Molecular Biology

Neda Esfandiari

Department of Nanobiotechnology Faculty of Life Sciences and Biotechnology Shahid Beheshti University

Ne esfandiari@sbu.ac.ir

http://facultymembers.sbu.ac.ir/esfandiari

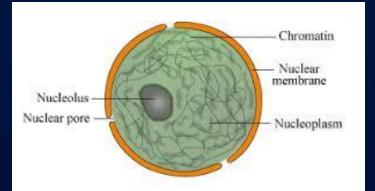
fppt.com

Eukaryotic RNA Polymerases

Multiple Forms of Eukaryotic RNA Polymerase

- ribosomal RNA genes
- the rest of the nuclear genes

1- They have a different base composition from that of other nuclear genes.


2- unusually repetitive

3-They are found in a nucleolus

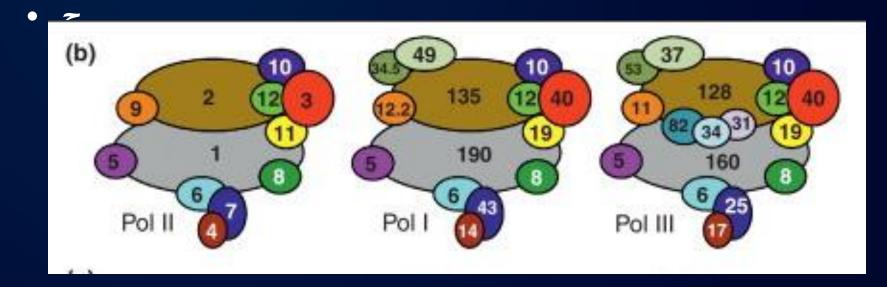
Separation of the Three Nuclear Polymerases

Eukaryotic nuclei contain three RNA polymerases:

- I. RNA polymerase I the rRNA genes
- II. RNA polymerase IIIII. RNA polymerase III

nucleolus : transcribes

The Roles of the Three RNA Polymerases


RNA Polymerase	Cellular RNAs Synthesized	Mature RNA (Vertebrate)
I.	Large rRNA precursor	28S, 18S, and 5.8S rRNAs
Ш	hnRNAs	mRNAs
	snRNAs	snRNAs
	miRNA precursors	miRNAs
Ш	5S rRNA precursor	5S rRNA
	tRNA precursors	tRNAs

heterogeneous nuclear RNA (hnRNA) microRNAs (miRNAs) small nuclear RNAs (snRNAs)

additional RNA polymerases in **flowering plants**: **RNA polymerase IV** and **RNA polymerase V** : silences genes.

RNA Polymerase Subunit Structures:

- I. RNA polymerase I (A) : 14 subunits
- II. RNA polymerase II (B) : 12 subunits
- III. RNA polymerase III (C) : 17 subunits

