INTEGRATION, the VLSI journal u (xssn) sss-nmm

INTEGRATION, the VLSI journal

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

Fully redundant decimal addition and subtraction
using stored-unibit encoding

Amir Kaivani®, Ghassem Jaberipur

a,b,

2 Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran
P School of Computer Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran

ARTICLE INFO

ABSTRACT

Article history:

Received 19 February 2008
Received in revised form
30 June 2008

Accepted 28 April 2009

Keywords:

Decimal computer arithmetic
Redundant number systems
Fully redundant addition
Semi-redundant addition
Stored-unibit encoding

Decimal computer arithmetic is experiencing a revived popularity, and there is quest for high-
performance decimal hardware units. Successful experiences on binary computer arithmetic may find
grounds in decimal arithmetic. For example, the traditional fully redundant (i.e., the result and both of
the operands are represented in a redundant format) and semi-redundant (i.e., the result and only one
of the operands are redundant) binary addition schemes have influenced the design and implementa-
tion of similar decimal arithmetic units. However, special comparison and correction steps are required
when decimal arithmetic algorithms are implemented on binary hardware. To circumvent these
difficulties, alternative encodings of decimal digits and a variety of decimal arithmetic algorithms have
been examined by many researchers over decades. In this paper we offer a new redundant decimal digit
set [-8, 9] and a fully redundant addition/subtraction scheme. The proposed digit set, faithfully
encoded as a mix of posibits, negabits, and unibits, is shown to obviate the need for any compare-to-9
operations and leads to minimal penalty subtraction using the addition circuitry. Moreover, conversion
from the standard BCD encoding to the proposed stored-unibit encoding is possible with the latency of
one logic level. However, the reverse conversion, like any other redundant to nonredundant conversion,
involves carry propagation.

© 2009 Published by Elsevier B.V.

1. Introduction

The supercomputing needs in today’s commercial, financial,
scientific, and internet-based applications [2] have led the industry
towards the commercialization of digital processors with embedded
decimal arithmetic unit such as IBM POWER6 processor [25]. Also,
specifications for decimal number representation and arithmetic
have been incorporated in the IEEE P754 standard for floating point
arithmetic [8].

Redundant number systems and the related arithmetic opera-
tions have been used in numerous implementations of digital
arithmetic units [7]. Within a composite arithmetic operation it
is common to represent the intermediate results in a redundant
format (e.g., carry-save representation of accumulated partial
products in multiplication). Use of redundant representation
allows for carry-free addition and subtraction, where the latency
is independent of the number of digits. Carry-save [18] addition
scheme is a representative example of semi-redundant opera-
tions, where only one of the operands is redundant. However, in

* Corresponding author.
E-mail addresses: A_Kaivani@sbu.ac.ir (A. Kaivani),
Jaberipur@sbu.ac.ir (G. Jaberipur).

0167-9260/$ - see front matter © 2009 Published by Elsevier B.V.
doi:10.1016/j.v1si.2009.04.001

fully redundant operations, such as in signed-digit adders [1], the
result and both of the operands are represented in a redundant
format. Likewise, in decimal computer arithmetic, semi-redun-
dant and fully redundant addition and subtraction schemes have
been a topic of interest. For example, sequential decimal multi-
plication in [14], multi-operand decimal addition in [3,15], parallel
decimal multiplication in [16,29], and decimal division in [17,30]
use decimal carry-save addition. However, fully redundant decimal
addition and/or subtraction have been addressed as independent
operations [28,26,19], and as a building block for sequential decimal
multiplication [5] and division [20]. Nevertheless no additional
efficiency, due to fully redundant (VS semi-redundant) add/subtract,
is claimed by the latter two contributions.

Fully redundant adders, if used in parallel multiplication, lead
to VLSI-friendly recursive partial product tree. For example,
consider the binary signed-digit adders used for partial product
reduction in binary multipliers (e.g., [4]). The only use of fully
redundant decimal adders, within composite operations, that we
have come across is in the sequential decimal multiplier of [5] and
divider of [20]. However, there are specialized applications such as
redundant CORDIC arithmetic that intrinsically require fully
redundant addition/subtraction [4]. Moreover, one might think
of whole computation applications where several fully redundant
arithmetic operations may take place before a result is stored in

Integration VLSI J. (2009), doi:10.1016/j.v1si.2009.04.001

Please cite this article as: A. Kaivani, G. Jaberipur, Fully redundant decimal addition and subtraction using stored-unibit encoding,

www.sciencedirect.com/science/journal/vlsi
www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2009.04.001
mailto:A_Kaivani@sbu.ac.ir
mailto:Jaberipur@sbu.ac.ir
dx.doi.org/10.1016/j.vlsi.2009.04.001

2 A. Kaivani, G. Jaberipur / INTEGRATION, the VLSI journal n (uamm) mna—sm

memory (e.g., [6]). In such computing hardware structures it
is desired to keep the number of data paths and interconnec-
tions between arithmetic units as small as possible. Therefore,
redundant decimal encodings with less number of bits per digit
may prove more useful if other advantages are not dramatically
lost. We are thus motivated to explore more efficient encodings
for redundant decimal digits and fully redundant decimal
addition/subtraction algorithms.

The rest of this paper is organized as follows. A brief
background on decimal adders and subtracters is offered in
Section 2. Previous works, on fully redundant decimal adders,
are addressed in Section 3. In Section 4 we reproduce a description
of two-valued-digits (Twit) and weighted-twit-set (WTS) encod-
ing of redundant digit sets [11], and present a particular WTS
encoding of decimal digits. The proposed fully redundant decimal
adder of this work is described in Section 5, and subsequently in
Section 6, we explain how it can be adapted to perform decimal
subtraction with minimal additional latency. Conversion to and
from conventional decimal representation is taken up in Section 7.
A comprehensive comparison of our results with the previous
fully redundant add/subtract circuits, based on Logical effort [27]
analysis, is presented in Section 8. Finally our conclusions are
drawn in Section 9.

