Analysis of Oligosaccharids
by Mass Spectrometry
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Working with Carbohydrate

Oligosaccharides removed from protein or lipid conjugates

Stepwise degradations with specific reagents (eg. O- or N-
glycosidase) that reveal bond position and stereochemistry

Mixture separated by chromatography

Overall composition and analysis by GC, Mass and NMR




degradations with specific reagents

Acid hydrolysis
Methylation

Smith degradation
Chemical deglycolysation
Glycosyl hydrolases
Exoglycosidases
endoglycosidases



Chemistry of Glycans

Acid Hydrolysis
« Many different conditions: acid concentration, temperature, time, solvent conditions
» General purpose to break oligosaccharide down into constituent monosacchandes

- Some monomers more susceptible to hydrolysis: weak conditions remove them

sialic acids, fucose




Ether and ester derivatization. Methylation

Esterification
 acid chlorides or acid hydrides
« in alkaline conditions (pyridine)

Ether derivatization (O-alkylation)
 Williamson ether synthesis: excess alkyl halide (R-X) + Ag,0
» exhaustive ether formation, including the anomeric hydroxyl




Smith Degradation

« A technique useful in studying linkage analysis in smaller
oligosaccharides

« Sample is processed in three preparative steps
1. periodate oxidation

2. borohydride reduction

2
.

mild acid hydrolysis

* Products separated by (paper) chromatography referenced to
known / predictable substances

 Standard set of rules are followed to deduce oligosaccharide
composition and linkage




Chemical deglycosylation

Trifluoromethanesulfonic acid (TFMS)

» Extremely powerful acid

» Excellent tool for deglycosylation of glycoproteins

« Better than trying to deglycosylate enzymatically with glycosidase cocktail

* TFMS is used to remove oligosaccharides from glycoproteins so that the
protein can be analyzed in later steps.

» Phosphate-modified amino acids in the protein are apparently unaffected
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(TFMS)

Glycoprotein -3  deglycosylated
protein
+ anisole

(anhydrous)

Anhydrous hydrogen fluoride deglycosylates glycoproteins without
degrading either the protein. Monosaccharide structures of neutral and
acidic sugars are retained




Glycosyl hydrolases
hydrolytic enzymes break down oligosaccharides into their monomers or
smaller oligosaccharides

Exoglycosidases
* remove monosaccharides from a nonreducing terminal
« specific for monosaccharide and anomeric linkage
= glucosidases
= mannosidases
= galactosidases
= fucosidases
= neuraminidases
» specific for a- and p-anomeric forms

Endoglycosidases

» glycoside bond-hydrolyzing enzyme where bond broken does not produce
a monosaccharide from a nonreducing terminus

« usually removes glycan from its aglycone




Sequencing/Structural Analyses

Mass Spectrometry (MS)
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Some Conclusions

» Better to work with glycopeptides rather than the glycoprotein in the
preparative (purification) steps if glycan analysis is a goal

digest the glycoprotein

» remove the oligosaccharide from the peptide (enzymatically or
chemically)

» combinations of exoglycosidases with mass spectrometry get
sequence results
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Microanalysis of N-linked oligosaccharides in a glycoprotein by
capillary liquid chromatography/mass spectrometry and liquid
chromatography/tandem mass spectrometry

Nana Kawasaki,” Satsuki Itoh, Miyako Ohta, and Takao Hayakawa

be also terminated with Gal by al,3-linkage. CapLC/
MS/MS and exoglycosidase followed by CapLC/MS
were able to elucidate the detailed carbohydrate struc-
ture of HGF through yielding the information of
monosaccharide sequence, and linkages.



Oligosaccharides

Ol osaccharldes are important group of polymeric
carbohydrates that are found in all living organismes.

Oligosaccharides composed of 2 to 10 monosaccharide
residues.

These monosaccharide's linked together by glycoside (a-
1,4 or a-1,6 ) bonds.