6

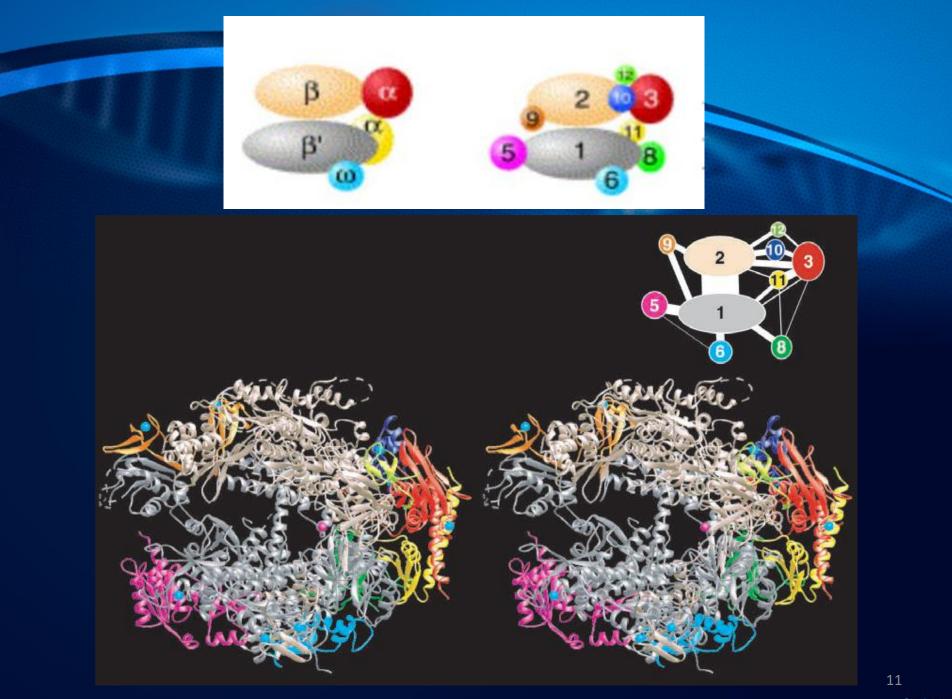
Subunit	Yeast Gene	Yeast Protein (kD)	Features
hRPB1	RPB1	192	Contains CTD; binds DNA; involved in start site selection; β' ortholog
hRPB2	RPB2	139	Contains active site; involved in start site selection, elongation rate; β ortholog
hRPB3	RPB3	35	May function with Rpb11 as ortholog of the α dimer of prokaryotic RNA polymerase
hRPB4	RPB4	25	Subcomplex with Rpb7; involved in stress response
hRPB5 米	RPB5	25	Shared with Pol I, II, III; target for transcriptional activators
hRPB6 \star	RPB6	18	Shared with Pol I, II, III; functions in assembly and stability
hRPB7	RPB7	19	Forms subcomplex with Rpb4 that preferentially binds during stationary phase
hRPB8 \star	RPB8	17	Shared with Pol I, II, III; has oligonucleotide/oligosaccharide-binding domain
hRPB9	RPB9	14	Contains zinc ribbon motif that may be involved in elongation: functions in start site selection
hRPB10 🔸	RPB10	8	Shared with Pol I, II, III
hRPB11	RPB11	14	May function with Rpb3 as ortholog of the α dimer of prokaryotic RNA polymerase
hRPB12 \star	RPB12	8	Shared with Pol I, II, III

How do the structures of polymerases I and III compare with this polymerase II structure?

Core Subunits

- These three polypeptides, Rpb1, Rpb2, and Rpb3, are all absolutely required for enzyme activity.
- *E. coli B'*-subunit binds DNA, and so does Rpb1.
- E. coli B-subunit at the active site of the enzyme = Rpb2

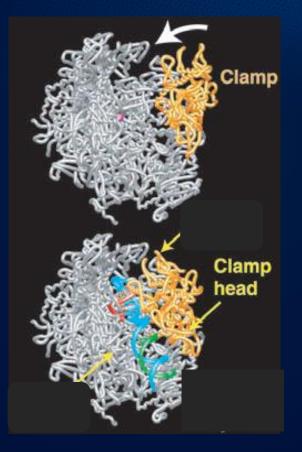
8

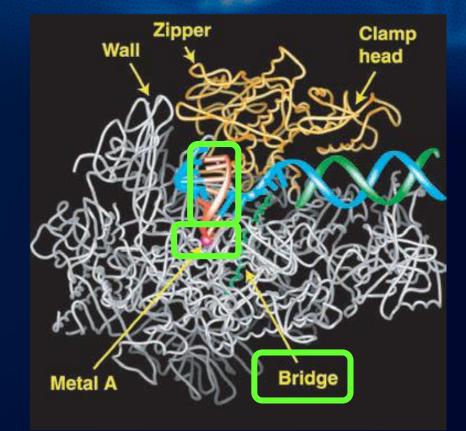

Heterogeneity of the Rpb1 Subunit
IIa : a repeating string of seven amino
acids (a heptad) = CTD (carboxyl-terminal
domain)
Tyr-Ser-Pro-Thr-Ser-Pro-Ser = heptad

