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Hardware implementation of decimal floating-point arithmetic is a topic of great interest among
the researchers in computer arithmetic and also the digital processor industry. Software packages
for decimal arithmetic are actually being challenged by decimal hardware units. This spreading
trend seems to include hardware implementation of elementary functions. The (Coordinate Rotation
Digital Computer) CORDIC algorithm, due to its simplicity, is one of the most efficient methods for
computing elementary functions. In this work, we develop a decimal CORDIC scheme with almost
half number of equally long cycles with respect to the best previous design. This is achieved via
retiming of the conventional CORDIC architecture and selection of the microrotation factors by
rounding. However, the proposed design does not lead to a predetermined constant scaling factor.
The solution that we use is to iteratively compute the logarithm of the scaling factor followed by
a decimal exponentiation. The same CORDIC hardware is reused for performing the latter. The
proposed CORDIC method requires 2n + 3 cycles for n-digit decimal operands vs. 4n cycles of the
previous methods. Evaluations with 16-digit operands based on logical effort analysis conclude that
the proposed architecture shows 82% speed advantage, at the cost of 60% more area and 2.5 KB

more ROM.
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1. INTRODUCTION

Mirroring the manual decimal calculations is required by
many commercial, financial and internet-based applications of
radix-10 computer arithmetic [1]. Unfortunately, the relatively
fast binary floating-point arithmetic, with due forward and
reverse conversions, cannot fully satisfy such requirements
for exact representation of decimal values [2]. Consequently,
the industry’s growing preference toward the implementation
of radix-10 computer arithmetic is probably the main reason
for inclusion of the decimal arithmetic specifications (e.g.
decimal number representation, operations, rounding and
exceptions) in the IEEE 754-2008 standard [3] for floating-point
arithmetic.

The ever-increasing computing power provided by the
advanced VLSI technologies has motivated researchers in the
field of computer arithmetic and also the digital processor

industry to focus on the hardware implementation of decimal
arithmetic operations [4, 5].

It is a longstanding practice that commercial digital
processors are augmented with decimal adder/subtractor
circuitry [6]. The advances in hardware industry have led the
manufacturers to incorporate fully hardware radix-10 sequential
multipliers and dividers in decimal arithmetic units [4].
Furthermore, the state-of-the-art research on decimal hardware
is mainly devoted to fast division [7], parallel multiplication
[8, 9], square root [10] and CORDIC (COordinate Rotation
DIgital Computer) algorithms [11, 12]. Following this trend,
it can be expected that the industry will, sooner or later,
take advantage of such research findings for realizing more
powerful decimal hardware. This can include the replacement of
commercialized software packages for decimal transcendental
functions [13] with the relevant hardware circuitry.
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Fast hardware realization of polynomial approximation
for transcendental functions is often relying on fast parallel
multipliers [14]. However, given the high area and power
consumption of parallel decimal multipliers [8], the relatively
low area/power CORDIC algorithm [15] seems to be an
attractive alternative for implementing decimal transcendental
functions [11, 12, 16].

The variants of CORDIC algorithm describe the displacement
of a vector via micromovements on circular, hyperbolic or
linear coordinates in rotation or vectoring modes. For example,
the original CORDIC [17] operates on circular coordinates
via microrotations, where the determination of the amount
of successive rotation angles, for high-radix implementation
[18, 19], appears to be the most difficult task in every iteration.
The solutions that have so-far been proposed for radix-10
CORDIC (e.g. [11, 16]) are more complex, as expected, than
the power-of-two-radix cases [20]. For example, rotation angles
that are easily determined for the ith iteration as tan−1(2−i )

(instead of micro-angles with the power of 10 tangents) lead to
faster, but more numerous, iterations [11].

In this work, we handle rotation angles that are multiples
of tan−1(10−i ) each within a single iteration. However, we
show that the selection of these multiples can be considerably
simplified, with due speed-up, via adapting the well-known
technique of selection by rounding for radix-10. This technique
was first introduced in [21] with the intention of rarefying
the complexity of the selection function in high-radix binary
algorithms such as division [22], square-root [23] and
CORDIC [18].

One drawback of the proposed method, in this work, is that
the scaling factor of the CORDIC algorithm [24] cannot be
determined in advance, while the previous decimal CORDIC
designs are based on constant predetermined scaling factor
(e.g. [11, 16]). However, to remedy this drawback, we adapt for
radix- 10—a known technique [20] for computing the scaling
factor in parallel with the main CORDIC computation.

The rest of this paper is organized as follows. Section 2
presents a background on the decimal CORDIC algorithm.
The proposed solution, based on the selection by rounding
technique, is presented in Section 3. Next, in Section 4, a
retiming technique for reducing the latency of the angle-
selection function is introduced. The applied algorithm for
computing and compensating the scaling factor is discussed in
Section 5. The architecture and timing of the proposed CORDIC
scheme are presented in Section 6. Evaluation and comparison
with the relevant previous works is taken up in Section 7, and
finally, Section 8 draws our conclusions.

