
A High Speed Low Power Signed Digit Adder

Abstract: Signed digit (SD) number systems provide
the possibility of constant-time addition, where inter-
digit carry propagation is eliminated. Such carry-free
addition is primarily a three-step process. The special
case of maximally redundant SD number systems leads
to more efficient carry-free addition. This has been
previously achieved based on speculation of transfer
values and use of three parallel adders. We propose an
alternative nonspeculative addition scheme that
computes the transfer values through a fast
combinational logic. The proposed carry-free addition
scheme is shown to improve performance in terms of
speed, power and area. The simulation and synthesis of
three previous works and this work, based on 0.13 µm
CMOS technology, confirms the latter claim.

Keywords: Computer arithmetic, Carry-free
addition, Signed-digit number system, Low power
design, Maximal redundancy.

1. Introduction

Signed digit (SD) redundant number systems have
been used in several computer arithmetic circuits
[1]. SD number systems fall within the generalized
signed digit (GSD) number systems that are fixed
radix and contiguous number systems with digit set
[–α, β], where α, β ≥ 0 [2]. A GSD number system
is deemed redundant (nonredundant) if the
redundancy index ρ = α + β + 1 – r is positive
(zero), where r is the radix. The balanced SD
number systems (i.e., α = β) were first introduced
by Avizienis [3], where ρ = 2α+1 – r > 0. In
practice r is often a power of two (e.g., 2h), where
the latter inequality leads to α ≥ 2h–1. The case of
α = 2h–1 corresponds to the minimally redundant
digit set [–2h–1, 2h–1], where ρ = 1 and at least h +1
bits are needed to represent a digit.

But with the same number of bits α could be as
much as 2h – 1 (i.e., nearly twice) corresponding to
maximally redundant digit set [–2h +1, 2h–1] with
ρ = 2h – 1. The latter is particularly attractive due
to maximum range of numbers with minimum
number of redundancy bits.

The main benefit of SD number systems is the
possibility of constant time addition, where the
latency is small and independent of the number of
digits in the operands. The sum digit in position i
obviously depends on the two operand digits in
position i. Moreover, for the cases of ρ = 0
(i.e., nonredundant), ρ = 1, and ρ ≥ 2, it also
depends on all, two, and one less significant digit
pairs, respectively. This is further explained below.

� ρ = 0: In a conventional nonredundant
number system the sum digit in each position
i (≥ 0) is a function of 2(i+1) operand digits;
namely two operand digits per each of the
positions i, i – 1…1, 0.

� ρ = 1: For minimally redundant number
systems the sum digit in position i (≥ 2) is a
function of the operand digits in positions i,
i –1 and i – 2. The constant time addition in
this case is called carry-limited [2].

� ρ ≥ 2: In this case, that includes the

maximally redundant case of ρ = r – 1, the
sum digit in each position i (≥ 1) depends on
only four operand digits in positions i and i –1
[4]. The constant time addition in this case is
called carry-free [2].

 Ghassem Jaberipur Saeid Gorgin
Department of Electrical and Computer Engineering, Shahid Beheshti University and

School of Computer Science, the institute of theoretical physics and mathematics(IPM), Tehran, Iran
jaberipur@sbu.ac.ir gorgin@sbu.ac.ir

One drawback of redundant number systems,
however, is that in practical cases of r = 2h more
than h bits are needed for representation of each
digit. For example, the radix-2 SD number system
uses two bits to represent each digit in [–1, 1], thus
doubling the storage and number of data paths.
However, higher radix SD number systems (i.e.,
h ≥ 2) [5] trade-off slower arithmetic for less
storage and data paths [6]. The conventional carry-
free SD addition algorithm (see Section 2) has
three steps that each one is coarsely as slow as an
h-bit adder. Therefore, paralleling or fusing these
steps that could lead to faster SD addition is
desirable. For example, the case of maximally
redundant SD (MRSD) number systems has been
attractive due to its potential for improvements
leading to less latency of SD addition; noteworthy
are the speculative MRSD addition in [7] and [5]
and the nonspeculative approach of [8]. The
speculative approach uses three parallel h+1-bit
adders per each radix-2h position.

