝3𝑞3 ∨

𝑝3 𝑞3 (𝑝2𝑞2 ∨ 𝑝2 𝑞2 𝑝1),
𝑧3 = 𝑝3 𝑞3 𝑝2 𝑞2 𝑝1 ∨ 𝑝3𝑞3𝑝2𝑞2𝑝1 ∨

(𝑝3⨁𝑞3)(𝑝2𝑞2𝑝1 ∨ 𝑝2 𝑞2 𝑝1)

(6)

1

0 0

01
2Z  

8U 

1V  

1

0

1

1outC 

inC
0

1 0 1

1

1

0 1 1 1

0 0

1V 

I

II

III

1

1 0 1

0 0





0 1

01
0Z 

0U 

1V  

0

0

1

0outC 
0

1 0 1

0

1

1 0 0 1

1V 

inC

 1

1 0 1

0 0



0 1 1



1

1 0 1

0 0

1

0 1

10
0Z 

0U 

1V   

0

0

1

0outC 

inC
0

0

1

0 1 1 1

0 0
1V  

0 1 0



1

1 0 1

0 0

0 1

10
2Z 

8U  

1V   

1

0

1

1outC  

inC
0

0

0

1 0 0 1



1V 
0 0

0

1

1 1

a) 𝑠𝑝 = +, 𝑠𝑞 = + b) 𝑠𝑝 = +, 𝑠𝑞 = − c) 𝑠𝑝 = −, 𝑠𝑞 = + d) 𝑠𝑝 = −, 𝑠𝑞 = −

Fig. 8. Numerical example with |𝑝| = 5 and |𝑞| = 4.

TABLE II

VALUE OF 𝑈, 𝑉′, 𝑍, 𝐶𝑜𝑢𝑡, AND FINAL RESULT IN FOUR CASES 𝑠𝑝 𝑠𝑞 = {++, −−, +− , −+}.

Sub

Fig. 6

𝑠𝑝

𝑠𝑞
𝑃 + 𝑄 = 2𝑈 + 𝑉 𝑈 𝐶𝑜𝑢𝑡 𝑍 = (2𝑈 − 10𝐶𝑜𝑢𝑡)/2 𝑉′ = 𝑉 2𝑍 + 𝑉′ + 𝐶𝑖𝑛

a
+

+
[0, 12] [0, 5] {0, 1}

[−3, 2]
(●○○)

[0,4]
(●●○)

[−7, 7]
(○●●●)

b
+

−
[−6, 6] [−2, 3] 0

[−2, 3]
(●○●)

[−3,1]
(●○○)

c
−

+
[−6, 6] [−3, 2] 0

[−3, 2]
(●○○)

[−1,3]
(●●○)

d
−

−
[−12, 0] [−5, 0] {−1, 0}

[−1, 3]
(●●○)

[−4,0]
(○●○)

qsps 0p1q 0q

FAFAFA

3s


inc


inc

2s
1s 0s

3z 2z 1z2v 1v 0v


outc


outc

2p 1p2q

3 2 1, ,z z z
Preprocessing LogicPreprocessing Logic

2 1 0, ,v v v

 Fig. 7. A digit slice of the 4-in-1 SMSD + SMSD → TCSD adder.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

These 2:1 TCSD reductions lead to two [−7, 7] TCSD

accumulated partial products that are summed up with a special

adder that directly produces the final BCD product, whose

details are explained in Section 3.5.

3.5. Final product computation

Recall that the Level IV of Fig. 5 contains two [−7, 7] TCSD

IPPs. To get at the final product the straightforward method

calls for a final 2:1 reduction level that leads to a 2𝑛-TCSD

product 𝐷2𝑛−1 … 𝐷0. This is then to be converted to the

equivalent BCD product 𝒫2𝑛−1 … 𝒫0, which could be done via

the recurrence of Eqn. set 7, where 𝐷𝑖 ∈ [−7, 7], 𝑏𝑖 ∈ [−1, 0],
and 𝒫𝑖 ∈ [0, 9], for 0 ≤ 𝑖 ≤ 2𝑛 − 1.

𝑏0 = 0 ,

𝑊𝑖 = 𝐷𝑖 + 𝑏𝑖, (𝑏𝑖+1, 𝒫𝑖) = {
(0, 𝑊𝑖)
(−1,10 + 𝑊𝑖)

if 𝑊𝑖 ≥ 0
if 𝑊𝑖 < 0

(7)

To speed up the latter two steps (i.e., 2:1 reduction and

TCSD-to-BCD conversion), the actual BCD product generation

of Fig. 5 uses a more efficient method to be described below.

The final 2:1 reduction level that is required for positions 8 to

22 and the subsequent TCSD-to-BCD conversion can be

actually augmented as a TCSD + TCSD addition with BCD

result, which will be explained in the Section 3.5.2, below.