2. Background

The binary-coded-decimal (BCD) encoding is the dominant
representation for decimal digits. Each BCD digit is represented by
4 bits with power-of-two weights 8, 4, 2, and 1. However, radix 10
is not a power of two and this imposes particular difficulties on
implementation of decimal adders using two-valued logic and
binary arithmetic cells:

(a) Over-9 detection: It is desirable to use standard 4-bit binary
adders to add two BCD digits. However, no carry-out is
generated for digit-sum values in the range [10, 15]. Therefore,
to decide on decimal carry-out, a comparison with 9 is
generally required.

(b) +6 Correction: Interpreting the carry-out of the 4-bit addition
as a decimal carry may impose a +6 correction operation on
the sum digit.

(c) Unified add/subtract logic: This is desirable in decimal
arithmetic units as is common in binary arithmetic.

Conventional BCD addition schemes [24] implement the digit
equation x'+y'+c; = 10c;.1+s’, where x' and y are input BCD digits in
position i. These addition schemes use one 4-bit binary adder per
decimal position to produce an interim 5-bit sum w' in [0,
19] = [0, 9]+[0, 9]+[0, 1], where the last interval relates to the
decimal carry-in ¢;, coming from the next less-significant digit
position. The interim sum w' is decomposed to a sum BCD-digit s
and a decimal carry-out c;.;. Therefore some mechanism for over-
9 detection is required to determine c;.;. The whole process for k-
digit BCD numbers may be described as Algorithm 1, as follows:

Algorithm 1 (Conventional BCD addition).
Inputs: k-digit BCD numbers X =x*1,...x° and Y=y*" .. y°
where x' = x5xhxix}) and y' = yiybyiyh, for 0<i<k—1.
Output: S = s¥1,... s° = X+Y, and the overflow signal v = .
Set co =0 and for i =0 to k—1 do

I. Compute the interim binary digit-sum w' = wiwiw,
Wiwh = X'+y'+c;.

1. If w'>9 then s' = whwhwiwi+0110, and c.; =1 else
s' = whiwbwiwh and c;.q = 0.

There are alternative encodings for decimal digits that over-
come some of the difficulties listed above. For example, in the
Excess-3 encoding [23], a decimal digit d in [0, 9] is encoded as a
4-bit binary representation of d+3. The main benefit is that the
carry-out of a standard 4-bit adder, receiving two Excess-3 digits,
can directly serve as the decimal carry, thus obviating the need for
comparison with 9.

As another example, consider the 4-bit decimal encoding
with weights {8,—4,—2,1} [31], where no bit combination can
assume a value greater than 9, hence obviating the need for the
comparison operation. However, the digit adder is a specialized
one with extra complexity and more latency than a conventional
4-bit adder.

Using the addition circuitry for subtraction is common in
binary arithmetic, where the subtrahend is negated and then
added to the minuend. For example, in the standard two’s
complement adder/subtractor, the penalty for subtraction is only
one XOR gate per binary position. In decimal subtraction,
however, the ten’s complement operation is more involved.
Algorithm 2 describes the details.

Algorithm 2 (Decimal subtraction).

Inputs: k-digit ten's complement decimal numbers X = sx*,... x
and Y =s,y*7, .)0

Output: D = sqd*1,...,d° = X—Y, and overflow flag v.

Notation: x', y', and d' (0<i<k—1) are unsigned decimal digits, and
Sx Sy, and sy are (—10%)-weighted sign bits.

0

1. Compute the nine’s complement y' = 9 — yiof each digit y*, for
O<i<k-1.
1. Perform the enforced carry addition c,d*",...,d° = xk1,.. .,
X0 ykT Y041,
IIl. Derive the sign bit of the result s; =5y &5, &, and the
overflow flag v = ¢;5xSy + CiSxS,.

To reduce the overhead of performing decimal subtraction
using addition circuitry, it is desirable to minimize the latency of
Step I. Two levels of logic are required for the BCD nine’s
complement operation [24], while the same is achieved, in
Excess-3, by bit-wise inversion. Unfortunately, however, the
latter requires a complex post-correction step per digit, which
involves a conditional add-+3 operation depending on the
value of carry-out. There is also the 4-2-2-1 encoding of decimal
digits [29], where nine’s complementation is possible via bit-wise
inversion. However, we have not encountered any decimal adder/
subtractor based on such encoding. Finally the nine’s comple-
mentation of {8,—4,—2,1}-encoded decimal digits is possible,
but the specialized adder cells provided in [31] are not
4-bit binary adders and cannot accept nine’s complemented
digits.

3. Redundant-digit decimal arithmetic

The main benefit of redundant number systems is the
possibility of carry-free addition, where addition is performed in
a small constant time independent of the number of digits in the
operands [21]. Algorithm 3 (reproduced from [12] for ease of
reference) describes the steps of carry-free addition. Conversion of
a number, represented in a conventional nonredundant encoding
(e.g., two’s complement, or BCD), to its equivalent representation
in a redundant encoding is also a carry-free operation. However,
the reverse conversion requires wordwide carry propagation,
where the latter may be amortized over per-operation savings
compounded by many redundant operations.

Integration VLSI J. (2009), doi:10.1016/j.v1si.2009.04.001

Please cite this article as: A. Kaivani, G. Jaberipur, Fully redundant decimal addition and subtraction using stored-unibit encoding,

dx.doi.org/10.1016/j.vlsi.2009.04.001

A. Kaivani, G. Jaberipur / INTEGRATION, the VLSI journal n (uama) mna—am 3

Algorithm 3 (Conventional carry-free radix-r addition).

Inputs: k-digit radix-r numbers X = x*',... x° and Y = y*1,... y°.
Output: S = s¥71,... s% = X+Y.

Notation: x', y', and s' (0<i<k—1) are radix-r digits in [o,B].
Concurrently perform the following digit operations for all radix-r
positions (0<i<k—1):

L. Compute the position sum p' = x'+y".
II. Derive the interim sum digit w' and transfer digit
w = pirt™*l
IIl. Form the final sum digit s' = w'+t,

t*1 satisfying

The interim sum and transfer digit in Step II are chosen such
that the computed sum digit in Step III falls within [o, B]. The
performance efficiency of this algorithm depends, to some extent,
on the encoding of redundant digits. For example the stored
transfer representation of redundant numbers obviates the need
for Step IIl [11]. To take advantage of this improvement, we
propose a stored transfer representation of decimal digits in the
next section.