In this paper we present an improved
nonspeculative addition scheme for maximally
redundant SD number systems with power of two
radix r = 2h. The paper is organized as follows. The
conventional three-step carry-free SD addition
algorithm is explained in Section 2. Some previous
works on improved maximally redundant SD
addition schemes, including a recent one [8], are
briefly reviewed in Section 3. The contribution of
this paper is presented in Section 4. The results of
synthesis and simulation of this work versus three
previous contributions, all based on 0.13 µm
CMOS technology, are provided in Section 5.
Finally we draw our conclusions in Section 6.

Position Position Position1i + i 1i −
1ix + ix 1ix −1iy + iy 1iy −

is 1is −1is +

it1it +
iw1iw + 1iw −

ip1ip + 1ip −

Comparator Comparator

Adder Adder Adder

Inc/Dec Inc/Dec Inc/Dec

Comparator

Fig. 1: The three steps of SD addition

(Algorithm 1)

2. SD carry-free addition algorithm

A general carry-free addition scheme for
radix-2h SD number systems with digit set [–α, α],
is described by Algorithm 1, where α > 2h–1. Fig. 1
(above) depicts a block-diagram representation of
the Algorithm.

Algorithm 1 (Carry-free SD addition):

Input: Two n-digit radix-2h SD numbers
X = xn–1…x0 and Y = yn–1…y0, where –α ≤ xi, yi ≤ α.
Output: An (n+1)-digit radix-2h SD number
S = sn…s0

I. Compute the n-digit radix-2h SD number
P = pn–1…p0 = X + Y, by digit-parallel
computation of pi = xi + yi for 0 ≤ i ≤ n –1,
where –2α ≤ pi ≤ 2α.

II. Decompose pi to transfer ti+1 and interim
sum wi, for 0 ≤ i ≤ n–1, such that
– α +1 ≤ wi ≤ α –1, pi = wi + 2h× ti+1, and
ti+1 = –1, 0, and 1 for pi ≤ – α, – α < pi < α,
and pi ≥ α, respectively.

III. Form si = wi + ti, for 0 ≤ i ≤ n –1, and set
sn = tn. No new transfer will be generated
in this step.◄

Each of the Steps I and III, of Algorithm 1,
involves an h-bit addition and Step II requires an
h-bit comparison whose complexity is, in general,
in the same order as that of h-bit addition. It would
be desirable to reduce the overall latency roughly
to that of two or one h-bit addition. The
representation or encoding of signed digits is
greatly influential on the latency of SD addition.
Two’s complement representation of signed digits
is believed to lead to the most efficient signed digit
addition schemes [5], and is the encoding of choice
in all the four designs studied in this paper.

ip1ip + 1ip −

ix iy

1it +

is

it
iw1iw + 1iw −

Fig. 2: The speculative SD addition

3. Efficient SD addition schemes

We briefly address three previous efficient
maximally redundant SD addition schemes.
Approaches a) and b), below, fuse Step I and III of
Algorithm 1 in order to simultaneously compute
pi –1, pi, and pi +1 (Fig. 2, above). Then, each
scheme performs Step II in its own way to
compute ti+1, and the three corresponding
speculated sum values. However, approach c) is
nonspeculative, as is depicted in Fig.3. In fact, it
only computes pi and simultaneously extracts ti+1
directly from xi and yi.

a) Fahmy and Flynn [7] have used two’s
complement encoding of the maximally
redundant hexadecimal number system to
represent redundant digit floating-point
numbers. The main idea, in their SD adder is
to speculatively compute pi –1, pi, and pi +1 in
parallel, decompose the sums to 16 ti+1 and
the respected speculative si values (i.e., wi –1,
wi, wi +1) and let the correct si be selected by
transfer ti.