However, the product digits for positions 0-7 can be directly

converted to BCD on the fly as is discussed in Section 3.5.1.

Finally, the combined reduction and conversion in the

remaining most significant positions are described in Section

3.5.3. A similar 3-part final product generation, for binary

multiplication is undertaken in [25].

3.5.1) Positions 0-7

 Following some previous works on decimal multiplier

designs (e.g., [22], [6], [7]), we take advantage of different

arrival times of the product digits for position 0-7 (red-shaded

in Fig. 5). The least significant product digit is obtained in Level

I as an SMSD digit, which is directly converted to BCD via Eqn.

set 7. The next product digit that is available at Level II, as a

TCSD, is likewise converted. So is the case for TCSDs 𝐷3-𝐷2

and 𝐷7-𝐷4 that are delivered in Levels III and IV, respectively.

3.5.2) Positions 8-22

There are two TCSD digits per positions 8-25. We don’t

apply another PPR level (i.e., TCSD+TCSD-to-TCSD

conversion, as in Fig. 9). Instead, we can think of a

TCSD+TCSD-to-BCD converter that can be realized with the

help of a parallel prefix adder. However, the reason that we

discuss the 15 positions 8-22 (distinguished by yellow shading

in Fig. 5) separately in this section is that they together with the

borrow-in signal 𝑏8 contribute to a fully utilized 16-bit parallel

prefix tree.

A digit slice of the aforementioned converter is illustrated by

Fig. 10a. The function of this addition scheme is similar to that

of Fig. 9, except that the collective value of the eight bits due to

𝐶𝑖𝑛, 𝑍, and 𝑉′ variables (i.e., 𝑊 = 𝑤4𝑤3𝑤2𝑤1𝑤0 = 4𝑈 + 𝑉 +
𝐶𝑖𝑛 − 10𝐶𝑜𝑢𝑡 = 2𝑍 + 𝑉′ + 𝐶𝑖𝑛) belong to [−9, 7]. Note that

the decomposition of 4𝑈 to (2𝑍 + 10𝐶𝑜𝑢𝑡), as in Eqn. 8, is

undertaken such that 𝑍 ∈ [−4, 0] is composed of only negabits.

Each of these signals can be extracted by separate 4-input

combinational logic.

0p2p

1z 0v

1p

2q 1q 0q

3z 2z

1v2v

Z

U

V 

3p

3q


outc


outc

outC
inC

1s2s 0s3s


inc


inc

V

Fig. 9. TCSD adder.

1z 0v2z3z

1v2v

1w

(γ, π)

0p2p 1p

2q 1q 0q

Z

U

V 

3p

3q


outc


outc

outC
inC


inc


inc

3t 2t 1t 0t

γ

0w3w 2w

γ

W

V

outC

Preprocessing logic

Z V

P

+10 Logic

π and γ Generation

Q

πγ
8 (from part 1)b

1 Logic

23(to part 3)b

Parallel prefix tree

1 0
Mux

T

t

15 4 15 4

15 4

22 8b b

Carry-Select

FAFAFA4-Bit Adder

4w

inb

(PPT)

From PPT

To PPT

 0 1 2 3

 a) A digit slice of TCSD+TCSD-to-BCD adder. b) Architecture for final product generation in positions 8-22.

Fig. 10. Final conversion in Part 2.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

𝑐𝑜𝑢𝑡
′ = 𝑝

3
 𝑞

3
(𝑝

2
∨ 𝑞

2
), 𝑐𝑜𝑢𝑡

′′ = 𝑝
3

𝑞
3

𝑝
2

𝑞
2

𝑣0 = 𝑝0⨁𝑞0, 𝑣1 = 𝑝1⨁𝑞1⨁(𝑝0 ∨ 𝑞0),

𝑣2 = 𝑝1𝑞1 ∨ (𝑝1 ∨ 𝑞1)(𝑝0 ∨ 𝑞0),
𝑧1 = 𝑐′𝑜𝑢𝑡 ∨ 𝑐′′𝑜𝑢𝑡, 𝑧2 = 𝑝3𝑞3𝑝2⨁𝑞2 ∨ 𝑝3𝑞3𝑝2 𝑞2,

𝑧3 = 𝑝2 ∨ 𝑞2 𝑝2⨁𝑞2 ∨ 𝑝3𝑞3𝑝2𝑞2

(8)

Since we seek BCD product, we convert 𝑊 digits to BCD

digits 𝑇, via Eqn. 9, where 𝑤4 is a weighted-16 negabit. The

−6𝑤4 operation can be replaced by +10𝑤4. However, in case

of 𝑤4 = 0, a decimal borrow is carried over to the more

significant decimal position that causes borrow propagation. To

avoid such slow borrow propagation, we employ a parallel

prefix borrow generator that uses decimal borrow propagate

and generate signals π = (𝑊 = 0) and γ = (𝑊 < 0) = 𝑤4,

respectively. These borrow signals are generated via a 4-level

Kogge-Stone (KS) [26] parallel prefix network with 15 input

pairs (π,γ), and borrow-in 𝑏8from Part 1 (i.e., out of position 7).