T1e dlscovery of new enzymes helps in developing other
0 |g%sacchar|des of monosaccharide's with other linked
onds

Trehalose (a,a 1,1), Gentio- ollgosaccharldes (B-1,6),
Nigero- ollgosaccharldes a-1,3), Cyclodextrin (a-1-4).
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Oligosaccharides groups

Sucrose-related oligosaccharides.
Starch-related oligosaccharides.
Lactose-related oligosaccharides.
Others-oligosaccharides.
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Oligosaccharides Substrates

Oligosaccharides Substrate
Fructo-oligosacchiaride Sucrose/Innulin.
Malto- oligosaccharide Starch.
Isomalto-oligosaecharide Starch.
Galacto-oligosaeeharide Lactose.
Lactosterose— Lactose+ sucrose.
Lactulose—— Lactose.

Xylo- oligosaeeharide Xylan.

Soy- oligosaccharide Soy.
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Properties

Low sweetness intensity (1/3 of sucrose )
Calorie free.

Resistance to hydrolysis by digestive
enzymes.

Non-cariogenic (inhibit the growth of
Streptococcus mutans)

Highly soluble than sucrose.

Heat stable (doesn't degrade by heating
process)

Hydrolyze in high acid environment.
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Benefits

Prebiotic (enhance befidus bacteria in colon).

Increase digestion of lactose metabolism.
Increase mineral absorption.

Increase HDL/LDL ratio.

Decrease serum lipids and blood cholesterol.
Decrease blood pressure.

Decrease glycemic response.

Decrease fecal PH, toxic, and carcinogenic

metabolites.
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Mass spectrometry of
oligosaccharides

Mass spectrometry is an important tool for the structural analysis of
carbohydrates, and offers precise results, analytical versatility, and
very high sensitivity.

Whereas mass spectrometric analysis options for proteins and
peptides are well-defined relative to those for carbohydrates.
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Characteristics of tandem mass
spectra of oligosaccharides

1. Electrospray lonization (ESI)

ESI MS: Conventional ESI MS involves the pumping of a solution (a forced flow)
into the ion source, and has been observed to produce relatively weak ion
signals for native oligosaccharides compared to those for peptides and proteins.

Probe ———

Extractor Cone

Nano ESI: on the other hand, produces ion signals that are comparable Capillary
between the peptide and carbohydrate compound classes. \

lon Path
\

It, therefore, appears that the hydrophilicity of oligosaccharides limits the
surface activity in ESI droplets and that, with small droplets, their sensitivity is - \
one Las

significantly enhanced.



Characteristics of tandem mass
spectra of oligosaccharides

2. Matrix-Assisted Laser Desorption/lonization (MALDI)

The MALDI-TOF ionization efficiency for neutral carbohydrates Laser
oligomers has been observed to be constant as the size of the
molecule increases, in contrast to that for ESI, where the
ionization efficiency decreases with an increasing molecular
weight.

Matrix

Time-of-flight
Mass spec




Characteristics of tandem mass
spectra of oligosaccharides

Note: The advantages of MALDI in terms of
ionization response have to be balanced
against the disadvantages of the metastable
fragmentation that is caused by the higher
internal energies imparted to the ions relative
to those resulting from ESI.



Nomenclature for the Fragmentation
of Glycoconjugates

» 4
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Non-reducing end Reducing end
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Fragment ions that contain a non-reducing terminus are labeled with uppercase letters
from the beginning of the alphabet (A, B, C),
and those that contain the reducing end of the oligosaccharide or the aglycon are labeled
with letters from the end of the alphabet (X, Y, Z); subscripts indicate the cleaved ions.
The A and X ions are produced by cleavage across the glycosidic ring, and are labeled by
assigning each ring bond a number and counting clockwise.