b) The SD addition scheme of [5] is based on an
alternative treatment of Step II of Algorithm
1, where pi is compared to 2h–1 instead of α.

c) The interim sum wi and the transfer ti+1 may
be expressed directly as functions of xi and yi.
However, these functions are hard and
inefficient to implement even for moderate
values of h (e.g., eight-input functions for
h = 4). It has been shown in [8] that ti+1 can
generally be defined as a function of just the
most significant bits of xi and yi, except for
few cases that may be detected by a
moderately simple combinational logic. This
architecture is depicted in Fig. 3, where the
operation of the lower adder starts as soon as
the transfer ti is available at a time that is
considerably in advance of completion of
operation of the upper adder.

In the next section, we follow approach c), but
with some simplifications that lead to further
improvements in latency, power dissipation and
layout area.

4. The improved SD addition scheme

Step I of Algorithm 1 calls for the actual addition
xi + yi. However, one may consider xi and yi as the
two components of a carry-save two’s complement
encoding of pi. As depicted by Fig. 4, pi is
represented by a special case of weighted bit-set
(WBS) encoding [9]. In the symbolic/dot notation
used in Fig. 4, posibits (i.e., normal bits) and
negabits (i.e., negatively weighted bits) are
represented by lowercase letters inside black dots
and upper case letters inside white dots,
respectively. With this encoding Step I of
Algorithm 1 may actually be implemented free of
cost.

ip

ix iy

1it +

is
it

Fig. 3: The nonspeculative SD addition

h
iX 1h

ix −

1h
iy −h

iY

0
ix2h

ix − � 1
ix

� 0
iy1

iy2h
iy −

Fig. 4: Carry-save two’s complement
representation of the position sum pi

The two negabits h
iX and h

iY weigh 2h, and as
such may directly contribute to the value of the
transfer ti+1, whose weight is also 2h. In fact, if we
somehow mange to have one posibit and one
negabit in position h, the bit-pair may collectively
represent a valid ti+1 in [–1, 1]. To arrange this,
observe that arithmetic value of the bit collection
{ h

iX , 1h
ix − , 1h

iy − }, with respect to position h–1,
falls within [–2, 2]. The same range of values may
be represented by an equivalent collection of a
posibit in position h and two negabits in position
h – 1, as shown in Fig. 5. Table I shows the details
of this transformation, where the target posibit and
negabits are represented by primed variables and it

is easily seen that h h
i ix X′ = , 1 1h h

i iX x− −′ = , and
1 1h h

i iY y− −′ = .

h
ix 1h

iX −

1h
iY −h

iY

0
ix2h

ix − � 1
ix

� 0
iy1

iy2h
iy −

Fig. 5: Equivalent representation of position sum pi
via the transformation of Table I

Table I: Justification of transformation from
Fig. 4 to Fig. 5

h
iX h

ix -1 h
iy -1 Value ′hix ′h

iX -1 ′h
iY -1

0 0 0 0 1 1 1
0 0 1 1 1 1 0
0 1 0 1 1 0 1
0 1 1 2 1 0 0
1 0 0 –2 0 1 1
1 0 1 –1 0 1 0
1 1 0 –1 0 0 1
1 1 1 0 0 0 0

Let 1 2 1 0ˆ h h
i i i i ix X x x x− −= � and 1 2 1 0ˆ h h

i i i i iy Y y y y− −= � .
Then an immediate conclusion of the arrangement
of Fig. 5 would be 1

ˆ h h
i i it x Y+ = − and ˆ ˆ ˆi i iw x y= + .

Unfortunately however, it turns out that such

1ît + and ˆ iw are not always correct. The exceptions
are listed in Table II, and can be recognized by a
flag 1 1 1 1 0 0h h

i i i i i i ix x y y x y− −ϕ = + + + +� � . The
correct ti+1 and wi are also shown in the Table.