2. DECIMAL CORDIC ALGORITHM

In this work, we intend to focus on the decimal CORDIC
in rotation mode for circular coordinates, which is briefly
described here. Given a vector v = (xin, yin) and an angle �,

the CORDIC algorithm relocates v toward u = (xout, yout) via
n microrotations. The size of the ith microrotation is equal
to an elementary tiny angle θi = tan−1(10−iσi), such that
� = ∑n

i=1 θi , where σi is the micro rotation factor. Equation set
(1) (repeated for n iterations), whose derivation can be found in
the relevant text books (e.g. [24, 25]), describes the ith iteration
that simulates the ith microrotation, where x[1] = xin, y[1] =
yin, z[1] = �, xout = x[n + 1]/K, yout = y[n + 1]/K, σi is
usually selected based on an estimate on the value of z[i], and
K = ∏n

i=1(1 + 10−2iσ 2
i )0.5 is the scaling factor.

x[i + 1] = x[i] − 10−iσi × y[i],
y[i + 1] = y[i] + 10−iσi × x[i],
z[i + 1] = z[i] − tan−1(10−iσi).

(1)

The condition for the latter recurrence to converge is given by
Equation (2), adopted from [24] for radix-10, where the required
precision is specified byn (i.e. ulp = 10−n) andα determines the
range of microrotation factor σi ∈ [−α, α]. The negative range
is necessary in order to correct previous possible overestimates.
Moreover, based on the results in [20], it is required that α ≥ 5.

|z[i]| ≤
∑n

j=i
tan−1(α × 10−j ) + tan−1(10−n). (2)

After n iterations, on Equation set (1), we arrive at (x[n + 1] =
Kxout, y[n + 1] = Kyout). In order to compensate for the
scaling factor K , two common methods have been used in
binary CORDIC such as incremental multiplications throughout
the iterations [26] or a final multiplication by a predetermined
constant K−1 [27].

The estimation on the value of z[i], to decide on σi , is based on
a few of its most significant non-zero digits [24]. However, more
and more leading zero digits show up in the most significant
positions as z[i] approaches smaller values throughout the
successive iterations. This calls for dynamically locating the
leading non-zero digits and thus complicating the required
circuitry for selection of σi . In order to avoid this complication,
the z component is usually scaled up as in Equation (3).
Accordingly therefore, the angle recurrence of the CORDIC
iteration (i.e. the third in Equation set (1)) is modified as in
Equation (4), where A[σi] = 10i tan−1(10−iσi). Consequently,
we rewrite the convergence condition (i.e. Equation (2)) as in
Equation (5).

w[i] = 10i × z[i], (3)

w[i + 1] = 10 × (w[i] − A[σi]), (4)

|w[i]| ≤ 10i ×
[∑n

j=i
tan−1(α × 10−j ) + tan−1(10−n)

]
.

(5)
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The bulk of work in the angle recurrence (i.e. Equation (4)) is
to determine σi ∈ [−α, α] such that the convergence condition
(i.e. Equation (5)) holds. The relevant works (i.e. those based
on micro-angles with power of 10 tangents) that we have
encountered are due to [16, 28]. These works, both with α = 9,
use several sub-iterations with predetermined σ

j

i such that
σi = ∑

j σ
j

i . The former work uses σ
j

i ∈ {0, 1}(1 ≤ j ≤ 9).

However, σ j

i ∈ {1, 2, 5}(1 ≤ j ≤ 4) in the latter. For improved
speed and controlled increase of area, we opt to choose α = 5
and directly (i.e. without any sub-iteration) select σi ∈ [−5, 5]
via the well-known method of selection by rounding [22].

3. SELECTION OF THE MICROROTATION FACTOR
BY ROUNDING

The straightforward method for selection of σi is to compare
w[i] with 10 precomputed constants. There is a similar practice
in decimal division algorithms, but it suffers from high area
cost [7]. There is, however, another less complex method known
as selection by rounding that is used for radix-2h (h > 1)
division [22] and CORDIC algorithm [18, 19]. We adapt this
method for radix-10 and select σi as w[i] rounded to the nearest
integer (σi = round(w[i])).

The value of A[σi] = 10i tan−1(10−iσi), needed for the
angle recurrence ruled by Equation (4), is best obtained by
looking it up in an appropriate ROM. It is not difficult to show
that the smaller the digit set of σi the smaller the ROM size.
This will be discussed in more detail, along with other relevant
influential factors, in Section 6. Therefore, given that α ≥ 5
[20], we tend to decide on the digit set [−5, 5] for σi , which is a
valid choice if and only if |w[i + 1]| < min(Ri+1, 5.5), where
Ri+1 = 10i+1 × [∑n

j=i+1 tan−1(5 × 10−j ) + tan−1(10−n)], for
i ≥ 1.

The reason is that |w[i + 1]| < Ri+1 due to Equation (5) for
α = 5 and |w[i + 1]| < 5.5 due to the selection by rounding
(i.e. σi+1 = round(w[i + 1])). Since Ri+1 > 5.5 for i ≥ 1,
as we prove in the Appendix 1, the convergence condition is
reduced to Equation (6).

|w[i + 1]| = |10 × (w[i] − A[σi])| < 5.5. (6)

We now examine whether Equation (6) holds for i ≥ 1. It
is obviously the case that −0.5 ≤ w[i] − σi < 0.5, due to
selection of σi by rounding w[i].Applying the latter bounds into
Equation (4) leads to Equation (7). Therefore, for Equation (6)
to hold, the inequalities (8) and (9) must also hold.