The digit set of a redundant number system should have more
members than the radix of the representation. Thus the digits of a
radix-2" redundant number system must be represented with
more than h bits. When the radix is not a power of two, however,
it may be possible to avoid using any extra bits to encode the digit.
For example, Shirazi et al. represent the digit values of a radix-10
digit set [—7, 7] as 4-bit two’s complement numbers. This digit set
is redundant since the number of digits (i.e., 7+7+1 =15) exceeds
the radix (i.e., 10). Note that the number of bits in the encoding is
equal to the minimum required for any nonredundant decimal
encoding (i.e., [log107 =4). As another example, consider the
maximally redundant decimal digit set [-9, 9] represented by a
positive and a negative equally weighted BCD digits [19]. Given
that the latter digit set may be represented by only 5 bits (i.e.,
[log191), the 8-bit encoding of [19] needs to be carefully
examined for possible advantages (see Section 8.3). Besides the
latter signed-digit sets, there are instances of redundant decimal
digit sets with no negative value. These two types of redundant
decimal digit sets are further distinguished below:

(a) Nonnegative digit sets: The designs of decimal multipliers by
[16,29] imply the use of digit sets (0,10) and (0, 18), respectively.
However, there are ten’s complement signed multiples in the
first level of the partial product tree. These signed multiples are
generated because the 8- and 9-multiples are represented as
10X-2X and 10X-X, respectively, where X is the multiplicand.
Only one of the operands in the first reduction level, which is
indeed nonredundant, can be negative. Therefore, after this
level, the reduced partial products are all positive. However, in
fully redundant applications with nonnegative digit sets, either
sign-magnitude or radix-complement encoding is required,
where some obstacles get in the way of efficient processing.
For example, consider the swapping of the operands and post-
complementation in the sign-magnitude redundant digit float-
ing point addition in [6]. The radix-complement practice may
be exemplified by the double 4-2-2-1 decimal encoding in [29],
where ten’s complementation leads to two equally weighted
sign bits that is difficult to handle.

(b) Signed-digit (SD) sets: All the fully redundant SD decimal
addition schemes that we have come across have used
balanced digit sets (i.e., [-6, 6] in [28], [-7, 7] in [26], and
[-9, 9] in [19]) with no separate sign bit for the whole
number. Such sign-embedded encodings lead to almost
similar treatment of addition and subtraction.

4. Stored transfer representation of decimal digits

The straightforward implementation of Algorithm 3 involves two
digit-wide additions in Steps I and III. The latter may be postponed
until the next addition, thus saving time and energy. This intuition
has led to the introduction of stored transfer representation of
redundant digit set in [9], extended in [10] as weighted-bit-set
(WBS) encoding, further extended in [11] as weighted-twit-set
(WTS) encoding, and theoretically supported in [12].

A unified adder/subtractor based on stored-unibit-transfer
(SUT) encoding demonstrated some advantages, particularly in
terms of speed [11]. In this paper we apply a similar approach to a
redundant decimal adder/subtractor and find that similar advan-
tages can be obtained. We reproduce three definitions on twit,
unibit, and WTS encoding from [11], as prerequisites for defining
the SUT decimal digit set.

Definition 1 (Twit). A twit (i.e., two-valued digit) denoted as {/,
A+y} is logically represented by a bit. However, it represents two
arithmetic values 1 and A+y, where 4 is the twit’s lower value
and y (y>0) is the gap between A and the higher value A+y. For
example, a posibit {0, 1} has 2 = 0, and y = 1, and a negabit {1, 0}
is a twit with 2= -1, and y = 1. Table 1 describes symbolic and
dot notations of three useful twits.

The encoding for negabit, as a twit, is exactly the opposite of
what is conventionally used, for example, for the most significant
bit of a two’s complement number. It has been shown that the
inverted encoding of negabits [13] leads to direct applicability of
standard full adders and other counters and compressors for any
combination of posibits and negabits. Example 1 briefly describes
such functionality of full adders.

Example 1 (Full adders with mixed polarity I/O). Fig. 1 shows four
standard full adders with four different mixed-polarity (i.e., a mix of
posibits and negabits) inputs. The polarity of inputs and outputs is
indicated according to the conventions in Table 1. For example, the
functionality of the full adder (c) is justified as follows, where the
arithmetic value of an inversely encoded negabit B is Bl = B—1,
that of a posibit b is IIbll = b, lower- and upper-case versions of a bit-
variable are assumed to have the same logical value (i.e., b = B), and
x+y+z = 2c+s describes the function of a standard full adder with
input bits x, y and z, carry ¢ and sum s:

IXI+ 1Y+ 1zl =X =14+Y -1 4+z=x+y+2z-2
=20+5-2=2(C—1)+s=2|Cll + s].

Table 1
Convention for twit notation.

Twit Dot notation Symbolic notation
Posibit o X
Negabit o X
Unibit [m] X
a b d

ole—x ©

b b
ALy

[]
ci S
Fig. 1. Four functionality of standard full adders.

o
O€¢—=<

Integration VLSI J. (2009), doi:10.1016/j.v1si.2009.04.001

Please cite this article as: A. Kaivani, G. Jaberipur, Fully redundant decimal addition and subtraction using stored-unibit encoding,

dx.doi.org/10.1016/j.vlsi.2009.04.001

4 A. Kaivani, G. Jaberipur / INTEGRATION, the VLSI journal n (uamm) mna—sm

Definition 2 (Unibit). A unibit (i.e., unit-valued bit) {—1, 1} is a
special case of a twit with A = —1, and y = 2.

Definition 3 (WTS encoding). AWTS encoding a digit set includes
an arbitrary number of twits, with arbitrary variety (i.e., different
values for 4 and y), in each binary position.