Nomenclature for the Fragmentation
of Glycoconjugates
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Tandem MS of Native Oligosaccharide
Molecular lons

1. Protonated lons: [M+H]+

e 2. Deprotonated lons: [M—H]- ions

3. Alkali and Alkaline Earth Adducted lons:
[M(Li)+Li]+ ions

FIGURE 2. Fragmentation of (a) protonated and (b) alkali-cationized glycosidic bonds (Modified {rom

Cancilla et al., 1996).
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HO
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1996). Fragmentation yields were highest for oligomers
with the least branching, and were inversely related to
cation size, following the order H" >Li">Na" " >K" >
Rb">Cs".Mechanism of fragmentation of protonated ions
is likely to be charge-induced, whereas that for cesiated
ions is likely to be charge-remote. Charge-remote frag-
mentation requires more energy than charge-induced
fragmentation, and the degree to which this occurs
increases with increasing cation size.



Three possible fragmentation
pathways for metal-cationized
oligosaccharides
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Computer-Based Approaches for
Interpretation of Oligosaccharide
Product-lon Mass Spectra

(1) monosaccharide residue loss from the non-reducing termini

(2) subsequent monosaccharide residue losses from the
aforementioned ions, generating a Y. ion series

(3) the complementaryBm ions

(4) formation of internal fragment ions from loss of
pyridylamidated residues from the Y.lons

(5) formation of internal fragments from . ions
(6) formation of Z,, as well as the complementary C. ions.
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Fig. 2. Full-scan mass chromatography of borohydride-reduced oli-
gosaccharides from HGF (200ng) using CapLC/MS (A). Full-scan
mass chromatography of «-galactosidase-treated borohydride-reduced
oligosaccharides from HGF (200 ng) (B).

Exoglycosidase digestion followed by mass spectro-
metric sugar mapping was performed to determine the
Hex and its linkage. Treatment with o-galactosidase,
which cleaves Galal-3.4,6Gal/Glc, resulted in new
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Carbohydrate compositions and theoretical and calculated masses of peaks in Fig. 2A

Peak Carbohydrate composition Deduced carbohydrate Theoretical Calculated Charge Observed m/z
structure mass* mass state
1 |dHex|, [Hex|,[HexNAc|,[NeuGc|, FucBi-NeuGe," 2402.8 2403.6 2+ 1202.8
2 [dHex], [Hex |, [HexNAc| ,[NeuGe|, FucBi-Gal, NeuGe, 2257.8 22589 2+ 11304
3 [dHex|, [Hex|;[HexNAc|;|NeuGc, FucTri-NeuGe,* 2768.0 2769.8 2+ 1385.9
[dHex|, [Hex|;[HexNAc|;|NeuGc|, FucTri-NeuGe: 3075.1 3077.8 2+ 1539.9
4 |dHex|, [Hex|,[HexNAc|,[NeuGc|, FucTri-NeuGe, 2460.9 2461.6 2+ 1231.8
[dHex|, [Hex|;[HexNAc|;|NeuGc|, FucTri-NeuGe; 3075.1 3077.2 2+ 1539.6
5 |dHex|, [Hex|.|HexNAc|,[NeuGc|, FucTri-Gal; NeuGe, 2930.0 29324 2+ 1467.2
6 |dHex|, [Hex],|HexNAc|, FucBi-Gal, 2112.8 2114.6 2+ 1058.3
(dHex|, [Hex|;|HexNAc|;|NeuGc|, FucTri-Gal; NeuGe: 2930.0 2932.0 2+ 1467.0
7 |dHex|, [Hex|,|HexNAc|[NeuGc|, FucTri-Gal, NeuGe, 2622.9 26244 2+ 13132
[dHex|, [Hex|,|HexNAc|, [NeuGc|, FucTri-Gal; NeuGe, 2930.0 2931.6 2+ 1466.8
8 [dHex|,[Hex|;[HexNAc||NeuGc/, FucTri-Gal; NeuGe: 2930.0 2931.6 2+ 1466.8
9 [dHex|, [Hex|,[HexNAc|,[NeuGc|, FucTri-Gal, NeuGe, 2785.0 2786.6 2+ 13943
10 [dHex], [Hex|,[HexNAc| . [NeuGe|, FucTetra-NeuGe, ¢ 2826.0 28278 2+ 14149
11 [dHex|,[Hex|;[HexNAc|, FucTri-Gals 2640.0 2641.0 2+ 1321.5
|dHex|, [Hex|,|HexNAc|,[NeuGc|, FucTri-Gal; NeuGe, 2785.0 27874 2+ 1394.7
* Monoisotopic mass value.
b Fuc