−5 + 10(σi − A[σi]) ≤ w[i + 1] < 5 + 10(σi − A[σi]), (7)

5 + 10(σi − A[σi]) < 5.5, (8)

−5.5 ≤ −5 + 10(σi − A[σi]). (9)

TABLE 1. Selection table for the preprocessing iteration (i = 0).

w[0] σ0 Max of |w[0] − A[σ0]|
± [0.0, 0.3) ±1 0.21
± [0.3, 0.6) ±5 0.17
± [0.6, 0.8) ±10 0.22

Replacing A[σi] by 10i tan−1(10−iσi) in Equations (8) and (9)
takes us to Equation (10) to hold for i ≥ 1.

−0.05 ≤ σi − 10i tan−1(10−iσi) < 0.05. (10)

The expression σ − 10i tan−1(10−iσi) is a monotonically
increasing (decreasing) function of σi , for σi ≥ 0 (σi < 0).
Therefore, if Equation (10) holds for the maximum (minimum)
value of σi (i.e. σi = 5(−5)), it will be satisfied for all values
of σi ∈ [−5, 5]. This implies Equation (11) for i ≥ 1.

5 − 10i tan−1(5 × 10−i ) < 0.05. (11)

The latter discussion can be summarized as 6 ⇒ (8&9) ⇒
10 ⇒ 11. Unfortunately, however, it turns out that Equation (11)
does not hold for i = 1, but it does for i ≥ 2 (the proof is found
in the Appendix 2). Therefore, Equation (6) does not hold for
i = 1. This means that selection by rounding works fine for all
iterations, except for the first one. Consequently, selection of σ1

requires a special treatment to be discussed below.

3.1. Selecting the microrotation factor σ1

Solving Equation (10) for i = 1 leads to |σ1| ≤ 2. The latter
binding, that σ1 = round(w[1]) and w[1] = 10z[1] = 10�,
take us to |10�| < 2.5 ⇒ |�| < π/13. This tight range on
the input angles is certainly not desirable. A way out of this
problem is via a common technique that installs a preprocessing
iteration [20] that cannot be directly applied for radix-10.
Therefore, in the way of adapting it, we define iteration 0 based
on Equation (12), where the input angle is w[0] = z[0] = �,
and A[σ0] = tan−1(10−1σ0).

−2.5 ≤ w[1] = 10 × (w[0] − A[σ0]) < 2.5. (12)

To determine σ0, for a given input w[0](|w[0]| = |z[0]| <

π/4)1, we use Table 1, which is derived based on Equation (12).
This table can be translated to a simple combinational logic for
selection of σ0, as is depicted by Fig. 1, where the input (i.e. the
sign and most significant fractional digit of w[0]) and output
are represented in 10’s complement BCD format.

1To widen the range of the input angle to [−π/2, π/2], one can repeat
iteration i = 0.
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FIGURE 1. The circuit for selection of σ0.

4. RETIMING THE SELECTION OF
MICROROTATION FACTOR

In order to arrive at the microrotation factor σi = round(w[i]),
the rounding operation on w[i] is normally done after execution
of Equation (13), which is the same as Equation (4), but for the
(i–1)th iteration.

w[i] = 10 × (w[i − 1] − A[σi−1]). (13)

One way to bring forward the computation of σi is to perform
the rounding process in parallel with the normal execution of
Equation (13), as is described below. This technique (known
as retiming) is used, for instance, in division algorithms to
do quotient digit selection in parallel with partial remainder
computation [7].

Figure 2 depicts a dot representation of the constituent terms
of w[i]. This is indeed a double-BCD number as a redundant
representation of w[i]. The idea is to use the minimum number
t of the most significant double bits of this representation to
compute σi = round(w[i]) within some acceptable lower and
upper error bounds el(t) and eu(t), respectively, such that

el(t) ≤ w[i] − σi < eu(t). (14)

The convergence condition for the CORDIC algorithm in the
case of selection of σi ∈ [−5, 5] by rounding is represented
by Equation (15) as a reproduction of Equation (6). By
combining Equations (14) and (15), after some manipulations
similar to Equations (7)–(11), we conclude that Equations (16)

and (17) should hold in order to satisfy Equation (15), but for
i ≥ 2. The case of i = 1 will be dealt with later.

A[σi] − 0.55 < w[i] < A[σi] + 0.55, (15)

el(t) ≥ −0.55; (16)

eu(t) < 0.54. (17)

We now explore possible values for t that satisfy Equations (16)
and (17). The maximum round-up error is −0.5, which occurs
when the most significant fractional double-BCD digit is equal
to 5 and the rest of the digits are 0. Therefore, since el(t) =
−0.5 > −0.55, Equation (16) is satisfied for all values of t .
On the other hand, the maximum round-off error occurs when
the collective value of the fractional part of the double-BCD
representation of w[i] is closest to 0.5, from below. This calls
for the most significant double-BCD digit to be equal to 4.
A rounding decision based only on this double-BCD digit
(implying t = 4) can easily violate Equation (17).

For t > 4, let v(t) denote the maximum collective value of
the t most significant fractional double-bits and v′ (t) denote the
maximum collective value of the rest of the fractional part. It is
easy to see that v(5) = v(6) = v(7) = 0.48 < 0.5, and thus
rounding off could be correct. However, v′(5) = (0.1 − 2 ulp)

leads to eu(5) = v(5) + v′(5) = (0.58 − 2 ulp), which
violates Equation (17). Similar analysis for t = 6 leads to
eu(6) = (0.54 − 2 ulp), which does not violate Equation (17).
However, recalling the method of Section 3.1 for selection
of σ1, the very small 2 ulp difference with the upper bound
leads to σ1 = 0 and thus very small range for the input
angles. To avoid this undesirable situation, we try t = 7, where
eu(7) = (0.52 − 2 ulp). In this case, Equation (15) holds for
i = 1 only if |σ1| ≤ 2. Consequently, selection of σ1 can be
done exactly as in Section 3.1.