Definition 4 provides an example of WTS encoding.

Definition 4 (Decimal-SUT). A decimal stored-unibit-transfer di-
git represents the interval [—8, 9]. The encoding is composed of a
transfer part and a main part. The transfer part is a weighted-1
unibit and the main part contains a 4-bit inverted-polarity two’s
complement number consisting of a weighted-8 posibit, and 3
negabits weighted 4, 2, and 1.

Fig. 2 depicts a decimal-SUT digit in [—8, 9]. The convention used
in this paper for graphic and symbolic notation of twits is shown in
Table 1. Posibits, negabits, and unibits are shown by lowercase,
uppercase, and underlined uppercase letters, respectively.

The encoding of decimal-SUT digits is quite similar to the
original SUT-digit definition [11] with radix-16 digit set [-9, 8]
(i.e., © ® @ ® as the main part and a unibit as the transfer). The
rationale for enforcing the latter is twofold:

o We have deliberately used inverse polarities in the main part in
order to overcome difficulty (a), listed in Section 2. This limits
the positive range of the proposed digit set to be exactly equal
to [0, 9], which obviates the need for over-9 detection. Note
that the maximum positive value (i.e., 9) occurs when both the
posibit and the unibit are 1.

e As regards the negative range, the required redundancy for
carry-free addition [12] may be provided by only two negative
values (i.e., —1 and —2). However, we have included six extra
negative values (i.e., [—8, —3]) to make the digit set minimally
asymmetric. This allows us to use an adder similar to the SUT

3 X X X% @ O O O
% (]

Fig. 2. Proposed encoding for redundant decimal digit.

unified adder/subtractor of [11], thus surmounting difficulty
(c), listed in Section 2.

The proposed decimal-SUT addition scheme, as described in the
next section, is shown to lead to faster add/subtract operation
with respect to the three previous fully redundant schemes
mentioned at the end of Section 3. This is due to the intrinsic
efficiency of stored transfer representation. As regards the
difficulty (b), enumerated in Section 2, we show that the
correction step in the proposed addition scheme is no more
complex than other alternatives.

5. Decimal-SUT adder

An addition scheme for decimal-SUT numbers is described by
Algorithm 4, where superscripted letters denote decimal digits.
The actual realization of the algorithm is simpler than its five
steps may suggest. The dot-notation and symbolic representation
of the algorithm and an abstract building block of the adder,
as depicted in Fig. 3 demonstrate its simplicity.

Algorithm 4 (Decimal-SUT addition).
Inputs: Two k-digit decimal-SUT numbers X =x*"1 ... x° and
Y =yk 1. y° where X' = e X,XIXE, X)) and yi = (iYL YYD, YY),
for O<i<k-1.
Output: A k-digit decimal-SUT number S = s*',...,s°, where si =
(s;ShS' Sh, Sh) for 0<i<k—1.

Perform the following digit operations for all positions i
(0<i<k-1) concurrently:

[. Form the 4-bit inverted-polarity two’s complement sum
7 =AZ7 7 = Xi + Y.

II. Compute the carry-save sum (uhUsULUY, vEVAV;VE) = xi+yi+Z!,
using a 4-bit binary carry-save adder.

[II. Compute Ci.; WaWLW, Wi = ULULU, 0+v5VAVi Vi) using a 3-bit
binary adder.

IV. Compute s5555Sh = wEWLW, Wh+6 x (Cisq+uly), where the par-
enthesized sum determines the signed-carry (in {—1, 0, 1})
into decimal position i+1.

V. Add the three equally weighted twits Wh, C; and uj’, to
compute S} and Si.

Xo Yo Xy

Combining
Unibit
Transfers

7

3

4-bit Binary CSA
u'y [[Vu =]
; ; Ua
Cint 3-bit Binary |__.,.
Adder G
s (Wo (WY
Wy
Correction Logic
Adding +6 (-6) Fulj Adder
I !
s3 S, S S
Sh

a ‘ b

|E|)(3)(2 X1>(i0
= yj3 YfZ w1 YO

)(.3 X Xw Xio
}/3 YiZ YiW VO
Z/3 Zz 21 Z’o
VLV V)V
Ul4 U3 Uz U’1
Uf4 M/3W2 W1 WO
Ci+1

Si3 S5 Siw Sjo
S’

Fig. 3. Abstract view of carry-free decimal adder: (a) circuit, (b) dot-notation, (c) symbolic notation.

Please cite this article as: A. Kaivani, G. Jaberipur, Fully redundant decimal addition and subtraction using stored-unibit encoding,

Integration VLSI J. (2009), doi:10.1016/j.v1si.2009.04.001

dx.doi.org/10.1016/j.vlsi.2009.04.001

A. Kaivani, G. Jaberipur / INTEGRATION, the VLSI journal n (uama) mna—sm 5

The steps of Algorithm 4 may be justified as follows:

e Step I: The collective value of the two unibits may be encoded
as an inverted-polarity 4-bit two’s complement number to
match the encoding of the main parts of the two operands
(Fig. 3(b)). Fig. 4 depicts the required logic, which is justified by
the encoding details shown in Table 2.

e Step II: The four standard full adders implementing this
step work with any mix of posibits and inversely encoded
negabits [13].

e Step Ill: Vi and v} remain intact. Wh = Vi, and a 3-bit binary
adder with enforced carry-in (representing a 1-valued negabit
with arithmetic value 0) performs the addition.

e Step IV: The collective value of the equally weighted negabit-
posibit pair Ci.q, and u lies in {—1, 0, 1}, with the actual worth
of {—16, 0, 16} with respect to decimal position i. The +6
correction is justified by the desire to consider this value as a
decimal carry, with the worth of {—10, 0, 10}.

e Step V: The collective value of two negabits Whand C; and
posibit ui ! falls within [—2,1]. These twits may be combined
by a full adder to form S, and Sg. The three leftmost and
the two rightmost columns of Table 3, which represent a
truth table of a full adder, justify the latter functionality of a
standard full adder.