𝑇 = {
𝑤3𝑤2𝑤1𝑤0

𝑤3𝑤2𝑤1𝑤0 − 6
if 𝑤4 = 1
if 𝑤4 = 0

= 𝑤3𝑤2𝑤1𝑤0 − 6𝑤4 (9)

To avoid 4-bit borrow propagation within each 𝑇 = 𝑡3𝑡2𝑡1𝑡0

digit, we also concurrently compute 𝑇′ = 𝑇 − 1, where one of

𝑇 or 𝑇′ is to be selected by borrow 𝑏𝑖𝑛 that yields the product

digit 𝒫 = 𝓅3𝓅2𝓅1𝓅0. Fig. 10b depicts the logical blocks that

correspond to different stages of Fig. 10a.

3.5.3) Positions 23-31

The π and γ signals for decimal positions 23-25 are produced

similar to those of Section 3.5.2. Regarding the positions 26-31,

where there exists only one [−7, 7] TCSD per position, γ is

equal to the NOT of sign bit of the corresponding TCSD, and π

can be derived as the NOR of all four bits (sign bit inverted).

We devise a special 3-level compound KS-like parallel prefix

network to generate all borrows 𝑏0(𝑏−1) for decimal positions

24-31 that correspond to the cases where 𝑏23 is 0 (1). Fig. 11

depicts the required logic, where (Γ, Π) represent the group

(generate, propagate) signals. These borrows are utilized to

form two BCD products 𝒫31 … 𝒫24𝒫23 and 𝒫31 … 𝒫24𝒫23 − 1

corresponding to 𝑏31
0 … 𝑏24

0 𝑏23 and 𝑏31
−1 … 𝑏24

−1𝑏23, respectively,

where one is selected by 𝑏23.

Note that, given the one gate-level earlier availability of Π

signals with respect to companion Γ signals, the special

diamond node is so designed as to produce 𝑏−1 no later than 𝑏0;

of course with no delay overhead for the latter.

IV. EVALUATION AND COMPARISONS

In this section, we provide analytical evaluation of latency of

the proposed multiplier and those of [2], [21], [22], [6], [7], and

[4]. These include all the previously reported parallel decimal

multipliers, except for [27] that only provides synthesis results

and no sufficient information to enable analytical evaluation.

However, for more reliable results and fair comparison, we will

provide, in Section 4.2, the synthesis-based figures of merit for

all the aforementioned designs.

4.1. Analytical evaluation

Tables III-V contain delay measures of PPG, PPR, and final

product computation (respectively), and their components, of

the proposed design and those of [2], [21], [22], two of [6], [7]

(based on the reevaluation in [28]), and the recent work of [4].

Also, the corresponding overall delay measures are compiled in

Table VI.

We could not actually copy the analytical evaluation results

of all the reference works, since the work of [2] provides only

synthesis results. Those of [22] and [6] are in terms of FO4,

where their underlying FO4 evaluation assumptions are not

apparently the same and thus could not be followed in the

evaluation of our design. Therefore, for fair comparisons, we

preferred to derive the entries in rows 1-7 of Tables III-V

directly from the design description of the corresponding

articles, in the same way that we did with our design. These gate

level evaluations are in terms of Δ𝐺 (i.e., delay of a 2-input

simple gate), which is easily verifiable.

23 23γ , π

0

24b

1

24b

  l r

    l l r

1  b

:

24 24γ , π25 25γ , π26 26γ , π27 27γ , π28 28γ , π29 29γ , π
30 30γ , π

0

25b

1

25b

0

26b

1

26b

0

27b

1

27b

0

28b

1

28b

0

29b

1

29b

0

30b

1

30b

0

31b

1

31b

: l

l

r

r

l

l

r

r

  l r

    l l r

Fig. 11. The 3-level compound KS-like parallel prefix network.

TABLE III

LATENCY COMPARISON OF PPG STAGE (Δ𝐺).

 Reference Components Delay Total Ratio

1 [2]

−2𝑋 generation 6

17 1.42 Mux 4:1 3

BCD full adder [29] 8

2 [22]
8𝑋 generation 4

7 0.58
Mux 3:1 3

3 [21]
4𝑋 generation: Δg 8

11 0.92
Mux 3:1 3

4
[6]

Radix-5

BCD to 4,2,2,1

conversion
1

8 0.67
2𝑋 generation 4

Mux 4:1 3

5
[6]

Radix-10

3𝑋 generation* 21

27 2.25 Mux 5:1 4

Dynamic negation 2

6 [7]

3𝑋 generation 7

13 1.08 Mux 5:1 4

Negation 2

7 [4]

4𝑋 genration 6

12 1.00 Mux 5:1 4

Negation 2

8 Proposed
4𝑋 genration 8

12 1.00
Mux 5:1 4

 *17Δg for 2𝑋 + 𝑋 (16-digit BCD parallel prefix adder), and 4Δg for 2𝑋 generation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

The 12 Δ𝐺 PPG critical delay path of our multiplier travels

through 4𝑋 generation circuit, which takes 8 Δ𝐺 (see Eqn. set

A3, in the Appendix), and crosses the 5:1 one-hot multiplexor

(see Fig. 1) with 4 Δ𝐺 latency. The required dynamic negation

is not within the critical delay path, since logical expressions

for sign bits take at most 10 Δ𝐺 (see Appendix A) to complete.