5. COMPUTATION AND COMPENSATION OF THE
SCALING FACTOR

Recalling the formula of the scaling factor from Section 2 (i.e.∏n
i≥1(1 + 10−2iσ 2

i )0.5), note that for the proposed method of
Section 3, this formula should be augmented with an extra factor
reflecting the effect of the preprocessing iteration for σ0. This
is described by Equation (18).

K = (1 + 10−2σ 2
0 )0.5 ×

∏n

i≥1
(1 + 10−2iσ 2

i )0.5. (18)

FIGURE 2. Double-BCD representation of w[i].
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Since the microrotation factors σi are not predetermined,
the compensating factor K−1 is not constant. Therefore, it
should be computed anew each time the CORDIC algorithm
is executed. To avoid n cascaded multiplications embedded in
Equation (18), the method used for high power-of-two radix
CORDIC algorithms in [20] can be adapted for radix-10.
Therefore, we use Equation (19) to first compute ln(K−1). This
will prevent the scaling factor computation from lagging behind
the main CORDIC process.

g = ln(K−1)

= −0.5

[
ln(1 + 10−2σ 2

0 ) +
n∑

i≥1

ln(1 + 10−2iσ 2
i )

]
. (19)

The ln terms embedded in Equation (19) are obtained via a small
look-up table (LUT) (see Section 6 for the exact size). Once g

is computed, the final coordinates (xout, yout) are obtained as in
Equation set (20).

xout = x[n + 1] × eg, yout = y[n + 1] × eg. (20)

To compute eg , we use Equation set (21) (for 1 ≤ i ≤ n)
reproduced from [29], where B[di] = 10i ln(1 + 10−idi) and
di is selected exactly in the same way as σi was in Section 3.
This equation set has exactly the same operator structure as in
Equation set (1) (as modified by Equation (4)). Therefore, the
eg computation can be carried out via the proposed CORDIC
hardware of Section 3, initialized as X[1] = x[n + 1], Y [1] =
y[n + 1], W [1] = 10 g. Note that we have used capital letters
X, Y and W in Equation set (21) in place of lowercase letters
x, y and w in Equation set (1) and Equation (4).

X[i + 1] = X[i] + 10−idiX[i],
Y [i + 1] = Y [i] + 10−idiY [i],
W [i + 1] = 10 × (W [i] − B[di]).

(21)

Given that di ∈ [−5, 5], the convergence condition is described
by Equation (22) (for i ≥ 1) [14], where Si+1 = 10i+1 ×[∑n

j=i+1 ln(1 + 5 × 10−j ) + ln(1 + 10−n)
]
.

|W [i + 1]| ≤ Si+1. (22)

Therefore, assuming selection by rounding and redundant
representation for W [i + 1] (like that of w[i + 1], discussed
in Section 4), the following should be satisfied, where the
rounding error bounds are defined similar to those in Section 4
as δl(t) ≤ W [i] − di < δu(t) such that δl(t) = −0.5 and
δu(t) = v(t) + v′(t).

10δu(t) + 10(di − B[di]) < min(Si+1, 5.5), (23)

− min(Si+1, 5.5) ≤ −5 + 10(di − B[di]). (24)

We show in the Appendix 3 that Si+1 > 5.5, for i ≥ 2.
Therefore, Equations (23) and (24) can be reduced to Equations
(25) and (26), for i ≥ 2, and to (27) and (28), for i = 1,
respectively.

10δu(t) + 10(di − B[di]) < 5.5, (25)

−5.5 ≤ −5 + 10(di − B[di]), (26)

10δu(t) + 10(d1 − B[d1]) < S2 ≈ 5.43, (27)

−5.43 ≈ −S2 ≤ −5 + 10(d1 − B[d1]). (28)

The appropriate value for t is again 7 via the same analysis
that led to the same value for t , in Section 4. Therefore, given
that B[di] = 10i ln(1 + 10−idi), Equations (25) and (26) ((27)
and (28)) can be further reduced to Equation 29 (30). However,
given that 5 − 10 ln(1.5) = 0.945, Equation (30) never holds.
This means that the convergence condition (Equation (22)) is
not satisfied for i = 1. Furthermore, we show in Appendix 4
that Equation (29) does not hold for i = 2, while it does for
i > 2. Therefore, special treatment is required for selection of
d1 and d2.

5 − 10i ln(1 + 5 × 10−i ) < 0.03, (29)

5 − 10 ln(1.5) < 0.023. (30)

5.1. Selecting d2 and d1

Solving Equation (25) for i = 2 leads to |d2| ≤ 2. For
correct selection of d2, recalling that d2 = round(W [2]), we
only need to enforce −2.5 ≤ W [2] < 2.5. For the latter to
hold, using Equation set (21) to replace for W [2] results in the
Equation (31) to hold, which is similar to Equation (12) for σ0.
Therefore, d1 can be similarly computed via a combinational
logic (Fig. 3) that is based on Table 2. This table is built similar
to Table 1, but with only negative entries. This is understood by
recalling Equation (19) and that simple manipulations lead to
−4.594 < W [1] = 10 g ≤ 0.

