
A High Speed Low Power Signed Digit Adder 
 

Abstract: Signed digit (SD) number systems provide 
the possibility of constant-time addition, where inter-
digit carry propagation is eliminated. Such carry-free 
addition is primarily a three-step process. The special 
case of maximally redundant SD number systems leads 
to more efficient carry-free addition. This has been 
previously achieved based on speculation of transfer 
values and use of three parallel adders. We propose an 
alternative nonspeculative addition scheme that 
computes the transfer values through a fast 
combinational logic. The proposed carry-free addition 
scheme is shown to improve performance in terms of 
speed, power and area. The simulation and synthesis of 
three previous works and this work, based on 0.13 µm 
CMOS technology, confirms the latter claim. 
 
Keywords: Computer arithmetic, Carry-free 
addition, Signed-digit number system, Low power 
design, Maximal redundancy. 
 
1. Introduction 
 
Signed digit (SD) redundant number systems have 
been used in several computer arithmetic circuits 
[1]. SD number systems fall within the generalized 
signed digit (GSD) number systems that are fixed 
radix and contiguous number systems with digit set 
[–α, β], where α, β ≥ 0 [2]. A GSD number system 
is deemed redundant (nonredundant) if the 
redundancy index ρ = α + β + 1 – r is positive 
(zero), where r is the radix. The balanced SD 
number systems (i.e., α = β) were first introduced 
by Avizienis [3], where ρ = 2α+1 – r > 0. In 
practice r is often a power of two (e.g., 2h), where 
the latter inequality leads to α ≥ 2h–1. The case of  
α = 2h–1 corresponds to the minimally redundant 
digit set [–2h–1, 2h–1], where ρ = 1 and at least h +1 
bits are needed to represent a digit.  

But with the same number of bits α could be as 
much as 2h – 1 (i.e., nearly twice) corresponding to 
maximally redundant digit set [–2h +1, 2h–1] with  
ρ = 2h – 1. The latter is particularly attractive due 
to maximum range of numbers with minimum 
number of redundancy bits. 
 
The main benefit of SD number systems is the 
possibility of constant time addition, where the 
latency is small and independent of the number of 
digits in the operands. The sum digit in position i
obviously depends on the two operand digits in 
position i. Moreover, for the cases of ρ = 0
(i.e., nonredundant), ρ = 1, and ρ ≥ 2, it also 
depends on all, two, and one less significant digit 
pairs, respectively. This is further explained below. 
 

� ρ = 0: In a conventional nonredundant 
number system the sum digit in each position 
i (≥ 0) is a function of 2(i+1) operand digits; 
namely two operand digits per each of the 
positions i, i – 1…1, 0.  
 

� ρ = 1: For minimally redundant number 
systems the sum digit in position i (≥ 2) is a 
function of the operand digits in positions i,
i –1 and i – 2. The constant time addition in 
this case is called carry-limited [2]. 

 
� ρ ≥ 2: In this case, that includes the 

maximally redundant case of ρ = r – 1, the 
sum digit in each position i (≥ 1) depends on 
only four operand digits in positions i and i –1
[4]. The constant time addition in this case is 
called carry-free [2]. 
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One drawback of redundant number systems, 
however, is that in practical cases of r = 2h more 
than h bits are needed for representation of each 
digit. For example, the radix-2 SD number system 
uses two bits to represent each digit in [–1, 1], thus 
doubling the storage and number of data paths. 
However, higher radix SD number systems (i.e., 
h ≥ 2) [5] trade-off slower arithmetic for less 
storage and data paths [6]. The conventional carry-
free SD addition algorithm (see Section 2) has 
three steps that each one is coarsely as slow as an 
h-bit adder. Therefore, paralleling or fusing these 
steps that could lead to faster SD addition is 
desirable. For example, the case of maximally 
redundant SD (MRSD) number systems has been 
attractive due to its potential for improvements 
leading to less latency of SD addition; noteworthy 
are the speculative MRSD addition in [7] and [5] 
and the nonspeculative approach of [8]. The 
speculative approach uses three parallel h+1-bit 
adders per each radix-2h position. 

 
In this paper we present an improved 
nonspeculative addition scheme for maximally 
redundant SD number systems with power of two 
radix r = 2h. The paper is organized as follows. The 
conventional three-step carry-free SD addition 
algorithm is explained in Section 2. Some previous 
works on improved maximally redundant SD 
addition schemes, including a recent one [8], are 
briefly reviewed in Section 3. The contribution of 
this paper is presented in Section 4. The results of 
synthesis and simulation of this work versus three 
previous contributions, all based on 0.13 µm 
CMOS technology, are provided in Section 5. 
Finally we draw our conclusions in Section 6. 
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Fig. 1: The three steps of SD addition 

(Algorithm 1) 
 

2. SD carry-free addition algorithm 
 
A general carry-free addition scheme for  
radix-2h SD number systems with digit set [–α, α], 
is described by Algorithm 1, where α > 2h–1. Fig. 1 
(above) depicts a block-diagram representation of 
the Algorithm. 
 