Also the latency of (17→16) depth reduction logic (see Fig. 4)

that operates in parallel with general PPG (see Fig. 1) is 12 Δ𝐺.

The 35 Δ𝐺 PPR delay of the proposed multiplier equals the

sum of latencies of following components: 11 Δ𝐺 (See Eqn. set

4 and 5) for first level of Fig.5 that reduces 16 SMSD IPPs to 8

TCSD IPPs, and 2 × 12 Δ𝐺 (See Eqn. set 6) for the next two

levels.

Regarding the 21Δ𝐺 latency of the final stage of the proposed

multiplier, recall Section 3.5, where BCD product computation

takes 4Δ𝐺 for Eqn. set 8, 7Δ𝐺 for decimal propagate signal π,

8 Δ𝐺 for the 4-level Kogge-Stone parallel prefix tree, and 2Δ𝐺

for selecting 𝑠𝑢𝑚 or 𝑠𝑢𝑚 − 1.

As is evident from the complied ratios in Table VI, the

proposed multiplier operates at least 9% faster than those of all

the previous relevant works. In particular, our PPR latency is

the least 10Δ𝐺 and 15Δ𝐺 less than the fastest previous

multipliers in [22], and [4], respectively. Since it takes only

three levels of fast 2:1 reduction, as it effectively starts with 16

partial products down to 2 partial products, which undergo the

conversion to BCD without being reduced to the final redundant

partial product. The latter augmentation is at the cost of 4Δ𝐺

prolongation in generating the final BCD product, but saves

12Δ𝐺 delay of double-TCSD-to TCSD reduction.

TABLE IV

LATENCY COMPARISON OF PPR STAGE (Δ𝐺).

 Reference Components Delay Total Ratio

1 [2]
Six reduction levels with BCD full

adder of [29]
6 × 8 48 1.37

2 [22]

Six reduction levels with BCD full

adder of [29]
6 × 8

50 1.43

Mux 2:1 2

3 [21]
Two levels simplified OODS adder 2 × 10

56 1.6
Three levels OODS adder 3 × 12

4 [6] Radix-5

(8:4) counter 6

51 1.46
Five levels full adder 3 + 4 + 3 + 3 + 3

Five correction “× 2” cells 5 × 5

4,2,2,1 to 5,4,2,1 conversion 4

5 [6] Radix-10

(9:4) counter 7

39 1.11
Four levels full adder 3 + 4 + 3 + 3

Three correction “× 2” cells 3 × 5

4,2,2,1 to 5,4,2,1 conversion 4

6 [7]

L1

(5; 2) Compressor 8

22 + 26 1.37

4-bit carry look ahead adder 5

XOR 2

Transfer logic 7

L2

2 × (4; 2) Compressor 2 × 6

4-bit carry look ahead adder 5

XOR 2

Transfer logic 7

7 [4]

14-bit counter 23

45 1.29 × 2 correction 10

Block A 12

8 Proposed
SMSD to TCSD adder 11

35 1.00
Two levels TCSD adder 2 × 12

TABLE V

LATENCY COMPARISON OF FINAL ADDITION STAGE (Δ𝐺).

 Reference Components Delay Total Ratio

1 [2]

Decimal 𝑃 & 𝐺 generation 3

15 0.71 32-digit parallel prefix tree 5 × 2

Mux 2:1 2

2 [22]

Binary 𝑃 & 𝐺 generation 1

17 0.81 104-bit parallel prefix tree 7 × 2

Mux 2:1 2

3 [21]

4-bit 𝑃 & 𝐺 generation 2

14 0.67 32-digit parallel prefix tree 5 × 2

Mux 2:1 2

4
[6]

Radix-5

Binary 𝑃 & 𝐺 generation 1

17 0.81 128-bit parallel prefix tree 7 × 2

Mux 2:1 2

5
[6]

Radix-10

Binary 𝑃 & 𝐺 generation 1

17 0.81 128-bit parallel prefix tree 7 × 2

Mux 2:1 2

6 [7]

Decimal 𝑃 & 𝐺 generation 7

25 1.19

Generation of 𝐶16 6

Generation of 𝐶32 8

Final conditional constant

adder
4

7 [4]

Binary 𝑃 & 𝐺 generation 1

17 0.81 128-bit parallel prefix tree 7 × 2

Mux 2:1 2

8 Proposed

Preprocessing logic (Eqn.
Set 8)

4

21 1.00 decimal propagate signal π 7

4-level parallel prefix tree 4 × 2

Mux 2:1 2

TABLE VI

OVERALL LATENCY COMPARISON OF EIGHT DESIGNS (Δ𝐺).