−0.25 ≤ W [1] − B[d1] < 0.25. (31)

FIGURE 3. The circuit for selection of d1.
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TABLE 2. Selection table for the iteration (i = 1) of the exponential
function.

W [1] d1 Max of |W [1] − B[d1]|
(−5, −3) −4 <0.22
[−3, 0) −2 <0.23

6. ARCHITECTURE AND TIMING

The following three data paths are required for the
implementation of the proposed CORDIC algorithm, whose
timing is displayed in Table 3.

(i) The w/W data path, shared for the w recurrence (i.e.
CORDIC rotation based on Equation (4) and for the
W recurrence (i.e. third one in Equation set (21)) in the
compensation process for the scaling factor.

(ii) The x/X and y/Y data path, for the x and y recurrences
in the CORDIC rotation and for the X and Y recurrences
in the compensation process for the scaling factor. The
xs /Xs and ys /Ys variables represent the shifted terms.
The multiply and accumulate operations for the ith
iteration take place in parallel with the shift operations
for the (i + 1)th iteration. This retiming will be shown
to be quite influential in reducing the cycle time.

(iii) The g data path to implement Equation (19).

The hardware implementation of the proposed architecture,
for 16-digit operands, is shown in Fig. 4, where the round
block, LUTs and decimal multiplier-accumulators (MACs) are
described in separate subsections below. The 16-digit decimal
CPAs are designed based on the decimal adder/subtractor
of [30].

6.1. Round block

The round block in the leftmost partition of Fig. 4 computes
m = round(T + Q) without actually performing the addition
operation therein, where T is either A[σi] or B[di], Q is
either w[i] or W [i] and m represents σi+1 or di+1. All the
operands and the result are represented in 10’s complement
BCD format. The rounding mode is round to nearest such
that m = 	L
, where L = T + Q + 0.5 as is illustrated
in Fig. 5, with detailed explanations for each stage to
follow.

We recall Equation (6) to reiterate the fact that −5.5 ≤ L <

5.5 and m ∈ [−5.5]. Therefore, SLL1 ∈ {00, 1̄9}, such that
the arithmetic value of SLL1 is equal to that of SL. This sign
compression leads to m = SLL0. To compute m, we first extract,
the decimal carry into position 0, out of the fractional digits of
T and Q (i.e. C0 = 	.T−1T−2 + .Q−1Q−2 + .5
 ∈ {0, 1, 2}).
We encode C0 as two equally weighted bits c0 (defined by
Equation (32)) and c′

0 (defined by Equation (33)) such that

TABLE 3. Timing of the proposed algorithm.

w/W x/X and y/Y g

Cycle CORDIC rotation Computation of ln(K−1)

Initialization w[0] = �; Set σ0; x[0] = xin; y[0] = yin g[0] = 0
A[σ0] = tan−1(10−1σ0) xs[0] = 10−1yin;

ys[0] = 10−1xin

i = 0 w[1] = 10(w[0] − A[σ0]); x[1] = x[0] − σ0xs[0]; g[1] = g[0] + ln(1 + 10−2σ 2
0 )

Select σ1; y[1] = y[0] + σ0ys[0];
A[σ1] = 10 tan−1(10−1σ1); xs[1] = 10−1y[0];

ys[1] = 10−1x[0]
i = 1 to n w[i + 1] = 10(w[i] − A[σ1]); x[i + 1] = x[i] − σixs[i]; g[i + 1] = g[i] + ln(1 + 10−2iσ 2

i )

Select σi+1; y[i + 1] = y[i] + σiys[i]
A[σi+1] = 10i+1 tan−1(10−i−1σi+1) xs[i + 1] = 10−i−1y[i];

ys[i + 1] = 10−i−1x[i]
Compensation of the scaling factor

Initialization W [1] = 10 g[n + 1]; Set d1; X[1] = x[n + 1]; Y [1] = y[n + 1];
B[d1] = 10 ln(1 + 10−1d1) Xs[0] = 10−1x[n + 1];

Ys[0] = 10−1y[n + 1]
i = 1 to n W [i + 1] = 10(W [i] − B[di]); X[i + 1] = X[i] + diXs[i];

Select di+1; Y [i + 1] = Y [i] + diYs[i];
B[di+1] = 10i+1 ln(1 + 10−i−1di+1) Xs[i + 1] = 10−i−1X[i];

Ys[i + 1] = 10−i−1Y [i]
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1804 A. Kaivani and G. Jaberipur

FIGURE 4. The proposed decimal CORDIC architecture (16-digit).

FIGURE 5. Straightforward rounding method.