The correction block of Fig. 3(a) may be implemented by the
equation-set (1). This equation-set has been derived to meet the
argument given in the justification of Step IV of Algorithm 4
above, and checked for correctness through exhaustive VHDL
simulation. The delay, as shown by the corresponding gate-level

z 1:
; X

zl el

7 —Yq
] Yo
i

23

Fig. 4. Circuit for combining unibit transfers.

Table 2
Combining unibit-transfers.

X Y Sum Z z z z
0 0 -2 0 1 0 1
0 1 0 0 1 1 1
1 0 0 0 1 1 1
1 1 2 1 0 0 1
Table 3

Truth table for &and Sh.

G Ui ! 7S Sum ; Sk
0 0 0 -2 0 0
0 0 1 -1 0 1
0 1 0 -1 0 1
0 1 1 0 1 0
1 0 0 -1 0 1
1 0 1 0 1 0
1 1 0 0 1 0
1 1 1 1 1 1

implementation (Fig. 5), is equal to that of two logic levels:

sb=whul + wWiCipy + WEWLW + 1, Gy Wi WS

S} = (Wl Gy WoW) + Ul Ciyy Wh Wh) + W Ciy Wi + Gy WH W4 + i W W)

St =, Ciy W 1, Gy W + 1, Ciy W + 1 Ciy W = 1, @ Cipy @ Wi
(1)

For the purposes of delay analysis, and fair comparison, we
provisionally follow the approach of the previous works (i.e.,
[26,19]), where the latency of simple three-input gates is assumed
to be 1AG and that of an XOR gate is 2AG. Then the upper bound
for overall delay of the adder of Fig. 3, based on the following
delay components, amounts to 14AG. However, a more realistic
analysis based on logical effort [27] is offered in Section 8.

(a) Combining the unibit transfers (Fig. 4): 2AG.

(b) Carry-save adder (only one of the XOR gates is in the critical
path): 2AG.

(c) Three-bit adder preferably implemented by a carry accelera-
tion technique (e.g., carry look-ahead (CLA)): 6AG, due to two
3-input gates for carry calculation and one XOR gate.

(d) Correction logic (Fig. 5): 4AG (based on three-input gates).

6. Carry-free subtraction of decimal-SUT numbers

It is often desirable to use the addition circuitry for subtraction,
as is the case in the typical general-purpose two’s complement
processors, where the subtraction penalty is one XOR gate per bit.
The general idea is to negate the subtrahend by bit-wise inversion
followed by an enforced carry addition. In nonredundant decimal
arithmetic, however, the subtraction is more involved and the
penalty is considerable [24]. A minimal penalty solution (i.e., one
XOR gate per bit) is offered in [26,19], where a symmetric
redundant representation is used for decimal digits (i.e., [-7, 7]
and [-9, 9], respectively). The proposed redundant decimal digit
set of this work (i.e., [-8, 9]) is minimally asymmetric and also
leads to minimal penalty subtraction. This claim is supported by
the following lemma:

Lemma 1 (Twit-wise inversion of decimal-SUT digits). Twit-wise
inversion of a decimal-SUT digit in [—8, 9] (see Definition 4) leads to
the Excess-1 negation of the original digit.

Proof. . The arithmetic value of a posibit x, a negabit X, and a
unibit X, given our special encoding of twits (Definitions 1 and 2),
is x, (—1+X), and (—1+2X), respectively. The following equations
clarify the lemma’s claim, where IIDIl denotes the arithmetic value
of a digit D:

1X3X2X1 X0, Xo |l =8x3 +4(=1+X2) +2(-14+X1) -1+ Xo -1+ 2Xp
=8x3 +4X3 +2X1 +Xo+2Xo -8
%5 X3 X1 Xo. Xoll = 8(1 —x3) —4Xs — 2X1 —Xo +1-2Xo
=—8x3+4Xy +2X1 +Xo+2Xp—8)+ 1
= —[1X3X2X1 X0, Xo | + 1.

O

Corollary 1 (Negation of a decimal-SUT digit). To negate a decimal-
SUT digit, it is sufficient to invert all its twits and store a negabit,
bearing arithmetic value —1 (logical 0), along its least significant
position.

Given the above simple negation technique, we can easily adapt
the decimal-SUT adder to perform subtraction. We just XOR the
twits of the second operand (i.e., addend or subtrahend) with an

Integration VLSI J. (2009), doi:10.1016/j.v1si.2009.04.001

Please cite this article as: A. Kaivani, G. Jaberipur, Fully redundant decimal addition and subtraction using stored-unibit encoding,

dx.doi.org/10.1016/j.vlsi.2009.04.001

6 A. Kaivani, G. Jaberipur / INTEGRATION, the VLSI journal n (uamm) mna—sm

Ui4 Ui4 @ uf4
@
Cirt Cisq ® ® Cist
L 2 W1 T Vl/iz L 4 W’3
L * wi, Wi
Wi
Si, 3
Fig. 5. Correction logic.
Table 4 aj) ————
Conversion from BCD to Decimal-SUT.
a —J
,J Xi
Value as a, a, do X3 X Xi Xo Xo
0 0 0 0 0 1 0 0 0 0 as X
1 0 0 0 1 1 0 0 1 0
2 0 0 1 0 1 0 1 0 0 }— X2
3 0 0 1 1 1 0 1 1 0 a _,f
4 0 1 0 0 1 1 0 0 0 .
5 0 1 0 1 1 1 0 1 0 17— X
6 0 1 1 0 1 1 1 0 0
7 0 1 1 1 1 1 1 1 0 Fig. 6. BCD to decimal-SUT converter.
8 1 0 0 0 1 1 1 0 1
<) 1 0 0 1 1 1 1 1 1

operation signal s (0 for addition and 1 for subtraction), and feed a
negabit S (1 for addition and O for subtraction) instead of the
enforced 1 of the 3-bit adder of Fig. 3. Therefore, the overall add/
subtract latency amounts to 16AG.

7. Conversion from/to the conventional BCD format

Given that the decimal data are generally stored in BCD format,
the BCD input operands are to be converted to decimal-SUT
encoding before feeding into the proposed adder/subtractor. The
decimal-SUT encoded result should in turn be converted back
to BCD format.