1ît + is corrected by simply subtracting 1 in all the
cases that φi = 1 or ti+1 = 1ît + – φi. This leads to the
following equations that compute the constituent
posibit and negabit of ti+1 (= h h

i ix Y−).

+φh h h
i i i ix Y x= , h h h

i i iY Y x= + (1)

Similarly, ˆ iw gets corrected by adding 2h. This
may be effectively done by adding 1 to both

1h
iX − and 1h

iY − in case of φi = 1. Note that the
value of h

ix -1 and h
iy -1 before inversion and turning

to negabits (see Figs. 4 and 5), in all the correction
cases of Table II (i.e., φi = 1), is 0. This leads to

1h
iX − = 1h

iY − = –1. Therefore, 1h
iX − and 1h

iY − as

the sign bits in the carry-save two’s complement
representation of wi may be computed by
Equations 2 and 3, respectively.

1
1

1 1 0 if φ 1

otherwise
ih

i h
i

X
X

−

−

− + = == 


1 1 φh h
i i iX X− −⇒ = + (2)

1 1 +φh h

i i iY Y− −= (3)

The transformation from Fig. 4 to Fig. 5 and the
latter corrections (i.e., Equations 1, 2 and 3) are
collectively shown in the first three parts of Fig. 6.
The overall delay up to this point is the delay of
flag φi and a two-input gate in Equations 1 to 3.
However, since the first (h – 1) bits of xi and yi are
intact, one may start adding them at time 0 (i.e,
when computation of φi begins) to compute the
first (h – 1) bits of wi. The carry out of position
h–2, a posibit, and the two negabits in position h–1
feed the full adder in that position. For proper
functioning of this full adder its two negabit inputs
and the negabit carry-out should be inverted [10].
The result is shown in the first row of part 4 of Fig.
6. Recalling Equation 1, the two most significant
bits of part 3 are extracted to form ti+1. Moreover,
to prepare for the last step, the transfer from
position i (i.e., ti) is converted to a two’s
complement number 1 0h h

i i iT t t− � using the logic of
Fig. 7.

Table II: The exceptions for easy extraction of transfer and the corrections

Correction h
iX h

iY Range of
xi and yi

ˆ
1i+t ˆ iw Exceptions for

(xi, yi) pair ti+1 wi

0 0 xi ≥ 0, yi ≥ 0 1 –2h + pi (0, 0), (0, 1), and (1, 0) 0 pi
0 1 xi ≥ 0, yi < 0 0 pi (0, –2h+1) –1 2h + pi

1 0 xi < 0, yi ≥ 0 0 pi (–2h+1, 0) –1 2h + pi
1 1 xi < 0, yi < 0 –1 2h + pi None None None

0
iw2h

iw − � 1
iw

� 0
it

1
it2h

it
−1h

it
−

0
is2h

is − � 1
is1h

is −h
iS

h
iX 1h

ix −

1h
iy −h

iY

h
ix 0

ix1h
iX − 2h

ix − � 1
ix

� 0
iy1

iy2h
iy −1h

iY −h
iY

h
ix 1h

iX −

1h
iY −h

iY

1it + it1h
iw −h

iW

h
iT

0
ix2h

ix − � 1
ix

� 0
iy1

iy2h
iy −

0
ix2h

ix − � 1
ix

� 0
iy1

iy2h
iy −

Fig. 6: Digit slice of SD addition in position i

1 1
1 1 1, , ,h h

i i iT t t−
+ + +�

0
1it +

h
ix

h
iY

Fig. 7: Conversion of the transfer digit to an
equivalent h+1-bit two’s complement number

The last part of Fig. 6 is an illustration of Step III
of Algorithm 1, which may be implemented using
an h+1-bit two’s complement adder. However,
given that no new carry would be generated in this
step, Equation 4 rules the most significant bit of
the result, where h

ic is the carry into position h.