Reference PPG PPR BCD product Total Ratio

1 [2] 17 48 15 80 1.18

2 [22] 7 50 17 74 1.09

3 [21] 11 56 14 81 1.19

4 [6]-R5 8 51 17 76 1.12

5 [6]-R10 27 39 17 83 1.22

6 [7] 13 48 25 86 1.26

7 [4] 12 45 17 74 1.09

8 Proposed 12 35 21 68 1.00

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

The gate level evaluations of competitive designs are

generally accepted only as rough estimates and actual

realizations may lead to reordering of performance figures of

the designs under consideration. This will be duly examined

below.

4.2. Synthesis-based results and comparisons

Comparison of synthesis-based performance measures is best

accomplished when all designs are synthesized with the same

technology files under the same working conditions. Therefore,

we have used typical TSMC 130nm technology by Synopsis

Design Compiler to synthesize all designs, except that of [27],

for which sufficient details are not available. However, since

latency of the work of [27] is compared therein with that of [2],

as 2.51 ns versus 2.65 ns, we have scaled our synthesis results

for the latter based on the improvement ratio
2.51

2.65
= 0.95 to get

at reliable measures for performance of the former. These

designs have been verified for correctness via sufficiently large

random test vectors as well as manually generated vectors for

corner cases. Figs. 12 and 13 show the results for area

consumption and power dissipation with time constraints from

the minimum that could be met, by the proposed design (i.e.,

indeed the least among all), up to 10 ns by 0.2 ns steps.

Regarding the work of [27], the minimum time constraint that

it could meet, would be 5% less than that of [2] (i.e., 5ns), which

can be obtained as 5 × 0.95 = 4.75 ns, while that of the

proposed design is 4.4 ns.

Inspecting Fig. 12 shows that the proposed design can

perform with latency as low as 4.4 ns, while the next lower time

constraint is 4.8 ns, which is due to [4], with almost the same

area consumption (actually 1.5% more than the proposed

design) on the same 4.8 ns time point. Therefore, the synthesis

based 8.3% latency improvement of the proposed design

confirms the 8.1% less latency that is experienced based on

analytical evaluations (i.e., 68 Δ𝐺 versus 74 Δ𝐺). At the 4.8 ns

point (in Fig. 13), power dissipation of [4] is 10% more than

that of the proposed design. The resulted improvements,

primarily seems to be due to the saved XOR gates in the

proposed PPG architecture. Moreover, the reduced depth of 16

for the partial product matrix and the used redundant adders for

PPR have considerably contributed in area and power savings.

V. CONCLUSION

We propose a parallel 16 × 16 radix-10 BCD multiplier,

where 17 partial products are generated with [−6, 6] sign-

magnitude signed digit (SMSD) representation. Some

innovations of this work and use of previous techniques, as

listed below, has led to marginal 1.5% less area consumption,

and 10% less power dissipation, on 4.8 ns latency, with respect

to the fastest previous work due to [4]. The least possible delay

for the latter is 4.8 ns, while the proposed design leads the

synthesis tool to meet 4.4 ns time constraint (i.e., 9% faster). In

other words, the advantage is that the proposed design can

operate in 9% higher frequency and dissipate up to 13% less

power, with no claim in area improvement.

Fig. 13. Comparison of power dissipation.

80

130

180

230

280

4
.4

0

4
.6

0

4
.8

0

5
.0

0

5
.2

0

5
.4

0

5
.6

0

5
.8

0

6
.0

0

6
.2

0

6
.4

0

6
.6

0

6
.8

0

7
.0

0

7
.2

0

7
.4

0

7
.6

0

7
.8

0

8
.0

0

8
.2

0

8
.4

0

8
.6

0

8
.8

0

9
.0

0

9
.2

0

9
.4

0

9
.6

0

9
.8

0

1
0

.0
0

[2] [22] [21] [6] [7] [4] Proposed

Fig. 12. Comparison of area consumption.

Fig. 13. Comparison of power dissipation.

125000

175000

225000

275000

325000

375000

425000

4
.4

0

4
.6

0

4
.8

0

5
.0

0

5
.2

0

5
.4

0

5
.6

0

5
.8

0

6
.0

0

6
.2

0

6
.4

0

6
.6

0

6
.8

0

7
.0

0

7
.2

0

7
.4

0

7
.6

0

7
.8

0

8
.0

0

8
.2

0

8
.4

0

8
.6

0

8
.8

0

9
.0

0

9
.2

0

9
.4

0

9
.6

0

9
.8

0

1
0

.0
0

[2] [22] [21] [6] [7] [4] Proposed
μm2

mW

ns

ns

ns

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

 Sign magnitude signed digit representation: The

exclusively employed SMSD representation of partial

products saves more than 850 XOR gates (≈ 75%) in

comparison to other 16 × 16 decimal multipliers with

dynamic negation of partial products.