Algorithm 1 (Carry-free SD addition): 
 

Input: Two n-digit radix-2h SD numbers 
X = xn–1…x0 and Y = yn–1…y0, where –α ≤ xi, yi ≤ α.
Output: An (n+1)-digit radix-2h SD number  
S = sn…s0

I. Compute the n-digit radix-2h SD number  
P = pn–1…p0 = X + Y, by digit-parallel 
computation of pi = xi + yi for 0 ≤ i ≤ n –1,
where –2α ≤ pi ≤ 2α.

II. Decompose pi to transfer ti+1 and interim 
sum wi, for 0 ≤ i ≤ n–1, such that  
– α +1 ≤ wi ≤ α –1, pi = wi + 2h× ti+1, and 
ti+1 = –1, 0, and 1 for pi ≤ – α, – α < pi < α,
and pi ≥ α, respectively. 

III. Form si = wi + ti, for 0 ≤ i ≤ n –1, and set  
sn = tn. No new transfer will be generated 
in this step.◄

Each of the Steps I and III, of Algorithm 1, 
involves an h-bit addition and Step II requires an 
h-bit comparison whose complexity is, in general, 
in the same order as that of h-bit addition. It would 
be desirable to reduce the overall latency roughly 
to that of two or one h-bit addition. The 
representation or encoding of signed digits is 
greatly influential on the latency of SD addition. 
Two’s complement representation of signed digits 
is believed to lead to the most efficient signed digit 
addition schemes [5], and is the encoding of choice 
in all the four designs studied in this paper. 
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Fig. 2: The speculative SD addition 



3. Efficient SD addition schemes 
 
We briefly address three previous efficient 
maximally redundant SD addition schemes. 
Approaches a) and b), below, fuse Step I and III of 
Algorithm 1 in order to simultaneously compute  
pi –1, pi, and pi +1 (Fig. 2, above). Then, each 
scheme performs Step II in its own way to 
compute ti+1, and the three corresponding 
speculated sum values. However, approach c) is 
nonspeculative, as is depicted in Fig.3. In fact, it 
only computes pi and simultaneously extracts ti+1 
directly from xi and yi.

a) Fahmy and Flynn [7] have used two’s 
complement encoding of the maximally 
redundant hexadecimal number system to 
represent redundant digit floating-point 
numbers. The main idea, in their SD adder is 
to speculatively compute pi –1, pi, and pi +1 in 
parallel, decompose the sums to 16 ti+1 and 
the respected speculative si values (i.e., wi –1, 
wi, wi +1) and let the correct si be selected by 
transfer ti.

b) The SD addition scheme of [5] is based on an 
alternative treatment of Step II of Algorithm 
1, where pi is compared to 2h–1 instead of α.

c) The interim sum wi and the transfer ti+1 may 
be expressed directly as functions of xi and yi.
However, these functions are hard and 
inefficient to implement even for moderate 
values of h (e.g., eight-input functions for  
h = 4). It has been shown in [8] that ti+1 can 
generally be defined as a function of just the 
most significant bits of xi and yi, except for 
few cases that may be detected by a 
moderately simple combinational logic. This 
architecture is depicted in Fig. 3, where the 
operation of the lower adder starts as soon as 
the transfer ti is available at a time that is 
considerably in advance of completion of 
operation of the upper adder. 

 

In the next section, we follow approach c), but 
with some simplifications that lead to further 
improvements in latency, power dissipation and 
layout area. 
 

4. The improved SD addition scheme 
 
Step I of Algorithm 1 calls for the actual addition 
xi + yi. However, one may consider xi and yi as the 
two components of a carry-save two’s complement 
encoding of pi. As depicted by Fig. 4, pi is 
represented by a special case of weighted bit-set 
(WBS) encoding [9]. In the symbolic/dot notation 
used in Fig. 4, posibits (i.e., normal bits) and 
negabits (i.e., negatively weighted bits) are 
represented by lowercase letters inside black dots 
and upper case letters inside white dots, 
respectively. With this encoding Step I of 
Algorithm 1 may actually be implemented free of 
cost. 

ip

ix iy

1it +

is
it

Fig. 3: The nonspeculative SD addition 
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Fig. 4: Carry-save two’s complement 
representation of the position sum pi