C0 = c0 + c′
0, where c−1 = 	(T−2 + Q−2)/10
. The

latter is computed by Equation (34), where T 3−2T
2−2T

1−2 and
Q3−2Q

2−2Q
1−2 represent and T−2 and Q−2, respectively.

c0 =
{

0 if (T−1 + Q−1 + c−1 + 5) < 20

1 if (T−1 + Q−1 + c−1 + 5) ≥ 20

}

=
⌊

T−1 + Q−1 + c−1 + 1

16

⌋
, (32)

c′
0 =

{
0 if (T−1 + Q−1 + c−1 + 5) < 10

1 if (T−1 + Q−1 + c−1 + 5) ≥ 10

}

=
⌊

T−1 + Q−1 + c−1 + 11

16

⌋
, (33)

c−1 = T 3
−2Q

3
−2 + (T 3

−2 + T 2
−2)Q

2
−2Q

1
−2 + (Q3

−2

+ Q2
−2)T

2
−2T

1
−2. (34)

We use 4-bit binary carry look-ahead logic to compute c0 and
c′

0 via Equations (35) and (36), where the relevant generate and
propagate signals are shown in Equation sets (37) and (38),
respectively. Note that in deriving the Equations (34) and (35),
the following relations are taken into account that hold on the
bits bcde of a BCD digit: bc = bd = 0, bc̄ = bd̄ = b, b̄c = c

and b̄d = d.

c0 = (g3 + g0p1p2p3) + c−1(p1p2p3), (35)

c′
0 = (T 3

−1 + Q3
−1) − g′

3 + g′
2p

′
3 + g′

1p
′
2p

′
3 + g′

0p
′
1p

′
2p

′
3,

(36)

g0 = Q0
−1 + T 0

−1; p0 = 1;
(gi = Qi

−1T
i
−1; pi = Qi

−1 + T i
−1 for = 1, 2, 3) (37)

g′
0 = (Q0−1 ⊕ T 0−1)(c−1);

g′
1 = (Q1−1 ⊕ T 1−1)(Q

0
−1 + T 0

−1);
p′

1 = (Q1−1 ⊕ T 1−1) + (Q0
−1 + T 0

−1),

g′
2 = (Q2

−1 ⊕ T 2
−1)(Q

1
−1 + T 1

−1);
p′

2 = (Q2
−1 ⊕ T 2

−1) + (Q1
−1 + T 1

−1),

g′
3 = (Q3−1 ⊕ T 3−1)(Q

2
−1 + T 2

−1);
p′

3 = (Q3−1 ⊕ T 3−1) + (Q2
−1 + T 2

−1). (38)

Since c0 is delivered quite in advance of c′
0, we use a BCD digit

adder [31] with c0 as the carry-in and L′
0 as the sum, followed by

a BCD conditional incrementor described by Equation set (39),
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Decimal CORDIC Rotation based on Selection by Rounding 1805

where L′
0 = L′3

0 L′2
0 L′1

0 L′0
0 .

L0
0 = L′0

0 ⊕ c′
0, L1

0 = L′1
0 ⊕ (L′0

0 c′
0),

L2
0 = L′2

0 ⊕ (L′0
0 L′1

0 c′
0), L3

0 = L′3
0 (L′0

0 L′1
0 L′2

0 c′
0). (39)

Figure 6 depicts the overall block diagram for the round block.

6.2. Look-up tables

There are three LUTs embedded in the proposed architecture
in Fig. 4. LUT I stores A[σi+1] = tan−1(σi+110−i−1) and in
the actual implementation, for n = 16, holds 64 data words of
65 bits each, where there are nine input lines (i.e. five lines for the
microrotation factor σi+1 and four lines for the iteration index).

FIGURE 6. Block diagram of the rounding operation.

However, due to the symmetry of the tangent function, negative
values are not stored. Moreover, for i ≥ 8, A[σi+1] can be
approximated byσi+1, where the error is less than ulp. The LUTs
II and III are of size 256×64 and hold 10i+1 ln(1+di+110−i−1)

and ln(1 + (σi)
210−2i ), respectively.

6.3. Simplified decimal MAC

To implement the main component of the CORDIC algorithm
and that of the exponential function (i.e. the first two recurrences
in Equations (1) and (21)), we design a simplified decimal MAC
circuit, two copies of which are used in the architecture of Fig. 4.
These MAC blocks compute S = d ×M +H , where S, M and
H are 16-digit 10’s complement BCD numbers and d is a 5-bit
redundant decimal digit (d ∈ {−10, −5, . . . , 5, 10}).

To compute d × M , we first generate easy multiples of M

(i.e. M, 2M and 5M), represented in 4-2-2-1 encoding. The
corresponding circuit, based on the work in [9], is shown in
Fig. 7. The required M multiples can be obtained as U + V =
d × M , with the details shown in Table 4. Also, the actual
circuitry for this product generator is illustrated in Fig. 8, where
NU and NV are the negating signals.

To complete the MAC computation S = d×M+H , we use a
4-2-2-1 (3:2) compressor–convertor [32] followed by a 16-digit
decimal add/subtract unit [30] that results in S = U + V + H .
The details are illustrated in Fig. 9.

FIGURE 7. Generation of easy multiples (a digit-slice).

TABLE 4. Selection of the easy multiples.

d −10 −5 −4 −3 −2 −1 0 1 2 3 4 5 10

U −5M −5M −5M −2M −2M 0 0 0 2M 2M 5M 5M 5M

V −5M 0 M −M 0 −M 0 M 0 M −M 0 5M
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1806 A. Kaivani and G. Jaberipur

FIGURE 8. The decoder and a bit-slice of the logic for computing U + V = d × M .

FIGURE 9. A 4-2-2-1 (3:2) compressor–convertor (a digit-slice).