□ IIb : lacks CTD

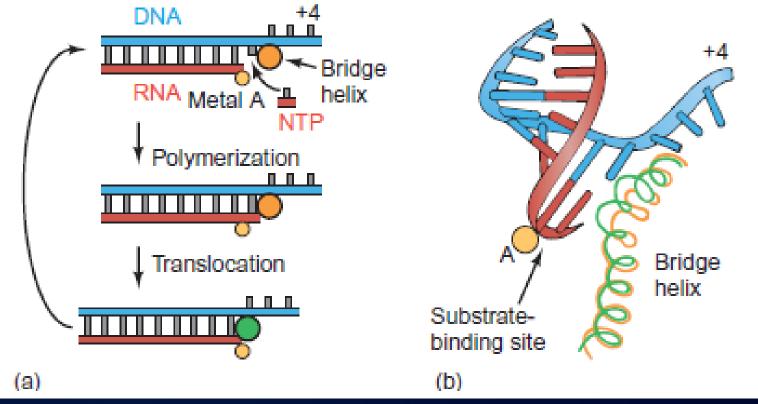
Ilo : serines 2, 5, and sometimes 7 in the heptad are found to be phosphorylated in the llo subunit. IIA (the unphosphorylated form of the enzyme) is the species that initially binds to the promoter.

IIO (with its CTD phosphorylated) is the species that carries out elongation.

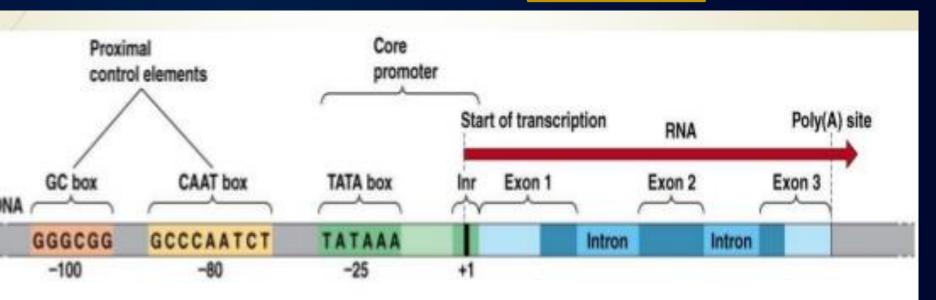

Thus, phosphorylation of the CTD appears to accompany the transition from initiation to elongation.



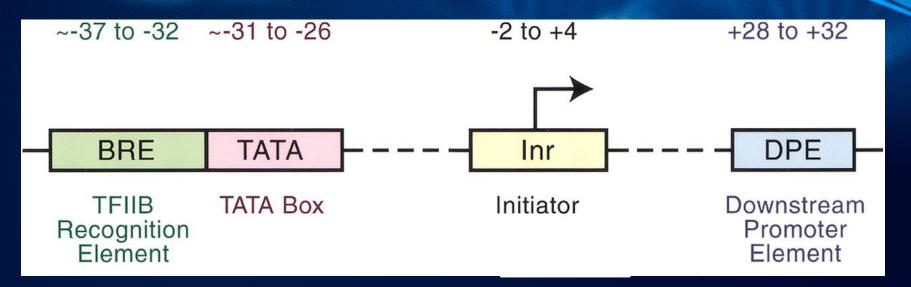
The most prominent feature of the enzyme is the deep DNA-binding cleft with Mg2+


The higher-resolution structure showed two Mg2+ ions (A and B), though the signal for one of them was weak.

Three-Dimensional Structure of RNA Polymerase II in an Elongation Complex



Promoters

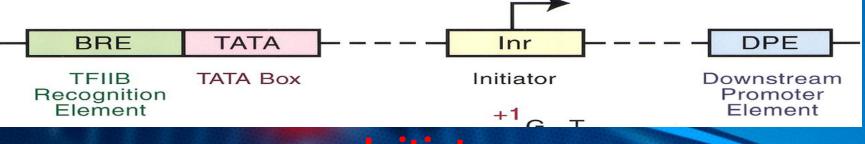

Class II Promoters

- core promoter
- proximal promoter (upstream promoter elements)

UPE

core promoter

TATA BOX (TATAAA)