()h h h h h h
i i i i i iS c W T W T= + + (4)

Fig. 8 depicts a digit slice of the overall SD adder
based on Fig. 6, where the bold line is the critical
delay path. However, the two full adder chains
may be replaced by carry look-ahead (CLA) logic,
as shown in Fig. 9, in order to reduce latency. The
required CLA to replace the lower full adder chain
is a simplified one, for the bits of one of the
operands (i.e., 1 1h h

i i i iT t t t−= = = =� as shown
in Fig. 7) are all the same. This leads to Equation
5, where 1

ic is the carry-into position 1 of the ith
digit. For large h (e.g., h = 4k, k ≥ 2), a CLA tree
with simplified group-generate and group-
propagate signals may be used. Equation set 6
provides simplified equations for sum bits of digit
slice i of the SD adder for h = 4, where

4 4
1 1i ia x Y− −= and 4 4

1 1i ib x Y− −= . A regular
implementation of these equations is depicted by
Fig. 10, where the lower half adder in position zero
of Fig. 8 and the logic of Fig. 7 are fused for
further efficiency. However, in the actual
synthesis, gates with higher fan-in may be used.

1

1 1

()
kk

k j j
i i i i i i

j j
c t w t w c

= =

= + +∑ ∏ (5)

()0 0
i is w a b= ⊕ + ,

()1 1 0 0
i i i is w aw bw= ⊕ + ,

()2 2 1 0 1 0
i i i i i is w aw w bw w= ⊕ + ,

()3 3 2 1 0 2 1 0
i i i i i i i is w aw w w bw w w= ⊕ + ,

4 3 2 1 0 3 2 1 0 4
i i i i i i i i i iS aw w w w bw w w w W= + . (6)

0
ix0

iy

0
1it +

0
is

1
ix2h

ix −1h
ix −h

iX 1
iy2h

iy −1h
iy −h

iY

1
is2h

is −1h
is −h

iS

�

� �

�

�

�

1
h
iS −

1
h

iY − 1
h
iX −

�

1
1

h
ix −
−

1
1

h
iy −
−

1
1

h
is −
−

0
it

1
it

2h
it
−1h

it
−

1h
iX − 1h

iY −

h
iT1 1

1 1 1, , ,h h
i i iT t t−
+ + +�

Fig. 8: Digit slice of SD adder based on Fig. 6

5. Synthesis and simulation results

SD adders operate in a digit-parallel manner.
Therefore, synthesis and simulation of one digit-
slice of the SD adder leads to reasonable
performance measures for the whole adder. The
SD adder of Fig. 9, as an improved version of Fig.
8, has been checked for correctness by exhaustive
test via VHDL code of one digit-slice. To measure
the performance of the adder, it was synthesized
based on a 0.13 µm CMOS technology, and the
results are compared in Table III together with
those reported in [8]. The 34% less PDP (i.e.,
product of delay and power) with respect to the
best previous design is quite noticeable.

1h
iw − 0

iw

0
it
it

h
iW

h
iS 1h

is − 0
is

0
ix0

iy1
ix2h

ix −1h
ix −h

iX 1
iy2h

iy −1h
iy −h

iY

� �

�

�

�

1
iw

1
is

0
1it −
1it −

Fig. 9: The SD adder with CLA components

3
iw 2

iw 1
iw 0

iw
4

1ix −

4
1iY −

4
iW

4
iS 3

is 2
is 1

is 0
is

Fig. 10: The simplified CLA logic for h = 4
replacing the lower FA-chain of Fig. 8

6. Conclusions

We reviewed three previous efficient
implementations of maximally redundant signed
digit adders. Then, we proposed a new MRSD
addition scheme based on carry-save two’s
complement encoding of positional sum-digits that
are readily available by simply aligning the equally
weighted digits of the operands. The first step of
conventional SD addition algorithm is as such a
cost-free operation. The position-sum digits are
partitioned to a transfer part and an interim sum.
Whereas this simple partitioning leads to invalid
results, in few exceptional cases of the operands, a
flag is computed to indicate the exceptions and to
enforce corrections. Finally, the last step of
conventional SD addition (i.e., adding the interim
sum digits with the transfer coming from the next
less significant digit position) is performed by a
simplified carry look-ahead logic.