The two negabits h
iX and h

iY weigh 2h, and as 
such may directly contribute to the value of the 
transfer ti+1, whose weight is also 2h. In fact, if we 
somehow mange to have one posibit and one 
negabit in position h, the bit-pair may collectively 
represent a valid ti+1 in [–1, 1]. To arrange this, 
observe that arithmetic value of the bit collection 
{ h

iX , 1h
ix − , 1h

iy − }, with respect to position h–1, 
falls within [–2, 2]. The same range of values may 
be represented by an equivalent collection of a 
posibit in position h and two negabits in position  
h – 1, as shown in Fig. 5. Table I shows the details 
of this transformation, where the target posibit and 
negabits are represented by primed variables and it 

is easily seen that h h
i ix X′ = , 1 1h h

i iX x− −′ = , and 
1 1h h

i iY y− −′ = .
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Fig. 5: Equivalent representation of position sum pi
via the transformation of Table I 

 

Table I: Justification of transformation from  
Fig. 4 to Fig. 5 

 
h
iX h

ix -1 h
iy -1 Value ′hix ′h

iX -1 ′h
iY -1

0 0 0 0 1 1 1
0 0 1 1 1 1 0
0 1 0 1 1 0 1
0 1 1 2 1 0 0
1 0 0 –2 0 1 1
1 0 1 –1 0 1 0
1 1 0 –1 0 0 1
1 1 1 0 0 0 0

Let 1 2 1 0ˆ h h
i i i i ix X x x x− −= � and 1 2 1 0ˆ h h

i i i i iy Y y y y− −= � .
Then an immediate conclusion of the arrangement 
of Fig. 5 would be 1

ˆ h h
i i it x Y+ = − and ˆ ˆ ˆi i iw x y= + .

Unfortunately however, it turns out that such 

1ît + and ˆ iw are not always correct. The exceptions 
are listed in Table II, and can be recognized by a 
flag 1 1 1 1 0 0h h

i i i i i i ix x y y x y− −ϕ = + + + +� � . The 
correct ti+1 and wi are also shown in the Table.  

1ît + is corrected by simply subtracting 1 in all the 
cases that φi = 1 or ti+1 = 1ît + – φi. This leads to the 
following equations that compute the constituent 
posibit and negabit of ti+1 (= h h

i ix Y− ). 

+φh h h
i i i ix Y x= , h h h

i i iY Y x= + (1) 
 

Similarly, ˆ iw gets corrected by adding 2h. This 
may be effectively done by adding 1 to both 

1h
iX − and 1h

iY − in case of φi = 1. Note that the 
value of h

ix -1 and h
iy -1 before inversion and turning 

to negabits (see Figs. 4 and 5), in all the correction 
cases of Table II (i.e., φi = 1), is 0. This leads to 

1h
iX − = 1h

iY − = –1. Therefore, 1h
iX − and 1h

iY − as 

the sign bits in the carry-save two’s complement 
representation of wi may be computed by 
Equations 2 and 3, respectively. 

1
1

1 1 0 if φ 1

otherwise
ih

i h
i

X
X

−

−

− + = == 


1 1 φh h
i i iX X− −⇒ = + (2) 

 
1 1 +φh h

i i iY Y− −= (3) 
 

The transformation from Fig. 4 to Fig. 5 and the 
latter corrections (i.e., Equations 1, 2 and 3) are 
collectively shown in the first three parts of Fig. 6. 
The overall delay up to this point is the delay of 
flag φi and a two-input gate in Equations 1 to 3. 
However, since the first (h – 1) bits of xi and yi are 
intact, one may start adding them at time 0 (i.e, 
when computation of φi begins) to compute the 
first (h – 1) bits of wi. The carry out of position  
h–2, a posibit, and the two negabits in position h–1 
feed the full adder in that position. For proper 
functioning of this full adder its two negabit inputs 
and the negabit carry-out should be inverted [10]. 
The result is shown in the first row of part 4 of Fig. 
6. Recalling Equation 1, the two most significant 
bits of part 3 are extracted to form ti+1. Moreover, 
to prepare for the last step, the transfer from 
position i (i.e., ti) is converted to a two’s 
complement number 1 0h h

i i iT t t− � using the logic of 
Fig. 7. 

Table II: The exceptions for easy extraction of transfer and the corrections 
 

Correction h
iX h

iY Range of  
xi and yi

ˆ
1i+t ˆ iw Exceptions for 

(xi, yi) pair ti+1 wi

0 0 xi ≥ 0, yi ≥ 0 1 –2h + pi (0, 0), (0, 1), and (1, 0) 0 pi
0 1 xi ≥ 0, yi < 0 0 pi (0, –2h+1) –1 2h + pi

1 0 xi < 0, yi ≥ 0 0 pi (–2h+1, 0) –1 2h + pi
1 1 xi < 0, yi < 0 –1 2h + pi None None None 
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Fig. 6: Digit slice of SD addition in position i

1 1
1 1 1, , ,h h
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0
1it +
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ix
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Fig. 7: Conversion of the transfer digit to an 
equivalent h+1-bit two’s complement number 

The last part of Fig. 6 is an illustration of Step III 
of Algorithm 1, which may be implemented using 
an h+1-bit two’s complement adder. However, 
given that no new carry would be generated in this 
step, Equation 4 rules the most significant bit of 
the result, where h

ic is the carry into position h.