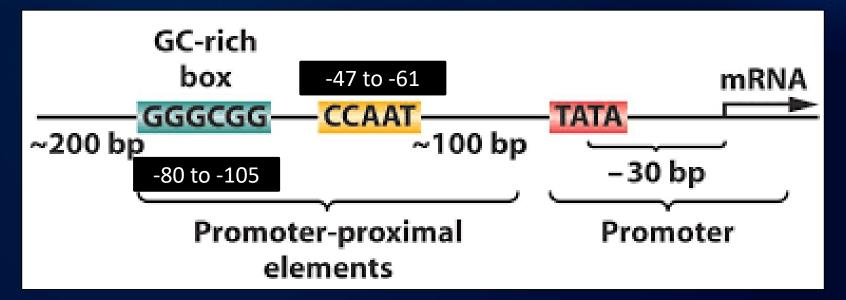

The last A of this sequence usually lies 25 to 30 bp upstream of the transcription start site in higher eukaryotes.

close similarity between the eukaryotic TATA box and the prokaryotic -10 box.

✓ TATA-less promoters

What is the function of the TATA box?

- Some class II promoters require the TATA box for function, but others need it only to position the transcription start site.
- preinitiation complex = a collection of transcription factors and RNA polymerase.
- The first protein to bind is **TFIID**, including the **TATA-boxbinding protein (TBP)**, which then attracts the other factors.



Initiators

- conserved sequences around their transcription start sites that are required for optimal transcription.
 DPE
- In fact, TATA-less promoters tend to have DPEs, at least in *Drosophila*.
 BRE
- Another important general transcription factor is TFIIB, which binds to the promoter along with TFIID to form a preinitiation complex that is competent to begin transcription.

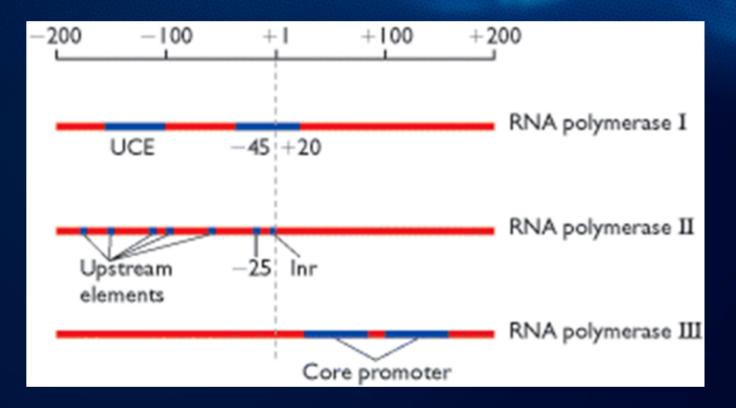
Proximal Promoter Elements:

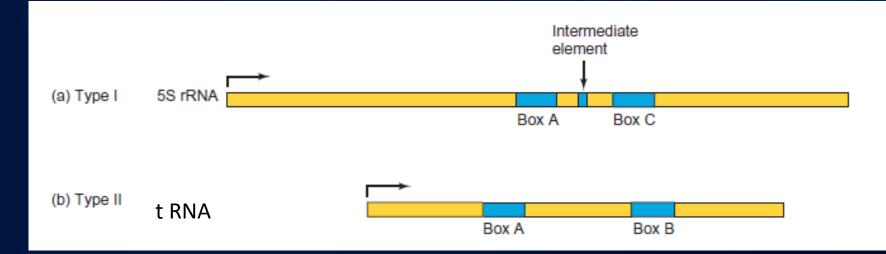
mutations in these elements (GC-rich box) significantly decreased promoter activity.

 GC boxes bind the transcription factor Sp1, while CCAAT boxes bind CTF (CCAAT-binding transcription factor) 21

Class I Promoters

Each copy of rRNA virtually the same as the others, and they all have the same promoter sequence.


It consists of two elements, a core element surrounding the transcription start site, and an upstream promoter element (UPE) about 100 bp farther upstream.


22

Class III Promoters

٠

Class III Promoters