The BCD to decimal-SUT conversion is outlined in Table 4,
where asa,a;ao denotes the twits of the BCD input and (x3X2X1Xo,
Xo) represents the decimal-SUT output. Given the redundancy
of decimal-SUT encoding, there may be more than one re-
presentation for each decimal-SUT digit (e.g., 01101 is another
encoding for O that is not used in Table 4). We have taken
advantage of this flexibility to design a simple conversion logic
with a single gate delay (Fig. 6).

The reverse conversion, as is expected for any redundant
representation, involves carry propagation across the word-width.
Algorithm 5 describes the reverse-conversion steps.

Algorithm 5 (Conversion from Decimal-SUT to BCD).

Input: k-digit decimal-SUT number X =x*"1,_. x° where x' =

(X5 X5X1X0.Xp) for 0<i<k—1

Output: k-digit BCD number A = a*,...,a°, where a' = aiala}d}
for 0<i<k-1.

Set Cp =1, and perform the following digit operations for all
positions i (0<i<k—1), where & = x5X5X}X}:

I. Conversion of X} € {—1,1} to u! = USubu} uj _XOX' X’ 1.
II. Four—bjt binary‘ addi(ior; b’ = Ci.yW' = R'+u'+C;, where
—9<b'<9, and W' = wiwhwiwi.
1. If Grq = 0 (i.e., arithmetically —1) then a' = w'—6 else a' = w'.

Justifications:

Step I: A unibit X can be expressed as a 2-bit two’s comple-
ment number (X 1). This can be further sign extended to four bits
(Xxx1).

Step II: The four-bit binary adder is a cascade of four full adders
of type (c) in Fig. 1. Note that Cp is assumed as a negabit with
arithmetic value 0. Therefore, the first full adder is of type (c) that
generates a negabit carry-out. The same reasoning applies to the
rest of full adders.

Step III: In Step II if iy =0 then w' = b™+16>7. This leads, in
Step III, to a'>1, i.e., the subtract-6 operation will not generate
another carry.

Fig. 7 depicts a high-level implementation of the conversion
Algorithm 5, where the critical-path latency for C; to Ci.q is as low
as 2AG, provided that a carry look-ahead logic is used. The over-
all carry-ripple delay through the least significant (k—1)-digits
amounts to (4+2(k—2))AG, and the last conversion cell shows a
delay of 8AG. Therefore the total conversion delay is (2k+8)AG,

Integration VLSI J. (2009), doi:10.1016/j.v1si.2009.04.001

Please cite this article as: A. Kaivani, G. Jaberipur, Fully redundant decimal addition and subtraction using stored-unibit encoding,

dx.doi.org/10.1016/j.vlsi.2009.04.001

A. Kaivani, G. Jaberipur / INTEGRATION, the VLSI journal n (uama) mna—sm 7

Xi X Xty Xig Xo <

W7 [

4-bit binary
CLA adder

HA HA

— 1=

aly aly a, d

Fig. 7. A digit slice of the decimal-SUT to BCD conversion circuit.

which may be reduced to O(logk) latency by using carry
accelerating techniques between the conversion cells.

8. Comparison with previous works

We have encountered, in the open literature, three different
designs for fully redundant carry-free decimal addition that use
decimal signed-digit sets. However, we have not come across any
fully redundant addition scheme based on positive decimal
redundant digit sets. These have been often used for semi-
redundant addition schemes (e.g., within multipliers in [16,29]).
One reason could be that such digit sets introduce additional
problems where both addition and subtraction are equally used
(e.g., redundant digit floating point add/subtract logic [6]).
Therefore we only compare the proposed scheme with the three
fully redundant ones.

We have used the Logical Effort model [27] for static standard
CMOS gates to evaluate area-time measures. We only wish to
roughly compare the performance of the proposed adder to those
of prior works, and do not aim at precise evaluation results.
Therefore, we do not undertake optimizing techniques such as
gate sizing, and do not consider the effect of interconnections. We
rather allow gates with the drive strength of the minimum-sized
inverter, and assume equal input and output loads. The latency
is measured in FO4 units (i.e., the delay of an inverter with a fan-
out of four inverters), and minimum-size NAND2 gate units are
assumed for area evaluation.

8.1. Svoboda approach

The very early method by Svoboda, in 1969 [28], proposed a
decimal signed-digit set [—6, 6], where each digit p in [0, 6] (n in
[-6, 0]) is represented by the 5-bit binary encoding for 3p
(31-3n). This particular encoding and the proposed carry-
free addition algorithm, although interesting and innovative as
the first effort in redundant-digit decimal addition, are rather
inefficient in comparison with later approaches to be explained
below. Moreover, the proposed BCD to redundant decimal
conversion is not carry-free, and the carry-free addition scheme
has four rather complex steps. Finally, Svoboda does not provide
any proposal for subtraction.

8.2. Redundant BCD (RBCD)

Twenty years after Svoboda’s proposal, Shirazi et al. [26] used a
4-bit two’s complement encoding, called redundant binary-
coded-decimal (RBCD), to represent a redundant decimal digit
set [-7, 7]. The RBCD adder is designed based on the conventional

carry-free addition algorithm (see Algorithm 3), where two 4-bit
binary adders take care of Steps I and IIl, and two PLAs are
responsible for decimal correction (see Step II of Algorithm 1).

The overall latency, as they have figured based on 3-input
gates, amounts to 18AG. The RBCD adder is adapted for
performing subtraction using one XOR gate per bit for two’s
complementing the digits of the subtrahend. Therefore, the
overall latency of RBCD adder/subtractor amounts to 20AG. Our
delay analysis of the same circuit based on logical effort shows
19.70 and 23.51 in FO4 units for addition and subtraction,
respectively.

The BCD to RBCD conversion logic proposed in [26] is
composed of a PLA and a 4-bit adder in sequence, leading to
a slow nonredundant-to-redundant conversion process with 9AG
delay.