( )h h h h h h
i i i i i iS c W T W T= + +  (4) 

Fig. 8 depicts a digit slice of the overall SD adder 
based on Fig. 6, where the bold line is the critical 
delay path. However, the two full adder chains 
may be replaced by carry look-ahead (CLA) logic, 
as shown in Fig. 9, in order to reduce latency. The 
required CLA to replace the lower full adder chain 
is a simplified one, for the bits of one of the 
operands (i.e., 1 1h h

i i i iT t t t−= = = =� as shown 
in Fig. 7) are all the same. This leads to Equation 
5, where 1

ic is the carry-into position 1 of the ith 
digit. For large h (e.g., h = 4k, k ≥ 2), a CLA tree 
with simplified group-generate and group-
propagate signals may be used. Equation set 6 
provides simplified equations for sum bits of digit 
slice i of the SD adder for h = 4, where  

4 4
1 1i ia x Y− −= and 4 4

1 1i ib x Y− −= . A regular 
implementation of these equations is depicted by 
Fig. 10, where the lower half adder in position zero 
of Fig. 8 and the logic of Fig. 7 are fused for 
further efficiency. However, in the actual 
synthesis, gates with higher fan-in may be used. 

1

1 1

( )
kk

k j j
i i i i i i

j j
c t w t w c

= =

= + +∑ ∏ (5) 

( )0 0
i is w a b= ⊕ + ,

( )1 1 0 0
i i i is w aw bw= ⊕ + ,

( )2 2 1 0 1 0
i i i i i is w aw w bw w= ⊕ + ,

( )3 3 2 1 0 2 1 0
i i i i i i i is w aw w w bw w w= ⊕ + ,

4 3 2 1 0 3 2 1 0 4
i i i i i i i i i iS aw w w w bw w w w W= + . (6) 
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Fig. 8: Digit slice of SD adder based on Fig. 6 



5. Synthesis and simulation results 
 
SD adders operate in a digit-parallel manner. 
Therefore, synthesis and simulation of one digit-
slice of the SD adder leads to reasonable 
performance measures for the whole adder. The 
SD adder of Fig. 9, as an improved version of Fig. 
8, has been checked for correctness by exhaustive 
test via VHDL code of one digit-slice. To measure 
the performance of the adder, it was synthesized 
based on a 0.13 µm CMOS technology, and the 
results are compared in Table III together with 
those reported in [8]. The 34% less PDP (i.e., 
product of delay and power) with respect to the 
best previous design is quite noticeable. 
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Fig. 9: The SD adder with CLA components  
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Fig. 10: The simplified CLA logic for h = 4
replacing the lower FA-chain of Fig. 8 

6. Conclusions 
 
We reviewed three previous efficient 
implementations of maximally redundant signed 
digit adders. Then, we proposed a new MRSD 
addition scheme based on carry-save two’s 
complement encoding of positional sum-digits that 
are readily available by simply aligning the equally 
weighted digits of the operands. The first step of 
conventional SD addition algorithm is as such a 
cost-free operation. The position-sum digits are 
partitioned to a transfer part and an interim sum. 
Whereas this simple partitioning leads to invalid 
results, in few exceptional cases of the operands, a 
flag is computed to indicate the exceptions and to 
enforce corrections. Finally, the last step of 
conventional SD addition (i.e., adding the interim 
sum digits with the transfer coming from the next 
less significant digit position) is performed by a 
simplified carry look-ahead logic. 
 
The new MRSD adder is checked for correctness 
via exhaustive tests based on VHDL code 
describing the adder. Synthesis and simulation of 
the proposed adder, based on a 0.13 µm CMOS 
technology, shows better performance in terms of 
delay, power dissipation and layout area in 
comparison with three previous contributions. Fig. 
11, based on the results tabulated in Table III, 
depicts these advantages. 

Fig. 11: Performance comparison between the new 
MRSD adder and three previous ones 

 
Research is on going for further performance 
improvement in SD adders, and use of them in 
more sophisticated hardware units such as 
multiplication, division, and floating-point 
arithmetic circuits. 

Table III: Simulation results for single digit MRSD adders with h = 4 based on 0.13 µm COMS 
 

Design Name Delay (ns) Power (mW) Area(µm2) Delay × power
[7] 0.61 1.95 2255.7 1.19 
[5] 0.57 2.19 2473.8 1.25 
[8] 0.50 1.98 2480.5 0.99 

New MRSD Adder 0.46 1.42 1707.9 0.65 
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