The new MRSD adder is checked for correctness
via exhaustive tests based on VHDL code
describing the adder. Synthesis and simulation of
the proposed adder, based on a 0.13 µm CMOS
technology, shows better performance in terms of
delay, power dissipation and layout area in
comparison with three previous contributions. Fig.
11, based on the results tabulated in Table III,
depicts these advantages.

Fig. 11: Performance comparison between the new
MRSD adder and three previous ones

Research is on going for further performance
improvement in SD adders, and use of them in
more sophisticated hardware units such as
multiplication, division, and floating-point
arithmetic circuits.

Table III: Simulation results for single digit MRSD adders with h = 4 based on 0.13 µm COMS

Design Name Delay (ns) Power (mW) Area(µm2) Delay × power
[7] 0.61 1.95 2255.7 1.19
[5] 0.57 2.19 2473.8 1.25
[8] 0.50 1.98 2480.5 0.99

New MRSD Adder 0.46 1.42 1707.9 0.65

References

[1] González Alejandro F., and P. Mazumder,

“Redundant arithmetic, algorithms and
implementations,” Integration the VLSI
Journal, Vol. 30, Issue 1, pp. 13-53, Nov.
2000.

[2] Parhami B., “Generalized Signed-Digit
Number System: A Unifying Framework for
Redundant Number Representation,” IEEE
Trans. on Computer, Vol. 39, No. 1, pp. 89-98,
1990.

[3] Avizienis A., “Signed-digit number
representations for fast parallel arithmetic,”
IRE Trans. on Electronic Computers, Vol. EC-
10, pp. 389–400, Sep. 1961.

[4] Jaberipur G. and B. Parhami, “Stored-Transfer
Representations with Weighted Digit-Set
Encodings for Ultrahigh-Speed Arithmetic,”
IET Circuits, Devices, and Systems, Vol. 1,
No. 1, pp. 102-110, Feb. 2007.

[5] Jaberipur G., and M. Ghodsi, “High Radix
Signed Digit Number Systems: Representation
Paradigms,” Scientia Iranica, Vol. 10, No.4,
pp. 383-391, Oct. 2003.

[6] Phatak D. S., and I. Koren, “Hybrid Signed-
Digit Number Systems: A Unified Framework
for Redundant Number Representations with
Bounded Carry Propagation Chains” IEEE
Trans. on Computers, Vol. 43, No. 8, pp 880-
891, Aug. 1994.

[7] Fahmy H., and M.J. Flynn, “The Case for a
Redundant Format in Floating-point
Arithmetic,” Proc. 16th IEEE Symp. Computer
Arithmetic, pp. 95-102, 2003.

[8] Jaberipur G., and S. Gorgin, “A
Nonspeculative Maximally Redundant Signed
Digit Adder,” Submitted for publication.

[9] Jaberipur G., B. Parhami, and M. Ghodsi,
“Weighted Two-Valued Digit-Set Encodings:
Unifying Efficient Hardware Representation
Schemes for Redundant Number Systems,”
IEEE Trans. Circuits and Systems I, Vol. 52,
No. 7, pp. 1348, 1357, Jul. 2005.

[10]Aoki T., Y. Sawada, and T. Higuchi, “Signed-
Weight Arithmetic and Its Application to a
Field-Programmable Digital Filter
Architecture,” IEICE Trans. Electronics, Vol.
E82-C, No. 9, pp. 1687-1698, Sep. 1999.