The reverse conversion, like any other redundant-to-nonredundant
conversion is a carry-propagating process. The reverse converter
uses two PLAs and a 4-bit adder per decimal digit. The overall
delay, for a k-RBCD-digit result, amounts to (2k+10)AG, where the
carry-propagation latency of a 4-bit adder is assumed to be 2AG.

8.3. Decimal signed-digit (DSD) adder/subtractor

Nikmehr et al. [19] offered a decimal signed-digit adder/
subtractor using the maximally redundant decimal digit set [-9,
9], represented by two equally weighted BCD digits with opposite
polarities. The overall delay of the DSD adder/subtractor is
evaluated, in [19], to be equal to that of [26]. However, the addition
and subtraction latencies, for the same circuits, are computed as
24.62 and 28.43 in FO4 units, respectively.

Although negation is simply performed by bit inversion, the
subtraction penalty is the same in terms of latency (i.e., one XOR
gate per bit). However, in terms of gate count, twice as many XOR
gates are used compared to [26]. Moreover the main addition
operation speculatively produces six sum values that require
additional branching, thus greatly increasing the area consump-
tion and latency. The BCD to DSD conversion is a zero-time
operation, an impressive improvement over the 9AG latency of
the similar conversion in [26]. The reverse conversion is possible
by subtracting the negative component from the positive one by a
standard BCD subtractor [24]. Therefore, the latency of the reverse
conversion, for a k-DSD result, amounts to (4k+4)AG.

8.4. Decimal-SUT adder/subtractor

The latency of the proposed decimal-SUT adder/subtracter, as
explained in Section 5, is 16AG. The main improvement, regarding
previous approaches, comes from the stored transfer addition
scheme of Algorithm 4.

The simple BCD to decimal-SUT conversion logic (Fig. 6) uses
one gate in its critical path, leading to conversion latency of only
1AG. The reverse conversion of a k-digit decimal-SUT number to
its BCD equivalent (logic of Fig. 7) shows a latency of (2k+8)AG.

To summarize the above discussion on the latency of
redundant-digit decimal adder/subtractor, we provide Table 5,

Table 5
Comparison between the decimal-SUT scheme and the best previous results.

Addition scheme Adder Adder/subtractor

Tros4 Ratio Areananpz Ratio Tgos Ratio Areananpz Ratio

Decimal SUT 1532 1 125 1 16.90 1 131 1
RBCD [26] 19.70 1.28 190 1.52 23,51 139 200 1.52
DSD [19] 2462 1.60 642 513 2843 1.68 645 4.92

Integration VLSI J. (2009), doi:10.1016/j.v1si.2009.04.001

Please cite this article as: A. Kaivani, G. Jaberipur, Fully redundant decimal addition and subtraction using stored-unibit encoding,

dx.doi.org/10.1016/j.vlsi.2009.04.001

8 A. Kaivani, G. Jaberipur / INTEGRATION, the VLSI journal n (uamm) mna—sm

where this work is compared with that of Shirazi et al. [26] and
Nikmehr et al. [19]. The latency and area improvements of the
decimal-SUT unified adder/subtractor with respect to that of
Shirazi et al. [26] ([19]) are 28% (34%) and 40% (79%), respectively.
For a fair comparison of the three methods, we have replaced the
PLAs used in [26] with equivalent combinational logic.

9. Conclusions

We observed that in digital binary arithmetic there are multi-
operand addition, multiplication, and division schemes based on
semi-redundant adders and subtractors. Nevertheless, fully
redundant adder/subtractors are also used in multiplication and
arithmetic function evaluation. In decimal arithmetic, however,
we have encountered three fully redundant addition/subtraction
schemes [26,28,19] that have not found tangible applications due
to low efficiency in comparison with semi-redundant counter-
parts. However, since fully redundant adders lead to VLSI-friendly
recursive structure of a partial product tree, we were encouraged
to explore faster carry-free addition/subtraction schemes. Never-
theless, there are specific applications such as decimal CORDIC
arithmetic that intrinsically require fully redundant addition/
subtraction that could benefit from the results of this work and
future similar research.

We introduced the decimal-SUT encoding of decimal digits
using the digit set [—8, 9], where the transfer digit, generated
through the implementation of carry-free addition algorithm, is
stored with the next higher-weighted digit. Based on the logical
effort analysis, the fully redundant decimal-SUT adder/subtractor
is considerably faster with much less area with respect to the
previous works. The BCD to redundant decimal conversion of [19]
and our scheme show considerable improvement, in terms of
latency and area, over that of [26]. However, the cost of reverse
conversion, in all the three works, is almost the same.

The prospect for further research includes exploration of
possible more efficient fully redundant decimal addition/subtrac-
tion schemes and encodings of decimal digits and their applica-
tion in the design and implementation of decimal function
evaluation hardware.

References

[1] A. Avizienis, Signed-digit number representations for fast parallel arithmetic,
IRE Trans. Electron. Comput. 10 (1961) 389-400.

[2] M.E. Cowlishaw, Decimal floating-point: algorism for computers, in: Proceed-
ings of the 16th IEEE Symposium on Computer Arithmetic, June 2003,
pp. 104-111.

[3] L. Dadda, Multi operand parallel decimal adder: a mixed binary and BCD
approach, IEEE Trans. Comput. 56 (10) (2007) 1320-1328.

[4] M.D. Ercegovac, T. Lang, Digital Arithmetic, Morgan Kaufmann Publishers, Los
Altos, CA, 2004.

[5] M.A. Erle, EM. Schwartz, MJ. Schulte, Decimal multiplication with efficient
partial product generation, in: 17th IEEE Symposium on Computer Arithmetic
(ARITH-17), 2005, pp. 21-28.

[6] H.A.H. Fahmy, MJJ. Flynn, The case for a redundant format in floating point
arithmetic, in: Proceedings of the 16th IEEE Symposium on Computer
Arithmetic, Santiago de Compostela, Spain, June 2003.

[7] AF. Gonzalez, P. Mazumder, Redundant arithmetic, algorithms, implementa-
tions, Integration VLSI J. 30 (2000) 13-53.