 On the fly depth reduction: Two SMSD digits of the sole

deepest column of partial product matrix are reduced to

one, in parallel with PPG that leads the VLSI-regular 2:1

PPR to start with 16 partial products.

 4-in-1 SMSD-to-TCSD adder: This is the most novel

contribution of the present work. The reason is that sign-

magnitude addition conceptually entails separate

consideration of four sign combinations. To avoid the

corresponding inefficiency, the first-level reduction is

undertaken via eight especial SMSD adders. However,

enforcing the SMSD signs via polarity of magnitudes has

led to a unified 4-in-1 adder logic, which is no more

complex than a simple TCSD adder.

 Early initiation of redundant-to-BCD conversion: To

take advantage of early signal arrivals, conversion of the

four least significant digits to BCD starts in the middle of

PPR. A parallel prefix compound Kogge-Stone adder

produces BCD sum and sum −1 for the nine most

significant digits.

 Parallel prefix carry select addition: A special parallel

prefix decimal carry select adder adds up the middle

TCSD digits and produces BCD sum digits and a borrow

that selects one of the two BCD sums of the most

significant part.

Future research in the line of this work can include similar

sequential multiplication scheme, and use of this multiplier in

decimal floating-point units. Also, manufacturing perspective

of parallel decimal multipliers may be considered as

strengthened due to smaller size and lower power of such

improved designs.

APPENDIX

The logical equations for the bits of multiples {1, 2, 4, 5} of

the multiplicand 𝑋 are presented in Eqn. sets A1 to A4,

respectively. These equations are derived in the similar way to

that 3𝑋, which was described in Section 3.2.

𝑠𝑢 = 𝑏2 ∨ 𝑏3(𝑏0 ∨ 𝑎3𝑎2)

𝑢2 = 𝑏2𝑏1𝑏0(𝑎3 ∨ 𝑎2) ∨ 𝑏2(𝑏1 ∨ 𝑎3𝑎2𝑏0)

𝑢1 = 𝑎3𝑎2(𝑏3𝑏0 ∨ 𝑏1𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨

(𝑎3 ∨ 𝑎2)(𝑏2𝑏1 ∨ 𝑏3𝑏2𝑏1𝑏0) ∨ 𝑏2𝑏1𝑏0

𝑢0 = 𝑏0(𝑎3 ∨ 𝑎2) ∨ 𝑎3𝑎2𝑏0

(A1)

𝑠𝑑 = 𝑎3(𝑏3 ∨ 𝑏2𝑏1𝑏0) ∨ 𝑏2𝑏1 ∨ 𝑏3𝑏0

𝑑2 = 𝑎3𝑎2𝑎1(𝑏2𝑏1 ∨ 𝑏3𝑏0) ∨ 𝑏1𝑏0(𝑏2 ∨ 𝑎3) ∨

𝑏0(𝑏2𝑏1 ∨ 𝑎3𝑏3𝑏2𝑏1)

𝑑1 = 𝑎3𝑎2𝑎1(𝑏1𝑏0 ∨ 𝑏2𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨

𝑎3(𝑏1𝑏0 ∨ 𝑏2𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨

(𝑎2 ∨ 𝑎1)(𝑏3𝑏0 ∨ 𝑏3𝑏2𝑏0) ∨ 𝑎3𝑏2𝑏1𝑏0

𝑑0 = 𝑎2 ∨ 𝑎1

(A2)

𝑠𝑞 = 𝑎3𝑎2𝑏1(𝑏2 ∨ 𝑏0) ∨ 𝑏2𝑏0(𝑎3 ∨ 𝑎0 ∨ 𝑏1) ∨

𝑏0(𝑏3(𝑎3 ∨ 𝑎0) ∨ 𝑏3𝑏2𝑏1)

𝑞2 = 𝑎3𝑎2𝑎1𝑎0(𝑏2𝑏0 ∨ 𝑏2𝑏1𝑏0) ∨ 𝑎3𝑎0𝑏1(𝑏2𝑏0 ∨ 𝑏2𝑏0) ∨

𝑎3𝑎2𝑎1(𝑏2𝑏1𝑏0 ∨ 𝑏3𝑏2𝑏1𝑏0) ∨

(𝑎3 ∨ 𝑎2)(𝑏3𝑏0 ∨ 𝑏2𝑏1𝑏0)