Gal,,
FucBi-Gal,,NeuGc,, NeuGe,

< ll-_"uc
- R . Gal Gal-GleMNAc-Man ~ . ; .
FucTri—Gal,,NeuGe,, NcuGcm GaloGle™N Ac-Man < Man—-GleMNAcGleMNAc—OH.
n Gal-GleMNAc~
d Fuc
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Gal-GleMN Ac-Man ~

Gal-GleMNAc-Man ~

Gal-GleMNAc
Gal-GleMNAc-Man ~

Gal-GleMN A c-Man » Man-GleNAc-GleNAc-OH.

Gal-GleMNAc~”

1
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Carbohydrate compositions and theoretical and calculated masses of peaks in Fig. 2B

Peak Carbohydrate composition Deduced carbohydrate ~ Theoretical — Calculated Charge state  Observed m/z
structure mass* mass
a |dHex|, [Hex|;[HexNAc|, [NeuGel, FucBi-NeuGe: 24028 2405.4 2+ 1203.7
b |dHex], [Hex|,[HexNAc|, [NeuGe|, FucBi-NeuGe, 2095.8 2098.2 2+ 1050.1
c |dHex], [Hex|,[HexNAc|, [NeuGc|, FucTri-NeuGe, 2768.0 2769.8 2+ 1385.9
|dHex|, [Hex|,[HexNAc|; [NeuGcl, FucTri-NeuGe; 3075.1 3076.6 2+ 1539.3
d |dHex], [Hex|,[HexNAc|, FucBi 1788.7 1789.8 1+ 1790.8
|dHex], [Hex|,[HexNAc|, FucTr 21538 2155.6 2+ 1078.8
|dHex/, [Hex|,[HexNAc| [NeuGc, FucTri-NeuGe 2460.9 2462.6 2+ 1232.3
|dHex], [Hex|,[HexNAc|, [NeuGc|, FucTri-NeuGe;, 2768.0 2770.8 2+ 1386.4
|dHex], [Hex|,[HexNAc|, [NeuGe|, FucTri-NeuGe; 3075.1 3079.2 2+ 1540.6
e |dHex|, [Hex|;[HexNAc|s [NeuGel, FucTri-NeuGe;s 3075.1 3077.6 2+ 1539.8
f |dHex], [Hex|,[HexNAc|, [NeuGe|, FucTetra-NeuGc, 2826.0 2825.2 2+ 1413.6

* Monoisotopic mass value.
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Fig. 4. MS/MS spectrum of the FucTri-Gals Ncuf}cf'

at m/f= 1395,

'HexNAc|;". These fragment ions suggest the mono-
saccharide sequence of FucTri-Gal, NeuGe; shown in



Simultaneous glycosylation analysis of human serum glycoproteins by
high-performance liquid chromatography/tandem mass spectrometry
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Fig. 5. Peptide map of commercially available human polyclonal IgG. (A) TIC (m/z 1000-2000) obtained by LC/MS/MS of trypsin-digested IgG. (A") EIC (m/z 204.05-204.15)
obtained by data-dependent MS/MS. (B) Mass spectrum of peak A, which was assigned as glycopeptides of EEQYNSTYR of IgG.1 (P01857). (C) Mass spectrum of peak C,
which would be glycopeptides of EEQYNSTFR of IgG3 (CAA67886) and/or EEQFNSTYR of IgG4 (P01861). (D) Mass spectrum of peak B, which was assigned as glycopeptides
of EEQFNSTER of IgG2 (P01859).