[8] Institute of Electrical and Electronics Engineers, Draft IEEE Standard for
Floating-Point Arithmetic, 2007.

[9] G.Jaberipur, B. Parhami, M. Ghodsi, A class of stored-transfer representations
for redundant number systems, in: Proceedings of 35th Asilomar Conference
on Signals Systems and Computers, 2001, pp. 1304-1308.

[10] G.Jaberipur, B. Parhami, M. Ghodsi, Weighted bit-set encodings for redundant
digit sets: theory and applications, in: Proceedings of 36th Asilomar
Conference on Signals, Systems and Computers, 2002, pp. 1629-1633.

[11] G.Jaberipur, B. Parhami, M. Ghodsi, Weighted two-valued digit-set encodings:
unifying efficient hardware representation schemes for redundant number
systems, IEEE Trans. Circuits Syst. I 52 (7) (2005) 1348-1357.

[12] G. Jaberipur, B. Parhami, Stored-transfer representations with weighted digit-
set encodings for ultrahigh-speed arithmetic, IET Circuits Devices Syst. 1 (1)
(2007) 102-110.

[13] G. Jaberipur, B. Parhami, Constant-time addition with hybrid-redundant
numbers: theory and implementations, Integration VLSI]J. 41 (1) (2008)
49-64.

[14] R.D. Kenney, M.J. Schulte, M.A. Erle, A high-frequency decimal multiplier, in:
IEEE International Conference on Computer Design: VLSI in Computers and
Processors (ICCD), 2004, pp. 26-29

[15] R.D. Kenney, M.J. Schulte, High-speed multioperand decimal adders, IEEE
Trans. Comput. 54 (8) (2005) 953-963.

[16] T. Lang, A. Nannarelli, A radix-10 combinational multiplier, in: Proceedings of
Asilomar Conference on Signals, Systems, and Computers, 2006, pp. 313-317.

[17] T. Lang, A. Nannarelli, A radix-10 digit-recurrence division unit: algorithm and
architecture, IEEE Trans. Comput. 56 (6) (2007) 727-739.

[18] G. Metze, J.E. Robertson, Elimination of Carry propagation in digital
computers, in: Proceedings of International Conference on Information
Processing, Paris, 1959, pp. 389-396.

[19] H. Nikmehr, B.J. Phillips, C.C. Lim, A decimal carry-free adder, in: Proceedings
of SPIE Conference on Smart Materials, Nano-, Micro-Smart Systems, 2004,
pp. 786-797.

[20] H. Nikmehr, B. Phillips, C.C. Lim, Fast decimal floating-point division, IEEE
Trans. Very Large Scale Integration (VLSI) Syst. 14 (9) (2006) 951-961.

[21] B.Parhami, Generalized signed-digit number systems: a unifying framework for
redundant number representations, IEEE Trans. Comput. 39 (1) (1990) 89-98.

[23] RK. Richards, Arithmetic Operations in Digital Computers, Van Nostrand
Comp., Inc., 1955.

[24] M. Schmookler, A. Weinberger, High speed decimal addition, IEEE Trans.
Comput. C-20 (8) (1971) 862-866.

[25] S.Shankland, IBM’s POWERG gets help with math, multimedia, ZDNet News (2006).

[26] B. Shirazi, D.Y. Yun, C.N. Zhang, RBCD: redundant binary coded decimal adder,
in: IEE Proceedings on Computer & Digital Techniques (CDT), vol. 36, no. 2, 1989.

[27] LE. Sutherland, R.F. Sproull, D. Harris, Logical Effort: Designing Fast CMOS
Circuits, Morgan Kaufmann, Los Altos, CA, ISBN 1558605576, 1999.

[28] A. Svoboda, Decimal adder with signed digit arithmetic, IEEE Trans. Comput.
C-18 (3) (1969) 212-215.

[29] A. Vazquez, E. Antelo, P. Montuschi, A new family of high-performance
parallel decimal multipliers, in: Proceedings of the 18th IEEE Symposium on
Computer Arithmetic, 2007, pp. 195-204.

[30] L. Wang, M. Schulte, A decimal floating-point divider using Newton-
Raphson iteration, J. VLSI Signal Process. Syst. 14 (1) (2007) 3-18.

[31] CK. Yuen, A new representation for decimal numbers, IEEE Trans. Comput.
C-26 (12) (1977) 1286-1288.

Amir Kaivani received his B.S. in Computer Engineer-
ing from Islamic Azad University of Mashhad in 2005,
and M.S. in Computer Engineering from Shahid
Beheshti University (SBU) in 2007. He is currently a
Ph.D. candidate in Electrical Engineering at SBU. His
research interests include computer arithmetic, quan-
tum computing and reversible circuit design.

Ghassem Jaberipur, associate professor of Computer
Engineering in the Department of Electrical and
Computer Engineering of Shahid Beheshti University
(Tehran, Iran), received his B.S in Electrical Engineering
and Ph.D. in Computer Engineering from Sharif Uni-
versity of Technology in 1974 and 2004, respectively,
M.S in Engineering from UCLA in 1976, and M.S in
Computer Science from University of Wisconsin in
Madison in 1979. Currently, his main research interest
is in Computer Arithmetic.

Integration VLSI J. (2009), doi:10.1016/j.v1si.2009.04.001

Please cite this article as: A. Kaivani, G. Jaberipur, Fully redundant decimal addition and subtraction using stored-unibit encoding,

dx.doi.org/10.1016/j.vlsi.2009.04.001

	Fully redundant decimal addition and subtraction using stored-unibit encoding
	Introduction
	Background
	Redundant-digit decimal arithmetic
	Stored transfer representation of decimal digits
	Decimal-SUT adder
	Carry-free subtraction of decimal-SUT numbers
	Conversion from/to the conventional BCD format
	Comparison with previous works
	Svoboda approach
	Redundant BCD (RBCD)
	Decimal signed-digit (DSD) adder/subtractor
	Decimal-SUT adder/subtractor

	Conclusions
	References