𝑞1 = 𝑏3𝑏1𝑏0(𝑎3𝑎0 ∨ 𝑎3𝑏2 ∨ 𝑎2𝑎1) ∨

𝑏2𝑏1𝑏0(𝑎2𝑎1 ∨ 𝑎3𝑎1𝑎0) ∨

𝑎3𝑎2(𝑎1𝑎0(𝑏1 ∨ 𝑏3𝑏2𝑏0) ∨ 𝑏3(𝑎0 ∨ 𝑏0) ∨ 𝑏2𝑏1𝑏0) ∨

𝑎2 (𝑎1(𝑏2𝑏1 ∨ 𝑏3𝑏0) ∨ 𝑏0(𝑏3𝑏2𝑏1 ∨ 𝑎1𝑏2𝑏1)) ∨

𝑎2𝑏3(𝑎1 ∨ 𝑎0𝑏0) ∨ 𝑎3(𝑏1(𝑎0 ∨ 𝑏2𝑏0) ∨ 𝑎0𝑏3𝑏2𝑏1)

𝑞0 = 𝑎1 ∨ 𝑎3𝑎0 ∨ 𝑎3𝑎2𝑎0

(A3)

𝑠𝑝 = 𝑏0(𝑎3 ∨ 𝑎1)

𝑝2 = 𝑎3𝑎2𝑏0(𝑎1 ∨ 𝑎0) ∨ 𝑏0(𝑎3 ∨ 𝑎2𝑎1𝑎0)
𝑝1 = 𝑎2⨁𝑎1𝑎0,
𝑝0 = 𝑎1⨁𝑎0⨁𝑏0

(A4)

ACKNOWLEDGMENT

The authors wish to sincerely appreciate the efforts put by the

anonymous reviewers to pinpoint all the shortcoming of the

original manuscript. This research was supported in part by

IPM under Grant CS1395-2-03, and in part by Shahid Beheshti

University.

REFERENCES

[1] Cowlishaw, M. F., “Decimal Floating-Point: Algorism for Computers,” In

Proc. 16th IEEE Symposium on Computer Arithmetic, pp. 104-111, Jun.

2003.

[2] Lang, T. and A. Nannarelli, “A Radix-10 Combinational Multiplier,” In

Proc. 40thAsilomar Conference on Signals, Systems, and Computers, Nov.

2006.

[3] Kenney, R. D., M. J. Schulte and M. A. Erle, “A High-Frequency Decimal

Multiplier,” In Proc. IEEE International Conference on Computer Design

(ICCD), pp. 26-29, Oct. 2004.

[4] Vazquez A., E. Antelo, J. D. Bruguera, “Fast Radix-10 Multiplication

Using Redundant BCD Codes,” IEEE Transactions on Computers, Vol. 63,

No. 8, pp. 1902-1914, Apr. 2014.

[5] Gorgin S. and G. Jaberipur, “A Fully Redundant Decimal Arithmetic,” In

Proc. 19th IEEE Symposium on Computer Arithmetic, pp. 145-152, 2009.

[6] Vazquez A., E. Antelo, and P. Montuschi, “Improved Design of High-

Performance Parallel Decimal Multipliers,” IEEE Transactions on

Computers, Vol. 59, No. 5, pp. 679-693, May 2010.

[7] Han L. and S. Ko, “High Speed Parallel Decimal Multiplication with

Redundant Internal Encodings,” IEEE Transactions on Computers,

10.1109/TC.2012.35, Jan. 2012.

[8] Jaberipur G. and A. Kaivani, “Binary-Coded Decimal Digit Multipliers,”

IET Computers & Digital Techniques, Vol. 4, pp. 377-381, 2007.

[9] James R. K., T. K. Shahana, K.P. Jacob, and S. Sasi, “Decimal

Multiplication Using Compact BCD Multiplier,” In Proc. the International

Conference on Electronic Design, pp. 1-6, 2008.

[10] Erle, M. A., E. M. Schwartz, and M. J. Schulte, “Decimal Multiplication

with Efficient Partial Product Generation,” In Proc. 17th IEEE Symposium

on Computer Arithmetic, pp. 21-28, Jun. 2005.

[11] Richards R. K., “Arithmetic Operations in Digital Computers,” Van

Nostrand, New York, 1955.

[12] IEEE Standards Committee, 754-2008 IEEE Standard for Floating-Point

Arithmetic, 2008.

DOI: 10.1109/IEEESTD.2008.4610935

[13] Svoboda A., “Decimal Adder with Signed Digit Arithmetic,” IEEE

Transactions on Computers, Vol. C-18, No. 3, pp. 212-215, Mar. 1969.

[14] Hickmann B. J., A. Krioukov, M. J. Schulte, and M. A. Erle, “A Parallel

IEEE P754 Decimal Floating-Point Multiplier,” In Proc. IEEE

International Conference on Computer Design (ICCD), pp. 296-303, 2007.

[15] Raafat R., A.M. Abdel-Majeed, R. Samy, T. ElDeeb, Y. Farouk, M.