7. EVALUATIONS AND COMPARISON WITH
PREVIOUS WORKS

The most recent work on decimal CORDIC that we have
encountered is due to [12], where the main design basis is
the same as in [16], but the concentration is on area saving
and using the same hardware for both hyperbolic and circular
coordinates as required by the IBM POWER6 architecture [4].
Therefore, given that in the proposed design the emphasis

is on time efficiency, we use the work of [16] as the main
comparison reference. Although there are other interesting
decimal CORDIC-like methods (e.g. [33]), given that the works
in [12, 16] are shown to be the best state-of-the-art designs [16],
we decide to evaluate the performance of each data path of
the proposed architecture and compare the results with the
corresponding results in [16]. The differences in the evaluation
results are high enough to allow a fair comparison based on
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Decimal CORDIC Rotation based on Selection by Rounding 1807

the logical effort (LE) model [34]. Therefore, based on the
following assumptions, we evaluate delays in terms of FO4 units
(i.e. the delay of an inverter with a fan-out of four inverters) and
area in minimum size NAND2 gate units.

The LE method is ideal for evaluating alternatives in the
early design stages and provides a good starting point for more
intricate optimizations [34]. Therefore, neither we undertake
optimizing techniques such as gate sizing, nor consider the
effect of interconnections. We rather allow gates with the drive
strength of the minimum-sized inverter and assume equal input
and output loads.

7.1. Evaluation of the proposed architecture

Recalling the timing of the proposed algorithm (Table 3), the
corresponding architecture, as is shown in Fig. 4, includes three
data paths, each of which is separately examined and evaluated
below. The conclusion is that the x/X and y/Y data path is the
critical one (34.62 FO4). Therefore, it is the latency of this data
path that determines the cycle time, where the number of cycles
for 16-digit operands is figured out to be 35.

The total area of the proposed CORDIC architecture is
evaluated to be equal to that of 18 826 NAND2 and that of
4.5 KB ROM.

The area and delay of the components used in the proposed
architecture are reported in Table 5.

7.1.1. w/W data path
The critical delay path consists of the round block, a 3-to-1
MUX, the LUT II, a 2-to-1 MUX and a latch (Fig. 4).

The critical delay path for the round block (Fig. 6) consists of
the carry generator, the double-carry generator, the BCD digit
adder and the conditional incrementor. The BCD digit adder is
the same as that introduced in [31].

For the 9-bit input LUT, we assume multiplexer implementa-
tion. The critical path, as such, consists of nine levels of 64-bit
2-to-1 MUXes.

TABLE 5. Area delay of the components.

# Component Area Delay (FO4)

1 The σ0 logic (Fig. 1) 21 NAND2 Not in critical path
2 The d1 logic (Fig. 2) 7 NAND2 Not in critical path
3 The round block (Fig. 6) 67 NAND2 10.70
4 The 5-bit 3-to-1 MUX 34 NAND2 4.39
5 LUT I ≈0.5 Kbytes Not in critical path
6 LUT II, III 2 Kbytes 14.11
7 16-digit BCD 9’s compl. [31] 80 NAND2 Not in critical path
8 The 65-bit 2-to-1 MUX 220 NAND2 1.45
9 The 16-digit BCD adder 2655 NAND2 Not in critical path
10 Barrel Shifter 877 NAND2 Not in critical path
11 65-bit 4-to-1 MUX 658 NAND2 Not in critical path
12 16-digit MAC 5136 NAND2 29.14

The delay for the latch, as in [22], is assumed to be equal to
that of three XOR gates.

With the above assumptions, the overall latency of the w/W

data path is evaluated to be 32.13 FO4. The area, as the sum of
the areas of the components (#1–#9 from Table 5), is evaluated
to be equal to that of 3084 NAND2 plus that of 2.5 KB ROM.

7.1.2. x/X and y/Y data path
The critical path consists of a 16-digit simplified decimal MAC
and a latch.

The critical path of the MAC consists of a BCD-to-5211
convertor (Fig. 7), the circuit for generating U and V (Fig. 8),
a binary full-adder followed by the ×2 block (Fig. 9) and a
decimal adder/subtractor. Therefore, the latency of this data
path is evaluated to be 34.62 FO4 and the area, which is the
sum of the areas of the components (#10–12 from Table 5), is
equal to that of 13342 NAND2.

7.1.3. The g data path
The critical delay path consists of the LUT III (with the same
size and latency as in LUT II), a 16-digit BCD adder and a latch.
Therefore, the overall latency of this data path is 31.71 FO4 and
the corresponding area is evaluated to be equal to that of 2400
NAND2 and that of a 2 KB ROM.

7.2. Evaluation of the constant scaling factor method [16]

Conventional CORDIC algorithms usually lead to constant
scaling factor. This helps in saving area and time. Our major
comparison reference for decimal CORDIC is the work of [16],
which relies on keeping the scaling factor constant. Therefore,
the architecture has only two data paths:

(i) Z data path: The critical path consists of an 8×64 LUT,
a decimal adder/subtractor and a latch. Due to the lack
of any concrete delay and area measures in [16], we have
done our own LE evaluation of their work with the same
assumptions as in the preamble of Section 7. The result
shows 33.16 FO4 for the latency and 2655 NAND2 for
area as well as a 2 KB ROM.

(ii) X/Y data path: The critical path consists of a 16-digit
barrel shifter, a ×5 block, a 4-bit 3-to-1 MUX, a
16-digit decimal adder/subtractor and a latch. The
latency and area of this data path are evaluated to be
34.59 FO4 and 9054 NAND2, respectively.