Elkhouly, and H.A.H Fahmy, “A Decimal Fully Parallel And Pipelined

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

Floating-Point Multiplier,” In Proc. 42th Asilomar Conference on Signals,

Systems, and Computers, pp. 1800-1804, Oct. 2008.

[16] Erle M. A., B. J. Hickmann, and M. A. Schulte, “Decimal Floating-Point

Multiplication,” IEEE Transactions on Computers, Vol. 58, No. 7, pp. 902-

916, Jul. 2009.

[17] Tsen C., S. Gonzalez-Navarro, M. Schulte, B. Hickmann, and K. Compton,

“A Combined Decimal and Binary Floating-Point Multiplier,” In Proc.

Application-specific Systems, Architectures and Processors (ASAP), pp. 8-

15, Jul. 2009.

[18] Minchola C. and G. Sutter, “A FPGA IEEE-754-2008 Decimal64 Floating-

Point Multiplier,” In Proc. the International Conference on Reconfigurable

Computing and FPGAs, (ReConFig '09), pp. 59- 64, Dec 2009.

[19] Vazquez A. and F. Dinechin, “Efficient Implementation of Parallel BCD

Multiplication in LUT-6 FPGAs,” In Proc. Field-Programmable

Technology (FPT), pp. 126-133, Dec. 2010.

[20] Erle M. A., and M. J. Schulte, “Decimal Multiplication via Carry-Save

Addition,” In Proc. Application-Specific Systems, Architectures, and

Processors (ASAP), pp. 348-358, Jun. 2003.

[21] Gorgin S. and G. Jaberipur, “A fully redundant decimal adder and its

application in parallel decimal multipliers,” Microelectronics Journal, vol.

40, No. 10, Oct. 2009.

[22] Jaberipur G. and A. Kaivani, “Improving the Speed of Parallel Decimal

Multiplication,” IEEE Transactions on Computers, Vol. 58, No.11, pp.

1539-1552, Nov. 2009.

[23] Shirazi B., D.Y. Yun, and C.N. Zhang, “RBCD: Redundant Binary Coded

Decimal Adder,” IEE Proc. Computer & Digital Techniques (CDT),

Vol.36, No.2, Mar. 1989.

[24] Jaberipur, G. and B. Parhami, “Efficient Realization of Arithmetic

Algorithms with Weighted Collections of Posibits and Negabits,”

IET Computers & Digital Techniques, Vol. 6, No.5, pp. 259-268,

Sep.2012.

[25] Oklobdzija V. G. and D. Villeger, “Improving Multiplier Design By Using

Improved Column Compression Tree And Optimized Final Adder In

CMOS Technology”, IEEE Transactions on VLSI Systems, Vol. 3, No. 2,

pp. 292-301, Jun. 1995.

[26] Peter M. Kogge and Harold S. Stone, “A Parallel Algorithm for the

Efficient Solution of a General Class of Recurrence Equations,” IEEE

Transactions on Computers, C-22, pp. 783-791, 1973.

[27] Dadda L. and A. Nannarelli, “A Variant of a Radix-10 Combinational

Multiplier,” In Proc. IEEE Int’l Symp. Circuits and Systems (ISCAS ’08),

pp. 3370-3373, May 2008.

[28] Gorgin S. and G. Jaberipur, “Comment on “High Speed Parallel Decimal

Multiplication with Redundant Internal Encodings”,” IEEE Transactions

on Computers, 22 Aug. 2013.

 http://doi.ieeecomputersociety.org/10.1109/TC.2013.160.

[29] Schmookler M., and A. Weinberger, “High Speed Decimal Addition,”

IEEE Transactions on Computers, Vol. C-20, No. 8, pp. 862-866,

Aug. 1971.

Saeid Gorgin received BS and MS

degrees in computer engineering from the

South branch, and the Science and

Research branch, of Azad University of

Tehran in 2001 and 2004, respectively.

He received his Ph.D. degrees in

Computer System Architecture from

Shahid Beheshti University, Tehran, Iran

in 2010. He is currently an assistant professor of Computer

Engineering in Department of Electrical Engineering and

Information Technology of Iranian Research Organization for

Science and Technology (IROST), Tehran, Iran. His research

interests include computer arithmetic and VLSI design.

Ghassem Jaberipur, is an Associate

Professor of Computer Engineering in the

Department of Computer Science and

Engineering of Shahid Beheshti

University, Tehran, Iran. He received his

BS in electrical engineering and PhD in

computer engineering from Sharif

University of Technology in 1974 and

2004, respectively, MS in engineering

from UCLA in 1976, and MS in computer science from

University of Wisconsin, Madison, in 1979. His main research

interest is in computer arithmetic. Dr. Jaberipur is also affiliated

with the School of Computer Science, Institute for Research in

Fundamental Sciences (IPM), in Tehran, Iran.