Consequently, the latency of the architecture introduced in [16]
is 34.59 FO4 (i.e. the cycle time is almost equal to that of the
proposed method) and the consumed area is equal to that of
11 709 NAND2 plus 2 KB ROM. The total number of cycles
required for 16-digit implementation is 64 (equal to the number
of bits of the operands) vs. the 35 cycles in the proposed method.
The full comparison result is tabulated in Table 6, where the
speed advantage of the proposed design is ∼82% at the cost of
60% more area and 2.5 KB more ROM. The major drawback of
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1808 A. Kaivani and G. Jaberipur

TABLE 6. Comparison with the best previous work (16-digit architecture).

Latency of each Total delay Total area
cycle (FO4) # of cycles (FO4) Ratio (NAND2) Ratio ROM (KB)

Proposed 34.62 35 1211.70 1 18826 1 4.5
[16] 34.59 64 2213.76 1.82 11709 0.62 2.0

the proposed architecture is the high area cost, which makes this
design not suitable for applications in which area cost is critical.

It should be noted that no evaluation has been made in [16]
about the method used for compensating the constant scaling
factor. Although, one may use the standard compensation
algorithms [24], this would add extra area/delay to the CORDIC
hardware of [16]. The proposed architecture shows delay
advantage over that of [16], even though we have not taken
into account the compensation overhead in the analysis of [16].

8. CONCLUSIONS

Hardware implementation of the decimal CORDIC algorithm
has been addressed, apparently for the first time, in [28] and
recently in [11, 12, 16]. All the latter works can be categorized
as sacrificing the speed for reduced complexity of the selection
function in the angle recurrence, where the number of iterations
is at least four times the number of digits of the input operand
(i.e. 4n). Also the scaling factor is kept constant in all the latter
works. However, via relaxing the latter criteria and adapting
for radix-10 the well-known selection by rounding technique,
we have managed to keep the number of iterations in the main
CORDIC rotation to n + 2. This reduction in the number of
iterations is achieved at the cost of another n + 1 iterations that
is needed to compensate for the scaling factor. However, the
latter is executed on the same rotation hardware. Despite this
unpleasant obligation, our method shows 82% more speed at
the cost of 60% more area and 2.5 KB more ROM with respect
to the best previous work due to [16].

The major specifications of the proposed method are:

(i) Selection by rounding: This technique helps in reducing
the number of iterations and the complexity of the
selection function.

(ii) Retiming: Retiming the angle recurrence data path and
the main CORDIC recurrence data path have resulted
in reducing the cycle time.

(iii) Decimal round block: This architecture extracts the
rounded integer part of the remaining rotation angle out
of its redundant double-BCD representation.

(iv) Simplified decimal MAC: This component helps in
reducing the cycle time.

(v) Reusing the CORDIC rotation hardware for com-
pensation of the scaling factor: The many decimal
multiplications required for computing the variable
scaling factor are reduced to addition operations via

logarithmic representation of the scaling factor. This
necessitates a final decimal exponentiation for com-
pensating the scaling factor. To perform the latter, the
CORDIC rotation hardware is reused.

Further research is ongoing for extending the proposed
method for hyperbolic coordinate and vectoring mode in order
to design a unified decimal CORDIC hardware unit based on
selection by rounding.
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APPENDIX 1: PROOF OF Ri+1 > 5.5 FOR i ≥ 1

Recall the definition Ri+1 = 10i+1 × [∑n
j=i+1 tan−1(5 ×

10−j ) + tan−1(10−n)]. The latter can be simplified, as follows,
based on the fact that tan−1(5×10−j ) > 4.99×10−j , for j ≥ 2.

Ri+1 > 10i+1 × 4.99 ×
n∑

j=i+1

10−j = 4.99 ×
n−(i+1)∑

j=0

10−j

> 4.99 × 1.11 > 5.5 (i ≥ 1).

APPENDIX 2: PROOF OF 5 − 10itan−1(5 × 10−i) < 0.05
FOR i ≥ 2

It can be easily verified that [tan−1(5 × 10−i ) > 4.99 × 10−i

for i ≥ 2], which leads to the following desired results:

10i tan−1(5 × 10−i ) > 4.99 ⇒ 5 − 10i tan−1(5 × 10−i )

< 0.01 < 0.05 (i ≥ 2).

APPENDIX 3: PROOF OF Si+1 > 5.5 FOR i ≥ 2

Recall the definition Si+1 = 10i+1×[∑n
j=i+1 ln(1+5×10−j )+

ln(1+10−n)]. The latter can be simplified, as follows, based on
the fact that 4.98 × 10−j < ln(1 + 5 × 10−j ), for j ≥ 3.

Si+1 > 10i+1 × 4.98 ×
n∑

j=i+1

10−j = 4.98 ×
n−(i+1)∑

j=0

10−j

> 4.98 × 1.11 > 5.5 (i ≥ 2).

APPENDIX 4: PROOF OF [5 − 10iln(1 + 5 × 10−i) < 0.03]
FOR i ≥ 3

It can be easily verified that [ln(1 + 5 × 10−i ) > 4.98 × 10−i

for i ≥ 3], which leads to the following desired results:

10i ln(1 + 5 × 10−i ) > 4.98 ⇒ 5 − 10i ln(1 + 5 × 10−i )

< 0.02 < 0.03 (i ≥ 3).
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